1
|
Korovesis D, Gaspar VP, Beard HA, Chen S, Zahédi RP, Verhelst SHL. Mapping Peptide-Protein Interactions by Amine-Reactive Cleavable Photoaffinity Reagents. ACS OMEGA 2023; 8:25487-25495. [PMID: 37483247 PMCID: PMC10357517 DOI: 10.1021/acsomega.3c03064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Photoaffinity labeling followed by tandem mass spectrometry is an often used strategy to identify protein targets of small-molecule drugs or drug candidates, which, under ideal conditions, enables the identification of the actual drug binding site. In the case of bioactive peptides, however, identifying the distinct binding site is hampered because of complex fragmentation patterns during tandem mass spectrometry. We here report the development and use of small cleavable photoaffinity reagents that allow functionalization of bioactive peptides for light-induced covalent binding to their protein targets. Upon cleavage of the covalently linked peptide drug, a chemical remnant of a defined mass remains on the bound amino acid, which is then used to unambiguously identify the drug binding site. Applying our approach to known peptide-drug/protein pairs with reported crystal structures, such as the calmodulin-melittin interaction, we were able to validate the identified binding sites based on structural models. Overall, our cleavable photoaffinity labeling strategy represents a powerful tool to enable the identification of protein targets and specific binding sites of a wide variety of bioactive peptides in the future.
Collapse
Affiliation(s)
- Dimitris Korovesis
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven−University of Leuven, Herestraat 49 Box 802, Leuven 3000, Belgium
| | - Vanessa P. Gaspar
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research and McGill University, Montreal, Quebec H3T 1E2, Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montreal, Quebec H4A 3T2, Canada
| | - Hester A. Beard
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven−University of Leuven, Herestraat 49 Box 802, Leuven 3000, Belgium
| | - Suyuan Chen
- AG
Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS,
e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - René P. Zahédi
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research and McGill University, Montreal, Quebec H3T 1E2, Canada
- Manitoba
Centre for Proteomics and Systems Biology, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0Z2, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, Manitoba R3E 3N4, Canada
- Cancer
Care Manitoba Research Institute, Winnipeg, Manitoba R3E
0V9, Canada
| | - Steven H. L. Verhelst
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven−University of Leuven, Herestraat 49 Box 802, Leuven 3000, Belgium
- AG
Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS,
e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| |
Collapse
|
2
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
3
|
Wang Y, Song X, Wang Y, Wang N. Specific interaction of insulin receptor and GLP-1 receptor mediates crosstalk between their signaling. Biochem Biophys Res Commun 2022; 636:31-39. [DOI: 10.1016/j.bbrc.2022.10.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/02/2022]
|
4
|
Signaling profiles in HEK 293T cells co-expressing GLP-1 and GIP receptors. Acta Pharmacol Sin 2022; 43:1453-1460. [PMID: 34446852 PMCID: PMC9159978 DOI: 10.1038/s41401-021-00758-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are regarded as 'incretins' working closely to regulate glucose homeostasis. Unimolecular dual and triple agonists of GLP-1R and GIPR have shown remarkable clinical benefits in treating type 2 diabetes. However, their pharmacological characterization is usually carried out in a single receptor-expressing system. In the present study we constructed a co-expression system of both GLP-1R and GIPR to study the signaling profiles elicited by mono, dual and triple agonists. We show that when the two receptors were co-expressed in HEK 293T cells with comparable receptor ratio to pancreatic cancer cells, GIP predominately induced cAMP accumulation while GLP-1 was biased towards β-arrestin 2 recruitment. The presence of GIPR negatively impacted GLP-1R-mediated cAMP and β-arrestin 2 responses. While sharing some common modulating features, dual agonists (peptide 19 and LY3298176) and a triple agonist displayed differentiated signaling profiles as well as negative impact on the heteromerization that may help interpret their superior clinical efficacies.
Collapse
|
5
|
Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation. Peptides 2022; 151:170749. [PMID: 35065096 DOI: 10.1016/j.peptides.2022.170749] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are two class B1 G protein-coupled receptors, which are stimulated by the gastrointestinal hormones GLP-1 and GIP, respectively. In the pancreatic beta cells, activation of both receptors lead to increased cyclic adenosine monophosphate (cAMP) and glucose-dependent insulin secretion. Marketed GLP-1R agonists such as dulaglutide, liraglutide, exenatide and semaglutide constitute an expanding drug class with beneficial effects for persons suffering from type 2 diabetes and/or obesity. In recent years another drug class, the GLP-1R-GIPR co-agonists, has emerged. Especially the peptide-based, co-agonist tirzepatide is a promising candidate for a better treatment of type 2 diabetes by improving glycemic control and weight reduction. The mechanism of action for tirzepatide include biased signaling of the GLP-1R as well as potent GIPR signaling. Since the implications of co-targeting these closely related receptors concomitantly are challenging to study in vivo, the pharmacodynamic mechanisms and downstream signaling pathways of the GLP-1R-GIPR co-agonists in general, are not fully elucidated. In this review, we present the individual signaling pathways for GLP-1R and GIPR in the pancreatic beta cell with a focus on the shared signaling pathways of the two receptors and interpret the implications of GLP-1R-GIPR co-activation in the light of recent co-activating therapeutic compounds.
Collapse
Affiliation(s)
- Ashok Mayendraraj
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Raab M, Matthess Y, Raab CA, Gutfreund N, Dötsch V, Becker S, Sanhaji M, Strebhardt K. A dimerization-dependent mechanism regulates enzymatic activation and nuclear entry of PLK1. Oncogene 2022; 41:372-386. [PMID: 34759346 PMCID: PMC8755526 DOI: 10.1038/s41388-021-02094-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
Polo-like kinase 1 (PLK1) is a crucial regulator of cell cycle progression. It is established that the activation of PLK1 depends on the coordinated action of Aurora-A and Bora. Nevertheless, very little is known about the spatiotemporal regulation of PLK1 during G2, specifically, the mechanisms that keep cytoplasmic PLK1 inactive until shortly before mitosis onset. Here, we describe PLK1 dimerization as a new mechanism that controls PLK1 activation. During the early G2 phase, Bora supports transient PLK1 dimerization, thus fine-tuning the timely regulated activation of PLK1 and modulating its nuclear entry. At late G2, the phosphorylation of T210 by Aurora-A triggers dimer dissociation and generates active PLK1 monomers that support entry into mitosis. Interfering with this critical PLK1 dimer/monomer switch prevents the association of PLK1 with importins, limiting its nuclear shuttling, and causes nuclear PLK1 mislocalization during the G2-M transition. Our results suggest a novel conformational space for the design of a new generation of PLK1 inhibitors.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Christopher A Raab
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Niklas Gutfreund
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Sven Becker
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Mourad Sanhaji
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany.
| | - Klaus Strebhardt
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany.
- German Cancer Consortium (DKTK) / German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
7
|
O'Neill S, Knaus UG. Bioluminescence-Based Complementation Assay to Correlate Conformational Changes in Membrane-Bound Complexes with Enzymatic Function. Methods Mol Biol 2022; 2525:123-137. [PMID: 35836064 DOI: 10.1007/978-1-0716-2473-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The proteomics field has undergone tremendous development with the introduction of many innovative methods for the identification and characterization of protein-protein interactions (PPIs). Sensitive and quantitative protein association-based techniques represent a versatile tool to probe the architecture of receptor complexes and receptor-ligand interactions and expand the drug discovery toolbox by facilitating high-throughput screening (HTS) approaches. These novel methodologies will be highly enabling for interrogation of structural determinants required for the activity of multimeric membrane-bound enzymes with unresolved crystal structure and for HTS assay development focused on unique characteristics of complex assembly instead of common catalytic features, thereby increasing specificity. We describe here an example of a binary luciferase reporter assay (NanoBiT®) to quantitatively assess the heterodimerization of the catalytically active NADPH oxidase 4 (NOX4) enzyme complex. The catalytic subunit NOX4 requires association with the protein p22phox for stabilization and enzymatic activity, but the precise manner by which these two membrane-bound proteins interact to facilitate hydrogen peroxide (H2O2) generation is currently unknown. The NanoBiT complementation reporter quantitatively determined the accurate, reduced, or failed complex assembly, which can then be confirmed by determining H2O2 release, protein expression, and heterodimer trafficking. Multimeric complex formation differs between NOX enzyme isoforms, facilitating isoform-specific, PPI-based drug screening in the future.
Collapse
Affiliation(s)
- Sharon O'Neill
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
- Legend Biotech, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Knerr L, Prakash TP, Lee R, Drury Iii WJ, Nikan M, Fu W, Pirie E, Maria LD, Valeur E, Hayen A, Ölwegård-Halvarsson M, Broddefalk J, Ämmälä C, Østergaard ME, Meuller J, Sundström L, Andersson P, Janzén D, Jansson-Löfmark R, Seth PP, Andersson S. Glucagon Like Peptide 1 Receptor Agonists for Targeted Delivery of Antisense Oligonucleotides to Pancreatic Beta Cell. J Am Chem Soc 2021; 143:3416-3429. [PMID: 33626278 DOI: 10.1021/jacs.0c12043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extra hepatic delivery of antisense oligonucleotides (ASOs) remains a challenge and hampers the widespread application of this powerful class of therapeutic agents. In that regard, pancreatic beta cells are a particularly attractive but challenging cell type because of their pivotal role in diabetes and the fact that they are refractory to uptake of unconjugated ASOs. To circumvent this, we have expanded our understanding of the structure activity relationship of ASOs conjugated to Glucagon Like Peptide 1 Receptor (GLP1R) agonist peptide ligands. We demonstrate the key role of the linker chemistry and its optimization to design maleimide based conjugates with improved in vivo efficacy. In addition, truncation studies and scoping of a diverse set of GLP1R agonists proved fruitful to identify additional targeting ligands efficacious in vivo including native hGLP1(7-36)NH2. Variation of the carrier peptide also shed some light on the dramatic impact of subtle sequence differences on the corresponding ASO conjugate performance in vivo, an area which clearly warrant further investigations. We have confirmed the remarkable potential of GLP1R agonist conjugation for the delivery of ASOs to pancreatic beta cell by effectively knocking down islet amyloid polypeptide (IAPP) mRNA, a potential proapoptotic target, in mice.
Collapse
Affiliation(s)
- Laurent Knerr
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Thazha P Prakash
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Richard Lee
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - William J Drury Iii
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mehran Nikan
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Wuxia Fu
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Elaine Pirie
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Leonardo De Maria
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eric Valeur
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ahlke Hayen
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Ölwegård-Halvarsson
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Broddefalk
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Ämmälä
- Bioscience, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael E Østergaard
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Johan Meuller
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Sundström
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Patrik Andersson
- Respiratory and Immunology Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - David Janzén
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Punit P Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Shalini Andersson
- Research and early Development, Discovery Sciences,, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
9
|
Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B. Int J Mol Sci 2021; 22:ijms22052501. [PMID: 33801503 PMCID: PMC7958859 DOI: 10.3390/ijms22052501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.
Collapse
|
10
|
Fang Z, Chen S, Pickford P, Broichhagen J, Hodson DJ, Corrêa IR, Kumar S, Görlitz F, Dunsby C, French PMW, Rutter GA, Tan T, Bloom SR, Tomas A, Jones B. The Influence of Peptide Context on Signaling and Trafficking of Glucagon-like Peptide-1 Receptor Biased Agonists. ACS Pharmacol Transl Sci 2020; 3:345-360. [PMID: 32296773 PMCID: PMC7155199 DOI: 10.1021/acsptsci.0c00022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Signal bias and membrane trafficking have recently emerged as important considerations in the therapeutic targeting of the glucagon-like peptide-1 receptor (GLP-1R) in type 2 diabetes and obesity. In the present study, we have evaluated a peptide series with varying sequence homology between native GLP-1 and exendin-4, the archetypal ligands on which approved GLP-1R agonists are based. We find notable differences in agonist-mediated cyclic AMP signaling, recruitment of β-arrestins, endocytosis, and recycling, dependent both on the introduction of a His → Phe switch at position 1 and the specific midpeptide helical regions and C-termini of the two agonists. These observations were linked to insulin secretion in a beta cell model and provide insights into how ligand factors influence GLP-1R function at the cellular level.
Collapse
Affiliation(s)
- Zijian Fang
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Shiqian Chen
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Philip Pickford
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Johannes Broichhagen
- Department
Chemical Biology, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Berlin, 13125, Germany
| | - David J. Hodson
- Institute
of Metabolism and Systems Research (IMSR), and Centre of Membrane
Proteins and Receptors (COMPARE), University
of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre
for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, United Kingdom
| | - Ivan R. Corrêa
- New
England
Biolabs, Ipswich, Massachusetts 01938, United States
| | - Sunil Kumar
- Department
of Physics, Imperial College London, London, SW7 2BX, United Kingdom
| | - Frederik Görlitz
- Department
of Physics, Imperial College London, London, SW7 2BX, United Kingdom
| | - Chris Dunsby
- Department
of Physics, Imperial College London, London, SW7 2BX, United Kingdom
| | - Paul M. W. French
- Department
of Physics, Imperial College London, London, SW7 2BX, United Kingdom
| | - Guy A. Rutter
- Section
of Cell Biology and Functional Genomics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Tricia Tan
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Stephen R. Bloom
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Alejandra Tomas
- Section
of Cell Biology and Functional Genomics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Ben Jones
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| |
Collapse
|