1
|
Sasaki I, Fukuda-Ohta Y, Nakai C, Wakaki-Nishiyama N, Okamoto C, Okuzaki D, Morita S, Kaji S, Furuta Y, Hemmi H, Kato T, Yamamoto A, Tosuji E, Saitoh SI, Tanaka T, Hoshino K, Fukuda S, Miyake K, Kuroda E, Ishii KJ, Iwawaki T, Furukawa K, Kaisho T. A stress sensor, IRE1α, is required for bacterial-exotoxin-induced interleukin-1β production in tissue-resident macrophages. Cell Rep 2024; 43:113981. [PMID: 38520688 DOI: 10.1016/j.celrep.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1β (IL-1β), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1β production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1β production, indicating that IRE1α is required for CT- or CTB-induced IL-1β production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.
| | - Yuri Fukuda-Ohta
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Chihiro Nakai
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Naoko Wakaki-Nishiyama
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Chizuyo Okamoto
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Morita
- First Department of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shiori Kaji
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yuki Furuta
- Department of Thoracic and Cardiovascular Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Takashi Kato
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Asumi Yamamoto
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Emi Tosuji
- Department of Dermatology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shin-Ichiroh Saitoh
- Department of Intractable Disorders, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takashi Tanaka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Etsushi Kuroda
- Department of Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi 487-8501, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.
| |
Collapse
|
2
|
Meunier M, Spillmann A, Rousseaux C, Schwamborn K, Hanson M. An oral cholera vaccine in the prevention and/or treatment of inflammatory bowel disease. PLoS One 2023; 18:e0283489. [PMID: 37639428 PMCID: PMC10461820 DOI: 10.1371/journal.pone.0283489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
The oral cholera vaccine WC-rBS consists of 4 different inactivated strains of Vibrio cholerae (LPS source) admixed with recombinant cholera toxin B subunit. Because of its unique composition and anti-inflammatory properties reported for both CTB and low doses of LPS from other Gram-negative bacteria, we speculated that WC-rBS might have anti-inflammatory potential in a chronic autoimmune disease such as inflammatory bowel diseases. First in vitro endotoxin tolerance experiments showed the surprising WC-rBS potential in the modulation of inflammatory responses on both PBMCs and THP1 cells. WC-rBS was further evaluated in the Dextran Sodium Sulfate colitis mouse model. Administrated orally at different dosages, WC-rBS vaccine was safe and showed immunomodulatory properties when administered in a preventive mode (before and during the induction of DSS colitis) as well as in a curative mode (after colitis induction); with improvement of disease activity index (from 27 to 73%) and histological score (from 65 to 88%). Interestingly, the highest therapeutic effect of WC-rBS vaccine was observed with the lowest dosage, showing even better anti-inflammatory properties than mesalamine; an approved 5-aminosalicylic acid drug for treating IBD patients. In summary, this is the first time that a prophylactic medicine, safe and approved for prevention of an infectious disease, showed a benefit in an inflammatory bowel disease model, potentially offering a novel therapeutic modality for IBD patients.
Collapse
Affiliation(s)
| | | | - Christel Rousseaux
- Intestinal Biotech Development, Faculté de Médicine—Pole Recherche, Lille, France
| | | | | |
Collapse
|
3
|
Verjan Garcia N, Hong KU, Matoba N. The Unfolded Protein Response and Its Implications for Novel Therapeutic Strategies in Inflammatory Bowel Disease. Biomedicines 2023; 11:2066. [PMID: 37509705 PMCID: PMC10377089 DOI: 10.3390/biomedicines11072066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle playing a vital role in maintaining cell homeostasis, and disruptions to its functions can have detrimental effects on cells. Dysregulated ER stress and the unfolded protein response (UPR) have been linked to various human diseases. For example, ER stress and the activation of the UPR signaling pathways in intestinal epithelial cells can either exacerbate or alleviate the severity of inflammatory bowel disease (IBD), contingent on the degree and conditions of activation. Our recent studies have shown that EPICERTIN, a recombinant variant of the cholera toxin B subunit containing an ER retention motif, can induce a protective UPR in colon epithelial cells, subsequently promoting epithelial restitution and mucosal healing in IBD models. These findings support the idea that compounds modulating UPR may be promising pharmaceutical candidates for the treatment of the disease. In this review, we summarize our current understanding of the ER stress and UPR in IBD, focusing on their roles in maintaining cell homeostasis, dysregulation, and disease pathogenesis. Additionally, we discuss therapeutic strategies that promote the cytoprotection of colon epithelial cells and reduce inflammation via pharmacological manipulation of the UPR.
Collapse
Affiliation(s)
- Noel Verjan Garcia
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kyung U Hong
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Nobuyuki Matoba
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Verjan Garcia N, Santisteban Celis IC, Dent M, Matoba N. Characterization and utility of two monoclonal antibodies to cholera toxin B subunit. Sci Rep 2023; 13:4305. [PMID: 36922604 PMCID: PMC10016189 DOI: 10.1038/s41598-023-30834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Cholera toxin B subunit (CTB) is a potent immunomodulator exploitable in mucosal vaccine and immunotherapeutic development. To aid in the characterization of pleiotropic biological functions of CTB and its variants, we generated a panel of anti-CTB monoclonal antibodies (mAbs). By ELISA and surface plasmon resonance, two mAbs, 7A12B3 and 9F9C7, were analyzed for their binding affinities to cholera holotoxin (CTX), CTB, and EPICERTIN: a recombinant CTB variant possessing mucosal healing activity. Both 7A12B3 and 9F9C7 bound efficiently to CTX, CTB, and EPICERTIN with equilibrium dissociation constants at low to sub-nanomolar concentrations but bound weakly, if at all, to Escherichia coli heat-labile enterotoxin B subunit. In a cyclic adenosine monophosphate assay using Caco2 human colon epithelial cells, the 7A12B3 mAb was found to be a potent inhibitor of CTX, whereas 9F9C7 had relatively weak inhibitory activity. Meanwhile, the 9F9C7 mAb effectively detected CTB and EPICERTIN bound to the surface of Caco2 cells and mouse spleen leukocytes by flow cytometry. Using 9F9C7 in immunohistochemistry, we confirmed the preferential localization of EPICERTIN in colon crypts following oral administration of the protein in mice. Collectively, these mAbs provide valuable tools to investigate the biological functions and preclinical development of CTB variants.
Collapse
Affiliation(s)
- Noel Verjan Garcia
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Matthew Dent
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA. .,Center for Predictive Medicine, University of Louisville School of Medicine, 505 S. Hancock Street, Room 615, Louisville, KY, 40202, USA. .,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
5
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
6
|
Maki Y, Kawata K, Liu Y, Goo KY, Okamoto R, Kajihara Y, Satoh A. Design and Synthesis of Glycosylated Cholera Toxin B Subunit as a Tracer of Glycoprotein Trafficking in Organelles of Living Cells. Chemistry 2022; 28:e202201253. [PMID: 35604098 DOI: 10.1002/chem.202201253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/15/2022]
Abstract
Glycosylation of proteins is known to be essential for changing biological activity and stability of glycoproteins on the cell surfaces and in body fluids. Delivering of homogeneous glycoproteins into the endoplasmic reticulum (ER) and the Golgi apparatus would enable us to investigate the function of asparagine-linked (N-) glycans in the organelles. In this work, we designed and synthesized an intentionally glycosylated cholera toxin B-subunit (CTB) to be transported to the organelles of mammalian cells. The heptasaccharide, the intermediate structure of various complex-type N-glycans, was introduced to the CTB. The synthesized monomeric glycosyl-CTB successfully entered mammalian cells and was transported to the Golgi and the ER, suggesting the potential use of synthetic CTB to deliver and investigate the functions of homogeneous N-glycans in specific organelles of living cells.
Collapse
Affiliation(s)
- Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuki Kawata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yanbo Liu
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kang-Ying Goo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| |
Collapse
|
7
|
KDEL Receptors: Pathophysiological Functions, Therapeutic Options, and Biotechnological Opportunities. Biomedicines 2022; 10:biomedicines10061234. [PMID: 35740256 PMCID: PMC9220330 DOI: 10.3390/biomedicines10061234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
KDEL receptors (KDELRs) are ubiquitous seven-transmembrane domain proteins encoded by three mammalian genes. They bind to and retro-transport endoplasmic reticulum (ER)-resident proteins with a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence or variants thereof. In doing this, KDELR participates in the ER quality control of newly synthesized proteins and the unfolded protein response. The binding of KDEL proteins to KDELR initiates signaling cascades involving three alpha subunits of heterotrimeric G proteins, Src family kinases, protein kinases A (PKAs), and mitogen-activated protein kinases (MAPKs). These signaling pathways coordinate membrane trafficking flows between secretory compartments and control the degradation of the extracellular matrix (ECM), an important step in cancer progression. Considering the basic cellular functions performed by KDELRs, their association with various diseases is not surprising. KDELR mutants unable to bind the collagen-specific chaperon heat-shock protein 47 (HSP47) cause the osteogenesis imperfecta. Moreover, the overexpression of KDELRs appears to be linked to neurodegenerative diseases that share pathological ER-stress and activation of the unfolded protein response (UPR). Even immune function requires a functional KDELR1, as its mutants reduce the number of T lymphocytes and impair antiviral immunity. Several studies have also brought to light the exploitation of the shuttle activity of KDELR during the intoxication and maturation/exit of viral particles. Based on the above, KDELRs can be considered potential targets for the development of novel therapeutic strategies for a variety of diseases involving proteostasis disruption, cancer progression, and infectious disease. However, no drugs targeting KDELR functions are available to date; rather, KDELR has been leveraged to deliver drugs efficiently into cells or improve antigen presentation.
Collapse
|
8
|
Tusé D, Reeves M, Royal J, Hamorsky KT, Ng H, Arolfo M, Green C, Trigunaite A, Parman T, Lee G, Matoba N. Pharmacokinetics and Safety Studies in Rodent Models Support Development of EPICERTIN as a Novel Topical Wound-Healing Biologic for Ulcerative Colitis. J Pharmacol Exp Ther 2022; 380:162-170. [PMID: 35058349 PMCID: PMC11046972 DOI: 10.1124/jpet.121.000904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/02/2022] [Indexed: 04/28/2024] Open
Abstract
The novel wound-healing biologic EPICERTIN, a recombinant analog of cholera toxin B subunit, is in early development for the management of ulcerative colitis. This study established for the first time the pharmacokinetics (PK), bioavailability (BA), and acute safety of EPICERTIN in healthy and dextran sodium sulfate-induced colitic mice and healthy rats. For PK and BA assessments, single administrations of various concentrations of EPICERTIN were given intravenously or intrarectally to healthy and colitic C57BL/6 mice and to healthy Sprague-Dawley rats. After intravenous administration to healthy animals, the drug's plasma half-life (t 1/2) for males and females was 0.26 and 0.3 hours in mice and 19.4 and 14.5 hours in rats, respectively. After intrarectal administration, drug was detected at very low levels in only four samples of mouse plasma, with no correlation to colon epithelial integrity. No drug was detected in rat plasma. A single intrarectal dose of 0.1 µM (0.6 µg/mouse) EPICERTIN significantly facilitated the healing of damaged colonic epithelium as determined by disease activity index and histopathological scoring, whereas 10-fold higher or lower concentrations showed no effect. For acute toxicity evaluation, healthy rats were given a single intrarectal administration of various doses of EPICERTIN with sacrifice on Day 8, recording body weight, morbidity, mortality, clinical pathology, and gross necropsy observations. There were no drug-related effects of toxicological significance. The no observed adverse effect level (intrarectal) in rats was determined to be 5 µM (307 µg/animal, or 5.2 µg drug/cm2 of colorectal surface area), which is 14 times the anticipated intrarectally delivered clinical dose. SIGNIFICANCE STATEMENT: EPICERTIN is a candidate wound-healing biologic for the management of ulcerative colitis. This study determined for the first time the intravenous and intrarectal pharmacokinetics and bioavailability of the drug in healthy and colitic mice and healthy rats, and its acute safety in a dose-escalation study in rats. An initial therapeutic dose in colitic mice was also established. EPICERTIN delivered intrarectally was minimally absorbed systemically, was well tolerated, and induced epithelial wound healing topically at a low dose.
Collapse
Affiliation(s)
- Daniel Tusé
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Micaela Reeves
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Joshua Royal
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Krystal T Hamorsky
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Hanna Ng
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Maria Arolfo
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Carol Green
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Abhishek Trigunaite
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Toufan Parman
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Goo Lee
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Nobuyuki Matoba
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| |
Collapse
|
9
|
Reeves MA, Royal JM, Morris DA, Jurkiewicz JM, Matoba N, Hamorsky KT. Spray-Dried Formulation of Epicertin, a Recombinant Cholera Toxin B Subunit Variant That Induces Mucosal Healing. Pharmaceutics 2021; 13:pharmaceutics13040576. [PMID: 33919585 PMCID: PMC8073836 DOI: 10.3390/pharmaceutics13040576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/31/2023] Open
Abstract
Epicertin (EPT) is a recombinant variant of the cholera toxin B subunit, modified with a C-terminal KDEL endoplasmic reticulum retention motif. EPT has therapeutic potential for ulcerative colitis treatment. Previously, orally administered EPT demonstrated colon epithelial repair activity in dextran sodium sulfate (DSS)-induced acute and chronic colitis in mice. However, the oral dosing requires cumbersome pretreatment with sodium bicarbonate to conserve the acid-labile drug substance while transit through the stomach, hampering its facile application in chronic disease treatment. Here, we developed a solid oral formulation of EPT that circumvents degradation in gastric acid. EPT was spray-dried and packed into enteric-coated capsules to allow for pH-dependent release in the colon. A GM1-capture KDEL-detection ELISA and size-exclusion HPLC indicated that EPT powder maintains activity and structural stability for up to 9 months. Capsule disintegration tests showed that EPT remained encapsulated at pH 1 but was released over 180 min at pH 6.8, the approximate pH of the proximal colon. An acute DSS colitis study confirmed the therapeutic efficacy of encapsulated EPT in C57BL/6 mice upon oral administration without gastric acid neutralization pretreatment compared to vehicle-treated mice (p < 0.05). These results provide a foundation for an enteric-coated oral formulation of spray-dried EPT.
Collapse
Affiliation(s)
- Micaela A. Reeves
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.A.R.); (J.M.R.)
| | - Joshua M. Royal
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.A.R.); (J.M.R.)
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
| | - David A. Morris
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jessica M. Jurkiewicz
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.A.R.); (J.M.R.)
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Correspondence: (N.M.); (K.T.H.); Tel.: +1-502-852-8412 (N.M.); +1-502-852-1445 (K.T.H.)
| | - Krystal T. Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Correspondence: (N.M.); (K.T.H.); Tel.: +1-502-852-8412 (N.M.); +1-502-852-1445 (K.T.H.)
| |
Collapse
|
10
|
Harnessing the Membrane Translocation Properties of AB Toxins for Therapeutic Applications. Toxins (Basel) 2021; 13:toxins13010036. [PMID: 33418946 PMCID: PMC7825107 DOI: 10.3390/toxins13010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Over the last few decades, proteins and peptides have become increasingly more common as FDA-approved drugs, despite their inefficient delivery due to their inability to cross the plasma membrane. In this context, bacterial two-component systems, termed AB toxins, use various protein-based membrane translocation mechanisms to deliver toxins into cells, and these mechanisms could provide new insights into the development of bio-based drug delivery systems. These toxins have great potential as therapies both because of their intrinsic properties as well as the modular characteristics of both subunits, which make them highly amenable to conjugation with various drug classes. This review focuses on the therapeutical approaches involving the internalization mechanisms of three representative AB toxins: botulinum toxin type A, anthrax toxin, and cholera toxin. We showcase several specific examples of the use of these toxins to develop new therapeutic strategies for numerous diseases and explain what makes these toxins promising tools in the development of drugs and drug delivery systems.
Collapse
|
11
|
Morris DA, Reeves MA, Royal JM, Hamorsky KT, Matoba N. Isolation and detection of a KDEL-tagged recombinant cholera toxin B subunit from Nicotiana benthamiana. Process Biochem 2020; 101:42-49. [PMID: 33304198 DOI: 10.1016/j.procbio.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Here we describe refined methods for the isolation and detection of a KDEL-tagged, plant-produced recombinant cholera toxin B subunit (CTB) that exhibits unique mucosal wound healing activity. The protein was transiently overexpressed in Nicotiana benthamiana, which generates some C-terminal KDEL truncated molecular species that are deficient in epithelial repair activity. With a new CHT chromatographical method described herein, these product-derived impurities were successfully separated from CTB with the intact KDEL sequence, as confirmed by mass spectrometry. In addition, an immunoassay capable of specifically detecting GM1 ganglioside-binding CTB with intact KDEL sequences was developed. Coupled together, these methods will aid in the quality control of KDEL-attached CTB produced in plant-based manufacturing systems towards a novel topical biotherapeutic for the treatment of acute and chronic mucosal inflammation.
Collapse
Affiliation(s)
- David A Morris
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Micaela A Reeves
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joshua M Royal
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Krystal T Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
12
|
Royal JM, Reeves MA, Matoba N. Repeated Oral Administration of a KDEL-tagged Recombinant Cholera Toxin B Subunit Effectively Mitigates DSS Colitis Despite a Robust Immunogenic Response. Toxins (Basel) 2019; 11:E678. [PMID: 31756977 PMCID: PMC6950078 DOI: 10.3390/toxins11120678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Cholera toxin B subunit (CTB), a non-toxic homopentameric component of Vibrio cholerae holotoxin, is an oral cholera vaccine antigen that induces an anti-toxin antibody response. Recently, we demonstrated that a recombinant CTB variant with a Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention motif (CTB-KDEL) exhibits colon mucosal healing effects that have therapeutic implications for inflammatory bowel disease (IBD). Herein, we investigated the feasibility of CTB-KDEL for the treatment of chronic colitis. We found that weekly oral administration of CTB-KDEL, dosed before or after the onset of chronic colitis, induced by repeated dextran sodium sulfate (DSS) exposure, could significantly reduce disease activity index scores, intestinal permeability, inflammation, and histological signs of chronicity. To address the consequences of immunogenicity, mice (C57BL/6 or C3H/HeJ strains) were pre-exposed to CTB-KDEL then subjected to DSS colitis and CTB-KDEL treatment. While the pre-dosing of CTB-KDEL elicited high-titer anti-drug antibodies (ADAs) of the immunoglobin A (IgA) isotype in the intestine of C57BL/6 mice, the therapeutic effects of CTB-KDEL were similar to those observed in C3H/HeJ mice, which showed minimal ADAs under the same experimental conditions. Thus, the immunogenicity of CTB-KDEL does not seem to impede the protein's mucosal healing efficacy. These results support the development of CTB-KDEL for IBD therapy.
Collapse
Affiliation(s)
- Joshua M. Royal
- James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Micaela A. Reeves
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|