1
|
Jurina A, Kasumović D, Delimar V, Filipec Kanižaj T, Japjec M, Dujmović T, Vučić Lovrenčić M, Starešinić M. Fibroblast growth factor 23 and its role in bone diseases. Growth Factors 2024; 42:1-12. [PMID: 37906060 DOI: 10.1080/08977194.2023.2274579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Fibroblast growth factor 23 (FGF23) has been casually linked to numerous hypophosphatemic bone diseases, however connection with bone loss or fragility fractures is still a matter of debate. The purpose of this review is to explore and summarise the known actions of FGF23 in various pathological bone conditions. Besides implication in bone mineralisation, elevated FGF23 showed a pathological effecton bone remodelling, primarily by inhibiting osteoblast function. Unlike the weak association with bone mineral density, high values of FGF23 have been connected with fragility fracture prevalence. This review shows that its effects on bone are concomitantly present on multiple levels, affecting both qualitative and quantitative part of bone strength, eventually leading to impaired bone strength and increased tendency of fractures. Recognising FGF23 as a risk factor for the development of bone diseases and correcting its levels could lead to the reduction of morbidity and mortality in specific groups of patients.
Collapse
Affiliation(s)
- Andrija Jurina
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Dino Kasumović
- Department of Internal Medicine, Division of Nephrology and Dialysis, Dubrava University Hospital, Zagreb, Croatia
| | - Valentina Delimar
- Special Hospital for Medical Rehabilitation KrapinskeToplice, KrapinskeToplice, Croatia
| | - Tajana Filipec Kanižaj
- Department of Internal Medicine, Division of Gastroenterology, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Japjec
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Tomislav Dujmović
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Marijana Vučić Lovrenčić
- Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Mario Starešinić
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Ahmed F, Minamizaki T, Aubin JE, Damayanti MA, Yoshiko Y. Large scale analysis of osteocyte lacunae in klotho hypomorphic mice using high-resolution micro-computed tomography. Ann Anat 2023; 250:152142. [PMID: 37572763 DOI: 10.1016/j.aanat.2023.152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Osteocytes are the most abundant cell type in adult bone, and the morphological characteristics of osteocytes and their lacunae appear to influence bone mass and fragility. Although conventional computed tomography (CT) has contributed greatly to advances in bone morphometry, capturing details of the entire hierarchical assembly, e.g., osteocyte lacuna parameters, has been limited by the analytical performance of CT (> 1 µm resolution). METHODS We used high-resolution (700 nm) micro-CT to evaluate and compare the osteocyte lacuna parameters over a large scale, i.e., in a maximum of about 45,700 lacunae (average), in tibial metaphyseal cortical bones of wild-type (WT) and αKlotho-hypomorphic (kl/kl) mice, the latter a model that exhibits osteopenia and aberrant osteocytes. RESULTS Of osteocyte lacuna parameters, lacunar surface per lacunar volume were significantly lower and lacuna diameter were significantly larger in kl/kl mice compared to WT mice. By analysis of individual osteocyte lacunae, we found that lacunar sphericity in kl/kl mice was higher than that in WT mice, and the diameters in the major and the minor axes were respectively lower and higher in kl/kl mice, especially at the proximal site of the region of interest. CONCLUSION We successfully assessed osteocyte lacuna parameters on the largest scale in mice reported to date and found that the shape of osteocyte lacunae of kl/kl mice are significantly different from those of WT mice. Although the mechanisms underlying the lacunar shape differences observed are not yet clear, changes in lacunar geometry are known to affect the transitions of strains to the osteocyte microenvironment and likely local osteocyte response(s). Thus, the fact that the differences are limited to the mesial region near the primary spongiosa suggests the likelihood of site-specific anomalies in mechanosensitive effects in kl/kl osteocytes with consequent site-specific effects bone metabolism and function.
Collapse
Affiliation(s)
- Faisal Ahmed
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Merry Annisa Damayanti
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
3
|
Horowitz RA, Kurtzman GM. Utilization of Low-Magnitude High-Frequency Vibration (LMHFV) as an Aid in Treating Peri-Implantitis: Case Presentations. J ORAL IMPLANTOL 2023; 49:501-509. [PMID: 36975737 DOI: 10.1563/aaid-joi-d-21-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 12/21/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Peri-implantitis is an inflammatory process initiating in the soft tissue and then progressing to the hard tissue surrounding dental implants leading to loss of osseous support and potential loss of the implant if not identified early in the process. This process initiates in the soft tissue, which become inflamed spreading to the underlying bone leading to decreases in bone density with subsequent crestal resorption and thread exposure. In the absence of treatment of the peri-implantitis, the bone loss at the osseous implant interface progresses with inflammatory mediated decrease in the bone density that moves apically, eventually leading to mobility of the implant and its failure. Low-magnitude high-frequency vibration (LMHFV) has been shown to improve bone density, stimulate osteoblastic activity, and arrest progression of peri-implantitis with improvement of the bone or graft around the affected implant with or without surgery as part of the treatment. Two cases are presented using LMHFV to augment treatment.
Collapse
Affiliation(s)
- Robert A Horowitz
- Department of Periodontology and Implant Dentistry, NYU School of Dentistry, New York, New York
- Private practice, Scarsdale, New York
| | | |
Collapse
|
4
|
Qin L, Chen Z, Yang D, He T, Xu Z, Zhang P, Chen D, Yi W, Xiao G. Osteocyte β3 integrin promotes bone mass accrual and force-induced bone formation in mice. J Orthop Translat 2023; 40:58-71. [PMID: 37457310 PMCID: PMC10338905 DOI: 10.1016/j.jot.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023] Open
Abstract
Background Cell culture studies demonstrate the importance of β3 integrin in osteocyte mechanotransduction. However, the in vivo roles of osteocyte β3 integrin in the regulation of bone homeostasis and mechanotransduction are poorly defined. Materials and methods To study the in vivo role of osteocyte β3 integrin in bone, we utilized the 10-kb Dmp1 (dentin matrix acidic phosphoprotein 1)-Cre to delete β3 integrin expression in osteocyte in mice. Micro-computerized tomography (μCT), bone histomorphometry and in vitro cell culture experiments were performed to determine the effects of osteocyte β3 integrin loss on bone mass accrual and biomechanical properties. In addition, in vivo tibial loading model was applied to study the possible involvement of osteocyte β3 integrin in the mediation of bone mechanotransduction. Results Deletion of β3 integrin in osteocytes resulted in a low bone mass and impaired biomechanical properties in load-bearing long bones in adult mice. The loss of β3 integrin led to abnormal cell morphology with reduced number and length of dentritic processes in osteocytes. Furthermore, osteocyte β3 integrin loss did not impact the osteoclast formation, but significantly reduced the osteoblast-mediated bone formation rate and reduced the osteogenic differentiation of the bone marrow stromal cells in the bone microenvironment. In addition, mechanical loading failed to accelerate the anabolic bone formation in mutant mice. Conclusions Our studies demonstrate the essential roles of osteocyte β3 integrin in regulating bone mass and mechanotransduction.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Zecai Chen
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Zhen Xu
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| |
Collapse
|
5
|
Li J, Leung SYS, Chung YL, Chow SKH, Alt V, Rupp M, Brochausen C, Chui CS, Ip M, Cheung WH, Wong RMY. Hydrogel Delivery of DNase I and Liposomal Vancomycin to Eradicate Fracture-related Methicillin-resistant Staphylococcus aureus Infection and Support Osteoporotic Fracture Healing. Acta Biomater 2023; 164:223-239. [PMID: 37019168 DOI: 10.1016/j.actbio.2023.03.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Fracture-related infection (FRI) is a devastating complication in orthopedic surgery. A recent study showed that FRI causes more severe infection and further delays healing in osteoporotic bone. Moreover, bacterial biofilm formed on implants cannot be eradicated by systemic antibiotics, warranting novel treatments. Here, we developed a DNase I and Vancomycin hydrogel delivery vehicle to eradicate Methicillin-resistant Staphylococcus aureus (MRSA) infection in vivo. Vancomycin was encapsulated in liposomes, and DNase I and Vancomycin/liposomal-Vancomycin was loaded on thermosensitive hydrogel. In vitro drug release test showed a burst release of DNase I (77.2%) within 72 hours and sustained release of Vancomycin (82.6%) up to day 14. The in vivo efficacy was evaluated in a clinically relevant ovariectomy (OVX) induced osteoporotic metaphyseal fracture model with MRSA infection, and a total of 120 Sprague Dawley rats were used. In the OVX with infection group, biofilm development caused a drastic inflammatory response, trabecular bone destruction, and non-union. In the DNase I and Vancomycin co-delivery hydrogel group (OVX-Inf-DVG), bacteria on bone and implant were eradicated. X-ray and micro-CT showed preservation of trabecular bone and bone union. HE staining showed the absence of inflammatory necrosis, and fracture healing was restored. The local elevation of TNF-α and IL-6 and increased number of osteoclasts were prevented in the OVX-Inf-DVG group. Our findings suggest that dual release of DNase I and Vancomycin initially followed by Vancomycin only later up to 14 days effectively eliminates MRSA infection, prevents biofilm development and provides a sterile environment to promote fracture healing in osteoporotic bone with FRI. STATEMENT OF SIGNIFICANCE: The biofilm formation on the implant is difficult to eradicate, causing recurrent infection and non-union in fracture-related infection (FRI). Here we developed a hydrogel therapy with high in vivo efficacy to eliminate MRSA biofilm infection in a clinically-relevant FRI model in osteoporotic bone. By loading DNase I and vancomycin/liposomal-vancomycin on thermosensitive poly-(DL-lactic acidco-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA hydrogel, a dual release of DNase I and Vancomycin was achieved whilst preserving enzyme activity. In this model, the progressive development of infection caused a drastic inflammatory response, osteoclastogenesis, trabecular bone destruction, and non-union of fracture. These pathological changes were successfully prevented by the dual delivery of DNase I and vancomycin. Our findings provide a promising strategy for FRI in osteoporotic bone.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | | | - Chun Sing Chui
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Sato M, Shah FA. Contributions of Resin Cast Etching to Visualising the Osteocyte Lacuno-Canalicular Network Architecture in Bone Biology and Tissue Engineering. Calcif Tissue Int 2023; 112:525-542. [PMID: 36611094 PMCID: PMC10106349 DOI: 10.1007/s00223-022-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Recent years have witnessed an evolution of imaging technologies towards sophisticated approaches for visualising cells within their natural environment(s) and for investigating their interactions with other cells, with adjacent anatomical structures, and with implanted biomaterials. Resin cast etching (RCE) is an uncomplicated technique involving sequential acid etching and alkali digestion of resin embedded bone to observe the osteocyte lacuno-canalicular network using scanning electron microscopy. This review summarises the applicability of RCE to bone and the bone-implant interface. Quantitative parameters such as osteocyte size, osteocyte density, and number of canaliculi per osteocyte, and qualitative metrics including osteocyte shape, disturbances in the arrangement of osteocytes and canaliculi, and physical communication between osteocytes and implant surfaces can be investigated. Ageing, osteoporosis, long-term immobilisation, spinal cord injury, osteoarthritis, irradiation, and chronic kidney disease have been shown to impact osteocyte lacuno-canalicular network morphology. In addition to titanium, calcium phosphates, and bioactive glass, observation of direct connectivity between osteocytes and cobalt chromium provides new insights into the osseointegration potential of materials conventionally viewed as non-osseointegrating. Other applications include in vivo and in vitro testing of polymer-based tissue engineering scaffolds and tissue-engineered ossicles, validation of ectopic osteochondral defect models, ex vivo organ culture of whole bones, and observing the effects of gene dysfunction/deletion on the osteocyte lacuno-canalicular network. Without additional contrast staining, any resin embedded specimen (including clinical biopsies) can be used for RCE. The multitude of applications described here attest to the versatility of RCE for routine use within correlative analytical workflows, particularly in biomaterials science.
Collapse
Affiliation(s)
- Mari Sato
- Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Lopas LA, Shen H, Zhang N, Jang Y, Tawfik VL, Goodman SB, Natoli RM. Clinical Assessments of Fracture Healing and Basic Science Correlates: Is There Room for Convergence? Curr Osteoporos Rep 2022; 21:216-227. [PMID: 36534307 DOI: 10.1007/s11914-022-00770-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the clinical and basic science methods used to assess fracture healing and propose a framework to improve the translational possibilities. RECENT FINDINGS Mainstays of fracture healing assessment include clinical examination, various imaging modalities, and assessment of function. Pre-clinical studies have yielded insight into biomechanical progression as well as the genetic, molecular, and cellular processes of fracture healing. Efforts are emerging to identify early markers to predict impaired healing and possibly early intervention to alter these processes. Despite of the differences in clinical and preclinical research, opportunities exist to unify and improve the translational efforts between these arenas to develop and optimize our ability to assess and predict fracture healing, thereby improving the clinical care of these patients.
Collapse
Affiliation(s)
- Luke A Lopas
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA.
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohan Jang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA
| |
Collapse
|
8
|
Li MCM, Chow SKH, Wong RMY, Chen B, Cheng JCY, Qin L, Cheung WH. Osteocyte-specific dentin matrix protein 1 : the role of mineralization regulation in low-magnitude high-frequency vibration enhanced osteoporotic fracture healing. Bone Joint Res 2022; 11:465-476. [PMID: 35787000 PMCID: PMC9350691 DOI: 10.1302/2046-3758.117.bjr-2021-0476.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. Conclusion The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465–476.
Collapse
Affiliation(s)
- Meng C M Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K-H Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald M Y Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jack C Y Cheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
BASKAN OZNUR, OZCIVICI ENGIN. VIABILITY OF 3T3-L1 PREADIPOCYTES IS MODULATED BY THE APPLIED FREQUENCY BUT NOT THE EXPOSURE DURATION OF LOW INTENSITY VIBRATORY STIMULATION. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanical forces are the integral determinants in cell and tissue homeostasis and regeneration, and they can affect numerous biological process from proliferation to fate determination. Mechanical forces that possess low magnitude and high frequency characteristics are also known as low intensity vibrations (LIVs). These signals were studied widely on many cell types for regenerative purposes, however most of these studies select components of LIV signals (e.g., magnitude, frequency, duration, etc.) arbitrarily. Here, we addressed the effect of LIV applied frequency, LIV daily exposure time and fate induction on the viability of preadipocyte 3T3-L1 cells. For this, we performed a frequency sweep that was ranging from 30[Formula: see text]Hz to 120[Formula: see text]Hz with 15[Formula: see text]Hz increments applied for 5, 10 or 20[Formula: see text]min during quiescent growth or adipogenesis for up to 10 days. Results suggest that the applied frequency and fate induction was an important determinant of cell viability while daily exposure time had no effect. These findings contribute to the effort of optimizing a relevant mechanical stimulus that can inhibit adipogenesis.
Collapse
Affiliation(s)
- OZNUR BASKAN
- Department of Bioengineering, Izmir Institute of Technology Urla, Izmir 35430, Turkey
| | - ENGIN OZCIVICI
- Department of Bioengineering, Izmir Institute of Technology Urla, Izmir 35430, Turkey
| |
Collapse
|
10
|
Li J, Wong RMY, Chung YL, Leung SSY, Chow SKH, Ip M, Cheung WH. Fracture-related infection in osteoporotic bone causes more severe infection and further delays healing. Bone Joint Res 2022; 11:49-60. [PMID: 35100815 PMCID: PMC8882324 DOI: 10.1302/2046-3758.112.bjr-2021-0299.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aims With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI). Methods A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Staphylococcus aureus at 4 × 104 colony-forming units (CFU)/ml was inoculated. Rats were euthanized at four and eight weeks post-surgery. Radiography, micro-CT, haematoxylin-eosin, mechanical testing, immunohistochemistry (IHC), gram staining, agar plating, crystal violet staining, and scanning electron microscopy were performed. Results Agar plating analysis revealed a higher bacterial load in bone (p = 0.002), and gram staining showed higher cortical bone colonization (p = 0.039) in OVX-Inf compared to Sham-Inf. OVX-Inf showed significantly increased callus area (p = 0.013), but decreased high-density bone volume (p = 0.023) compared to Sham-Inf. IHC staining showed a significantly increased expression of TNF-α in OVX-Inf compared to OVX (p = 0.049). Significantly reduced bacterial load on bone (p = 0.001), enhanced ultimate load (p = 0.001), and energy to failure were observed in Sham-Inf-A compared to Sham-Inf (p = 0.028), but not in OVX-Inf-A compared to OVX-Inf. Conclusion In osteoporotic bone with FRI, infection was more severe with more bone lysis and higher bacterial load, and fracture-healing was further delayed. Systemic antibiotics significantly reduced bacterial load and enhanced callus quality and strength in normal bone with FRI, but not in osteoporotic bone. Cite this article: Bone Joint Res 2022;11(2):49–60.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Simon Kwoon-Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Margaret Ip
- Department of Microbiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Wong RMY, Chow SKH, Tang N, Chung YL, Griffith J, Liu WH, Ng RWK, Tso CY, Cheung WH. Vibration therapy as an intervention for enhancing trochanteric hip fracture healing in elderly patients: a randomized double-blinded, placebo-controlled clinical trial. Trials 2021; 22:878. [PMID: 34863272 PMCID: PMC8643183 DOI: 10.1186/s13063-021-05844-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are more than 300,000 hip fractures yearly in the USA with mortality rates of 20% within 1 year. The treatment of osteoporotic fractures is a major challenge as bone quality is poor, and healing is expected to delay due to the impaired healing properties with respect to bone formation, angiogenesis, and mineralization. Enhancement of osteoporotic fracture healing and function is therefore critical as a major goal in modern fracture management. Previous pre-clinical studies have shown that low-magnitude high-frequency vibration (LMHFV) accelerates osteoporotic fracture healing. The objective of this study is to investigate the effect of LMHFV on accelerating trochanteric hip fracture healing and functional recovery. METHODS This is a randomized, double-blinded, placebo-controlled clinical trial to evaluate the effect of LMHFV in accelerating trochanteric hip fracture healing. All fractures undergo cephalomedullary nail fixation. The primary outcome of this study is time to fracture healing by X-ray. Computed tomography (CT) and dual-energy X-ray absorptiometry (DXA) will also be performed. Blood circulation at the fracture site will be assessed by dynamic perfusion magnetic resonance (MR). Clinical results include functional recovery by muscle strength, timed up and go test (TUG), quality of life questionnaire (SF-36), balancing, falls, and mortality. DISCUSSION Previous animal studies have demonstrated LMHFV to improve both normal and osteoporotic fracture healing by accelerating callus formation and mineralization. The mechanical stimulation stimulates angiogenesis by significantly enhancing vascular volume and blood flow velocity. This is the first study to translate LMHFV to enhancing hip fracture healing clinically. Positive results would provide a huge impact in the recovery of hip fracture patients and save healthcare costs. TRIAL REGISTRATION Clinicaltrials.gov NCT04063891. Registered on August 21, 2019.
Collapse
Affiliation(s)
- Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Tang
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong, China
| | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - James Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Hong Liu
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong, China
| | - Raymond Wai Kit Ng
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong, China
| | - Chi Yin Tso
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Xu J, Hu P, Zhang X, Chen J, Wang J, Zhang J, Chen Z, Yu MK, Chung YW, Wang Y, Zhang X, Zhang Y, Zheng N, Yao H, Yue J, Chan HC, Qin L, Ruan YC. Magnesium implantation or supplementation ameliorates bone disorder in CFTR-mutant mice through an ATF4-dependent Wnt/β-catenin signaling. Bioact Mater 2021; 8:95-108. [PMID: 34541389 PMCID: PMC8424424 DOI: 10.1016/j.bioactmat.2021.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Magnesium metal and its alloys are being developed as effective orthopedic implants; however, the mechanisms underlying the actions of magnesium on bones remain unclear. Cystic fibrosis, the most common genetic disease in Caucasians caused by the mutation of CFTR, has shown bone disorder as a key clinical manifestation, which currently lacks effective therapeutic options. Here we report that implantation of magnesium-containing implant stimulates bone formation and improves bone fracture healing in CFTR-mutant mice. Wnt/β-catenin signaling in the bone is enhanced by the magnesium implant, and inhibition of Wnt/β-catenin by iCRT14 blocks the magnesium implant to improve fracture healing in CFTR-mutant mice. We further demonstrate that magnesium ion enters osteocytes, increases intracellular cAMP level and activates ATF4, a key transcription factor known to regulate Wnt/β-catenin signaling. In vivo knockdown of ATF4 abolishes the magnesium implant-activated β-catenin in bones and reverses the improved-fracture healing in CFTR-mutant mice. In addition, oral supplementation of magnesium activates ATF4 and β-catenin as well as enhances bone volume and density in CFTR-mutant mice. Together, these results show that magnesium implantation or supplementation may serve as a potential anabolic therapy for cystic fibrosis-related bone disease. Activation of ATF4-dependent Wnt/β-catenin signaling in osteocytes is identified as a previously undefined mechanism underlying the beneficial effect of magnesium on bone formation. Magnesium implant ameliorates bone defects and improves the impaired bone fracture healing in CFTR-deficient mice. Oral magnesium supplementation improves bone quality in CFTR-deficient mice. Extracellular Mg2+ enters bone cells through Mg2+ channels and transporters. Mg2+ elevates cAMP level to activate ATF4-dependent Wnt/β-catenin signalingin bone cells.
Collapse
Affiliation(s)
- Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaotian Zhang
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Junjiang Chen
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jieting Zhang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Kuen Yu
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiu Wa Chung
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Wang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohu Zhang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yifeng Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Nianye Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Yue
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Chun Ruan
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
13
|
Li MCM, Chow SKH, Wong RMY, Qin L, Cheung WH. The role of osteocytes-specific molecular mechanism in regulation of mechanotransduction - A systematic review. J Orthop Translat 2021; 29:1-9. [PMID: 34036041 PMCID: PMC8138679 DOI: 10.1016/j.jot.2021.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background Osteocytes, composing over 90% of bone cells, are well known for their mechanosensing abilities. Aged osteocytes with impaired morphology and function are less efficient in mechanotransduction which will disrupt bone turnover leading to osteoporosis. The aim of this systematic review is to delineate the mechanotransduction mechanism at different stages in order to explore potential target for therapeutic drugs. Methods A systematic literature search was performed in PubMed and Web of Science. Original animal, cell and clinical studies with available English full-text were included. Information was extracted from the included studies for review. Results The 26 studies included in this review provided evidence that mechanical loading are sensed by osteocytes via various sensing proteins and transduced to different signaling molecules which later initiate various biochemical responses. Studies have shown that osteocyte plasma membrane and cytoskeletons are emerging key players in initiating mechanotransduction. Bone regulating genes expressions are altered in response to load sensed by osteocytes, but the genes involved different signaling pathways and the spatiotemporal expression pattern had made mechanotransduction mechanism complicated. Most of the included studies described the important role of osteocytes in pathways that regulate mechanosensing and bone remodeling. Conclusions This systematic review provides an up-to-date insight to different steps of mechanotransduction. A better understanding of the mechanotransduction mechanism is beneficial in search of new potential treatment for osteoporotic patients. By delineating the unique morphology of osteocytes and their interconnected signaling network new targets can be discovered for drug development. Translational potential of this article This systematic review provides an up-to-date sequential overview and highlights the different osteocyte-related pathways and signaling molecules during mechanotransduction. This allows a better understanding of mechanotransduction for future development of new therapeutic interventions to treat patients with impaired mechanosensitivity.
Collapse
Affiliation(s)
- Meng Chen Michelle Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
- Corresponding author.Department of Orthopaedics and Traumatology, 5/F, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
14
|
Okawara H, Arai Y, Matsuno H, Marcián P, Borák L, Aoki K, Wakabayashi N. Effect of load-induced local mechanical strain on peri-implant bone cell activity related to bone resorption and formation in mice: An analysis of histology and strain distributions. J Mech Behav Biomed Mater 2021; 116:104370. [PMID: 33545417 DOI: 10.1016/j.jmbbm.2021.104370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the effect of load-induced local mechanical strain on bone cell activity of peri-implant bone in mice. Titanium implants were placed in the maxillae of 13-week-old male C57BL/6J mice and subjected to intermittent 0.15 N, 0.3 N, or 0.6 N loads for 30 min/day for 6 days. The animals were sacrificed 2 days after the final loading. Unloaded mice were used as controls. An animal-specific three-dimensional finite element model was constructed based on morphological data retrieved from in vivo microfocus computed tomography for each mouse to calculate the mechanical strain distribution. Strain distribution images were overlaid on corresponding histological images of the same site in the same animal. The buccal cervical region of the peri-implant bone was predetermined as the region of interest (ROI). Each ROI was divided by four strain intensity levels: 0-20 με, 20-60 με, 60-100 με, and ≥100 με, and the bone histomorphometric parameters were analyzed by the total area of each strain range for all loaded samples. The distance between the calcified front and calcein labeling as a parameter representing the mineral apposition rate was significantly greater in the areas with strain intensity ≥100 με than in the area with strain intensity <100 με, suggesting that the bone formation activity of osteoblasts was locally enhanced by a higher mechanical strain. However, the shrunken osteocytes and the empty osteocyte lacunae were significantly lower in the highest strain area, suggesting that osteoclastogenesis was more retarded in higher strain areas than in lower strain areas. The histomorphometric parameters were not affected geometrically in the unloaded animals, suggesting that the load-induced mechanical strain caused differences in the histomorphometric parameters. Our findings support the hypothesis that bone cell activity related to bone resorption and formation is local strain-dependent on implant loading.
Collapse
Affiliation(s)
- Hisami Okawara
- Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yuki Arai
- Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Hitomi Matsuno
- Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Petr Marcián
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Libor Borák
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Noriyuki Wakabayashi
- Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
15
|
Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front Bioeng Biotechnol 2020; 8:595139. [PMID: 33195165 PMCID: PMC7609921 DOI: 10.3389/fbioe.2020.595139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is a mechanosensitive tissue for which mechanical stimuli are crucial in maintaining its structure and function. Bone cells react to their biomechanical environment by activating molecular signaling pathways, which regulate their proliferation, differentiation, and matrix production. Bone implants influence the mechanical conditions in the adjacent bone tissue. Optimizing their mechanical properties can support bone regeneration. Furthermore, external biomechanical stimulation can be applied to improve implant osseointegration and accelerate bone regeneration. One promising anabolic therapy is vertical whole-body low-magnitude high-frequency vibration (LMHFV). This form of vibration is currently extensively investigated to serve as an easy-to-apply, cost-effective, and efficient treatment for bone disorders and regeneration. This review aims to provide an overview of LMHFV effects on bone cells in vitro and on implant integration and bone fracture healing in vivo. In particular, we review the current knowledge on cellular signaling pathways which are influenced by LMHFV within bone tissue. Most of the in vitro experiments showed that LMHFV is able to enhance mesenchymal stem cell (MSC) and osteoblast proliferation. Furthermore, osteogenic differentiation of MSCs and osteoblasts was shown to be accelerated by LMHFV, whereas osteoclastogenic differentiation was inhibited. Furthermore, LMHFV increased bone regeneration during osteoporotic fracture healing and osseointegration of orthopedic implants. Important mechanosensitive pathways mediating the effects of LMHFV might be the Wnt/beta-catenin signaling pathway, the estrogen receptor (ER) signaling pathway, and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|