1
|
Zhang N, Zheng N, Luo D, Lin J, Lin D, Lu Y, Lai W, Bian Y, Wang H, Ye J, Yang J, Liu J, Que W, Chen X. A novel single domain bispecific antibody targeting VEGF and TNF-α ameliorates rheumatoid arthritis. Int Immunopharmacol 2024; 126:111240. [PMID: 37992444 DOI: 10.1016/j.intimp.2023.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Anti-TNF-α therapy fails in 30% of patients, where TNF-α may not be the key causative factor in these patients. We developed a bispecific single-domain antibody block TNF-α and VEGF (V5-3).The experiments showed that V5-3 effectively activated proliferation and migration of RA-FLS and HUVEC, tube-forming role of HUVEC, and expression of inflammatory factors in vitro. Besides, the experiments indicated that the anti-RA activity of V5-3 was superior to Anbainuo in vivo. Application of V5-3 reduced the expression of inflammatory factors, extent of synovial inflammation and angiogenesis and attenuated the severity of autoimmune arthritis in collagen-induced arthritis (CIA) mice. Mechanistically, V5-3 suppressed p65, AKT and VEGFR2 phosphorylation, as well as production of TNF-α and VEGF in joint tissues. These results demonstrated that V5-3 displayed a superior effect of anti-RA, may be a new therapy to overcome the limitations of anti-TNF-α monoclonal antibody.
Collapse
Affiliation(s)
- Nanwen Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China
| | - Ningning Zheng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Putian Lanhai Nuclear Medicine Research Center, Putian 351100, Fujian,China
| | - Dunxiong Luo
- The Department of Physical Education, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Juan Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Duoduo Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yongkang Lu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Weipeng Lai
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yize Bian
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - He Wang
- The School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Jian Ye
- The Department of Orthopedics, Nanping First Hospital Affiliated with Fujian Medical University, Fujian Medical University, Nanping 353000, Fujian, China; Third Clinical Medical College, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Juhua Yang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China.
| | - Jiaan Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Wenzhong Que
- Department of Rheumatology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, Fujian, China.
| | - Xiaole Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China.
| |
Collapse
|
2
|
Duchniewicz M, Lee JYW, Menon DK, Needham EJ. Candidate Genetic and Molecular Drivers of Dysregulated Adaptive Immune Responses After Traumatic Brain Injury. J Neurotrauma 2024; 41:3-12. [PMID: 37376743 DOI: 10.1089/neu.2023.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Abstract Neuroinflammation is a significant and modifiable cause of secondary injury after traumatic brain injury (TBI), driven by both central and peripheral immune responses. A substantial proportion of outcome after TBI is genetically mediated, with an estimated heritability effect of around 26%, but because of the comparatively small datasets currently available, the individual drivers of this genetic effect have not been well delineated. A hypothesis-driven approach to analyzing genome-wide association study (GWAS) datasets reduces the burden of multiplicity testing and allows variants with a high prior biological probability of effect to be identified where sample size is insufficient to withstand data-driven approaches. Adaptive immune responses show substantial genetically mediated heterogeneity and are well established as a genetic source of risk for numerous disease states; importantly, HLA class II has been specifically identified as a locus of interest in the largest TBI GWAS study to date, highlighting the importance of genetic variance in adaptive immune responses after TBI. In this review article we identify and discuss adaptive immune system genes that are known to confer strong risk effects for human disease, with the dual intentions of drawing attention to this area of immunobiology, which, despite its importance to the field, remains under-investigated in TBI and presenting high-yield testable hypotheses for application to TBI GWAS datasets.
Collapse
Affiliation(s)
- Michał Duchniewicz
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John Y W Lee
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward J Needham
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Danese S, Solitano V, Jairath V, Peyrin-Biroulet L. The future of drug development for inflammatory bowel disease: the need to ACT (advanced combination treatment). Gut 2022; 71:2380-2387. [PMID: 35701092 DOI: 10.1136/gutjnl-2022-327025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/02/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milano, Italy
| | - Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Western University, London, Ontario, Canada.,Alimentiv, London, Ontario, Canada
| | | |
Collapse
|
4
|
Wang X, Sun Y, Ling L, Ren X, Liu X, Wang Y, Dong Y, Ma J, Song R, Yu A, Wei J, Fan Q, Guo M, Zhao T, Dao R, She G. Gaultheria leucocarpa var. yunnanensis for Treating Rheumatoid Arthritis-An Assessment Combining Machine Learning-Guided ADME Properties Prediction, Network Pharmacology, and Pharmacological Assessment. Front Pharmacol 2021; 12:704040. [PMID: 34671253 PMCID: PMC8520986 DOI: 10.3389/fphar.2021.704040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Dianbaizhu (Gaultheria leucocarpa var. yunnanensis), a traditional Chinese/ethnic medicine (TC/EM), has been used to treat rheumatoid arthritis (RA) for a long time. The anti-rheumatic arthritis fraction (ARF) of G. yunnanensis has significant anti-inflammatory and analgesic activities and is mainly composed of methyl salicylate glycosides, flavonoids, organic acids, and others. The effective ingredients and rudimentary mechanism of ARF remedying RA have not been elucidated to date. Purpose: The aim of the present study is to give an insight into the effective components and mechanisms of Dianbaizhu in ameliorating RA, based on the estimation of the absorption, distribution, metabolism, and excretion (ADME) properties, analysis of network pharmacology, and in vivo and in vitro validations. Study design and methods: The IL-1β-induced human fibroblast-like synoviocytes of RA (HFLS-RA) model and adjuvant-induced arthritis in the rat model were adopted to assess the anti-RA effect of ARF. The components in ARF were identified by using UHPLC-LTQ-Orbitrap-MSn. The quantitative structure-activity relationship (QSAR) models were developed by using five machine learning algorithms, alone or in combination with genetic algorithms for predicting the ADME properties of ARF. The molecular networks and pathways presumably referring to the therapy of ARF on RA were yielded by using common databases and visible software, and the experimental validations of the key targets conducted in vitro. Results: ARF effectively relieved RA in vivo and in vitro. The five optimized QSAR models that were developed showed robustness and predictive ability. The characterized 48 components in ARF had good biological potency. Four key signaling pathways were obtained, which were related to both cytokine signaling and cell immune response. ARF suppressed IL-1β-induced expression of EGFR, MMP 9, IL2, MAPK14, and KDR in the HFLS-RA . Conclusions: ARF has good druggability and high exploitation potential. Methyl salicylate glycosides and flavonoids play essential roles in attuning RA. ARF may partially attenuate RA by regulating the expression of multi-targets in the inflammation-immune system. These provide valuable information to rationalize ARF and other TC/EMs in the treatment of RA.
Collapse
Affiliation(s)
- Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Youyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Ling
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Miaoxian Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Dao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| |
Collapse
|
5
|
Yang J, Zhang Y, Li WH, Guo BF, Peng QL, Yao WY, Gong DH, Ding WJ. Assessment of the anti-rheumatoid arthritis activity of Gastrodia elata (tian-ma) and Radix aconitic lateralis preparata (fu-zi) via network pharmacology and untargeted metabolomics analyses. Int J Rheum Dis 2021; 24:380-390. [PMID: 33523580 DOI: 10.1111/1756-185x.14063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/21/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022]
Abstract
AIM Gastrodia elata and Radix aconiti lateralis preparrata are respectively named as Tian-Ma and Fu-Zi (TF) in Chinese. We explored the active components against rheumatoid arthritis (RA) from an extensively used couplet of Chinese herbs, Gastrodia elata and Radix aconiti lateralis preparata (TF) via untargeted metabolomics and network pharmacological approaches. METHODS Water extracts of TF were mixed at ratios 1:1, 3:2 and 2:3 (w/w). Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was then utilized as metabolomics screening. Human Metabolome (http://www.hmdb.ca/) and Lipidmaps (http://www.lipidmaps.org/) databases were used to annotate detected compounds. Further identification of vital genes and important pathways associated with the anti-RA properties of the TF preparations was done via network pharmacology, and verified by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Four key compounds involved in unsaturated fatty acid biosynthesis and isoflavonoid biosynthesis were identified through metabolomics analyses. Three key components of TF associated with anti-RA activity were linoleic acid, daidzein, and daidzin. Results of RT-qPCR revealed that all 3 tested TF couplets (1:1, 3:2, and 2:3) markedly suppressed the transcription of PTGS2. These results were consistent with our network pharmacological predictions. CONCLUSIONS The anti-RA properties of Tian-Ma and Fu-Zi are associated with the inhibition of arachidonic acid metabolism pathway.
Collapse
Affiliation(s)
- Jie Yang
- Department of Fundamental Medicine, Bijie Medical College, Bijie, China
| | - Yu Zhang
- Department of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Wei-Hong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bu-Fa Guo
- Department of Fundamental Medicine, Bijie Medical College, Bijie, China
| | - Qi-Lun Peng
- Department of Fundamental Medicine, Bijie Medical College, Bijie, China
| | - Wei-Yi Yao
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di-Hong Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|