1
|
Feng N, Ye Y, Pan Y, Kuang B, Du Y, Geng N, Chen C, Liu K, Liang L, Xian M, Yang Y, Li X, Deng L, Zhang F, Kuang L, Fan M, Xie Y, Guo F. The circUbqln1, regulated by XBP1s, interplays with 14-3-3ζ to inhibit collagen synthesis and promote osteoarthritis by controlling PRODH activity and proline metabolism. J Adv Res 2024; 66:267-284. [PMID: 38219870 PMCID: PMC11674786 DOI: 10.1016/j.jare.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/28/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a degenerative bone disease associated with ageing, characterized by joint pain, stiffness, swelling and deformation. Currently, pharmaceutical options for the clinical treatment of OA are very limited. Circular RNAs(cirRNAs) have garnered significant attention in OA and related drug development due to their unique RNA sequence characteristics.Therefore,exploring the role of cirRNAs in the occurrence and development of OA is of paramount importance for the development of effective medications for OA. OBJECTIVES To identify a novel circRNA, circUbqln1, for treating osteoarthritis and elucidate its pathophysiological role and mechanisms in the treatment of OA. METHODS The circUbqln1 expression and distribution were determined by qRT-PCR and FISH. XBP1 gene knockout(XBP1 cKO) spontaneous OA and DMM model and WT mouse CIOA model were used to explore the role of XBP1 and circUbqln1 in OA.Overexpression or knockdown of circUbqln1 lentivirus was used to observe the impacts of circUbqln1 on primary chondrocytes,C28/I2 and mice in vitro and in vivo.Chromatin immunoprecipitation,luciferase reporter assay,RNA pulldown,mass spectrometry,RNA immunoprecipitation,fluorescence in situ hybridization,and flow cytometry to explore the molecular mechanisms of circUbqln1. RESULTS It was found that cartilage-specific XBP1 cKO mice exhibited a faster OA progression compared to normal's.Importantly,transcript factor XBP1s has the capacity to impede the biogenesis of circUbqln1,derived from Ubqln1. The circUbqln1 promotes cartilage catabolism and inhibits anabolism, therefore accelerates the occurrence of OA.Mechanismly,circUbqln1 can translocate to the chondrocyte nucleus with the assistance of phosphorylated 14-3-3ζ, upregulate the transcriptional activity of the proline dehydrogenase(Prodh) promoter and PRODH enzyme activity. Consequently, this leads to the promotion of proline degradation and the inhibition of collagen synthesis,ultimately culminating in the impairment of cartilage and its structural integrity. CONCLUSION CircUbqln1 plays a crucial role in the occurrence and development of OA, indicating that the inhibition of circUbqln1 holds promise as a significant approach for treating OA in the future.
Collapse
Affiliation(s)
- Naibo Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Li Liang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuyou Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xingyue Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Fengmei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Lu Y, Zhou J, Wang H, Gao H, Ning E, Shao Z, Hao Y, Yang X. Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: From molecular mechanisms to therapeutic applications. Cell Stress Chaperones 2024; 29:805-830. [PMID: 39571722 DOI: 10.1016/j.cstres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response, ER-associated degradation, and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
Collapse
Affiliation(s)
- Yifan Lu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hong Wang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Eryu Ning
- Gusu School, Nanjing Medical University, Suzhou, PR China; Department of Sports Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| |
Collapse
|
3
|
Kobak KA, Batushansky A, Jopkiewicz A, Peelor FF, Kinter MT, Miller BF, Griffin TM. Effect of biological sex and short-term high-fat diet on cellular proliferation, ribosomal biogenesis, and targeted protein abundance in murine articular cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100495. [PMID: 39040627 PMCID: PMC11260562 DOI: 10.1016/j.ocarto.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Objective To identify factors contributing to sex-differences in OA risk by evaluating the short-term effect of high-fat (HF) diet on sex-specific changes in cartilage cell proliferation, ribosomal biogenesis, and targeted extra-cellular and cellular protein abundance. Materials and methods Knee cartilage was harvested to the subchondral bone from 20-week-old female and male C57BL/6J mice fed a low-fat or HF diet for 4 weeks and labeled with deuterium oxide for 1, 3, 5, 7, 15, or 21 days. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Protein concentration was measured using targeted high resolution accurate mass spectrometry. Results HF diet increased the maximal deuterium incorporation into DNA from approximately 40 to 50%, albeit at a slower rate. These findings, which were magnified in female versus male mice, indicate a greater number of proliferating cells with longer half-lives under HF diet conditions. HF diet caused distinct sex-dependent effects on deuterium incorporation into RNA, increasing the fraction of ribosomes undergoing biogenesis in male mice and doubling the rate of ribosome biogenesis in female mice. HF diet altered cartilage protein abundance similarly in both sexes, except for matrilin-3, which was more abundant in HF versus LF conditions in female mice only. Overall, HF diet treatment had a stronger effect than sex on cartilage protein abundance, with most changes involving extracellular matrix and matrix-associated proteins. Conclusions Short-term HF diet broadly altered cartilage matrix protein abundance, while sex-dependent effects primarily involved differences in cell proliferation and ribosomal biogenesis.
Collapse
Affiliation(s)
- Kamil A. Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Anita Jopkiewicz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F. Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michael T. Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
4
|
Ding C, Yimiti D, Sanada Y, Matsubara Y, Nakasa T, Matsubara K, Adachi N, Miyaki S. High-fat diet-induced obesity accelerates the progression of spontaneous osteoarthritis in senescence-accelerated mouse prone 8. Mod Rheumatol 2024; 34:831-840. [PMID: 37522619 DOI: 10.1093/mr/road069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES Ageing and obesity are major risk factors for osteoarthritis (OA), a widespread disease currently lacking efficient treatments. Senescence-accelerated mouse prone 8 (SAMP8) display early onset ageing phenotypes, including OA. This study investigates the impacts of high-fat diet (HFD)-induced obesity on OA development in SAMP8. METHODS SAMP8 at 5 weeks were fed either a normal chow diet or an HFD for 10 weeks to induce obesity. Parameters related to obesity, liver function, and lipid and glucose metabolism were analysed. At 14 weeks of age, knee joint pathology, bone mineral density, and muscle strength were assessed. Immunohistochemistry and TUNEL staining were performed to evaluate markers for cartilage degeneration and chondrocyte apoptosis. RESULTS At 14 weeks of age, HFD-induced obesity increased liver and adipose tissue inflammation in SAMP8 without further exacerbating diabetes. Histological scoring revealed aggravated cartilage, menisci deterioration, and synovitis, while no further loss of bone mineral density or muscle strength was observed. Increased chondrocyte apoptosis was detected in knee joints following HFD feeding. CONCLUSIONS Ten weeks of HFD feeding promotes spontaneous OA progression in 14-week-old SAMP8, potentially via liver damage that subsequently leads to chondrocyte apoptosis. This ageing-obese mouse model may prove valuable for further exploration of spontaneous OA pathophysiology.
Collapse
Affiliation(s)
- Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuki Matsubara
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
5
|
Liu DD, Zhao YC, Li HH, Yin LJ, Chen JQ, Liu G. Endoplasmic reticulum stress-related protein GRP78 and CHOP levels in synovial fluid correlate with disease progression of primary knee osteoarthritis: A cross-sectional study. J Appl Biomed 2024; 22:40-48. [PMID: 38505969 DOI: 10.32725/jab.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/18/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been shown to play an important role in osteoarthritis (OA). OBJECTIVE This study was aimed at assessing the relationship of endoplasmic reticulum (ER) stress-related glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) concentrations in the serum/synovial fluid (SF) with disease severity of primary knee osteoarthritis (pkOA). METHODS Patients with pkOA together with healthy individuals were consecutively recruited from our hospital. The levels of GRP78 and CHOP in serum / SF were detected using enzyme-linked immunosorbent assay. The levels of IL-6 and MMP-3 were also examined. Radiographic progression of pkOA was evaluated based on Kellgren-Lawrence (K-L) grades. Receiver Operating Characteristic (ROC) curves were used to assess the diagnostic value of GRP78/CHOP levels with regard to K-L grades. The assessment of clinical severity was conducted using the visual analogue scale (VAS), Oxford knee score (OKS), and Lequesne algofunctional index (LAI). RESULTS A total of 140 pkOA patients and 140 healthy individuals were included. Serum GRP78 and CHOP levels in pkOA patients were not significantly different from those in healthy individuals. The SF GRP78 and CHOP levels in healthy controls were not detected due to ethical reasons. Compared to those with K-L grade 2 and 3, the pkOA patients with K-L grade 4 had higher GRP78 and CHOP levels in the SF with statistical significance. In addition, the pkOA patients with K-L grade 3 exhibited drastically upregulated GRP78 and CHOP concentrations in the SF compared to those with K-L grade 2. Positive correlations of GRP78 and CHOP levels with K-L grades, IL-6, and MMP-3 levels in the SF were observed. ROC curve analysis indicated that both GRP78 and CHOP levels may act as decent indicators with regard to OA. GRP78 and CHOP concentrations in the SF were positively correlated with VAS/LAI score and negatively associated with OKS score. CONCLUSION The study indicated that GRP78 and CHOP levels in the SF but not the serum were positively correlated with disease severity of pkOA.
Collapse
Affiliation(s)
| | | | - Hai-Hong Li
- Southern Medical University, The Third Affiliated Hospital, Department of Rehabilitation, 510630 Guangzhou, Guangdong Province, China
| | - Lian-Jun Yin
- Southern Medical University, The Third Affiliated Hospital, Department of Rehabilitation, 510630 Guangzhou, Guangdong Province, China
| | | | - Gang Liu
- Southern Medical University, Nanfang Hospital, Department of Rehabilitation Medicine, 510515 Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Yi YS. MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. Semin Cell Dev Biol 2024; 154:227-238. [PMID: 36437174 DOI: 10.1016/j.semcdb.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Inflammation represents the first-line defense mechanism of the host against pathogens and cellular stress. One of the most critical inflammatory responses is characterized by the activation of inflammasomes, intracellular multiprotein complexes that induce inflammatory signaling pathways in response to various pathogen-associated molecular patterns or danger-associated molecular patterns under physiological and pathological conditions. Inflammasomes are tightly regulated in normal cells, and dysregulation of these complexes is observed in various pathological conditions, especially inflammatory diseases and cancers. Epigenetic regulation has been suggested as a key mechanism in modulating inflammasome activity, and microRNAs (miRNAs) have been implicated in the post-transcriptional regulation of inflammasomes. Therefore, miRNA-mediated epigenetic regulation of inflammasomes in pathological conditions has received considerable attention, and current strategies for targeting inflammasomes have been shown to be effective in the treatment of diseases associated with inflammasome activation. This review summarizes recent studies suggesting the roles of miRNAs in the epigenetic control of inflammasomes and highlights the potential of miRNAs as a therapeutic tool for treating human diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, South Korea.
| |
Collapse
|
7
|
Wen ZQ, Lin J, Xie WQ, Shan YH, Zhen GH, Li YS. Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases. Mil Med Res 2023; 10:54. [PMID: 37941072 PMCID: PMC10634069 DOI: 10.1186/s40779-023-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system, including osteoarthritis, osteoporosis, intervertebral disc degeneration (IVDD), and sarcopenia. As the global population ages, degenerative musculoskeletal diseases are becoming more prevalent. However, the pathogenesis of degenerative musculoskeletal diseases is not fully understood. Previous studies have revealed that endoplasmic reticulum (ER) stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER, contributing to degenerative musculoskeletal diseases. By affecting cartilage degeneration, synovitis, meniscal lesion, subchondral bone remodeling of osteoarthritis, bone remodeling and angiogenesis of osteoporosis, nucleus pulposus degeneration, annulus fibrosus rupture, cartilaginous endplate degeneration of IVDD, and sarcopenia, ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases. Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases. These pilot studies provide foundations for further evaluation of the feasibility, efficacy, and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials. In this review, we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases. In a future perspective, we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease, potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators, as well as underlying challenges and obstacles in bench-to-beside research.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001, China
| | - Wen-Qing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Han Shan
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ge-Hua Zhen
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
8
|
Tan L, Armstrong AR, Rosas S, Patel CM, Wiele SSV, Willey JS, Carlson CS, Yammani RR. Nuclear protein-1 is the common link for pathways activated by aging and obesity in chondrocytes: A potential therapeutic target for osteoarthritis. FASEB J 2023; 37:e23133. [PMID: 37566478 PMCID: PMC10939173 DOI: 10.1096/fj.202201700rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Pathways leading to osteoarthritis (OA) are diverse depending on the risk factors involved; thus, developing OA therapeutics has been challenging. Here we report that nuclear protein-1 (Nupr1), a stress-inducible protein/transcription factor, is activated by pathways associated with obesity and aging in chondrocytes. Treatment of human chondrocytes with free fatty acids (palmitate and oleate; a model for high-fat diet/obesity) induced PERK signaling and increased expression of caspase-3, TRB3, and Nupr1. On the other hand, treatment of chondrocytes with menadione (oxidative stress inducer) induced oxidation of IRE1, activated antioxidant response (higher Nrf2 expression), and increased expression of Nupr1 and matrix metalloproteinases. Experimental OA was induced by destabilization of the medial meniscus (DMM) in the knee joints of Nupr1+/+ and Nupr1-/- mice. Loss of Nupr1 expression reduced the severity of cartilage lesions in this model. Together, our findings suggest that Nupr1 is a common factor activated by signaling pathways activated by obesity (ER stress) and age (oxidative stress) and a potential drug target for OA resulting from various risk factors.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexandra R. Armstrong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Samuel Rosas
- Department of Orthopaedic Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Chirayu M. Patel
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sabrina S. Vander Wiele
- Department of Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, USA
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Raghunatha R. Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
9
|
USP7 Attenuates Endoplasmic Reticulum Stress and NF-κB Signaling to Modulate Chondrocyte Proliferation, Apoptosis, and Inflammatory Response under Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1835900. [PMID: 35432716 PMCID: PMC9007692 DOI: 10.1155/2022/1835900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this research was to observe the functions and mechanisms of ubiquitin-specific peptidase 7 (USP7) on chondrocytes under tumor necrosis factor alpha- (TNF-α-) induced inflammation. Knee osteoarthritis (OA) models of mice were constructed by anterior cruciate ligament transection. The knee joint of mice was observed by histological staining, and the expression of USP7 was measured by immunohistochemistry staining. After knocking down or inhibiting USP7, chondrocyte proliferation was measured by histological staining and the CCK-8 assay; apoptosis was measured by western blot, flow cytometry, Caspase-3 activity, and TUNEL staining; and inflammatory response was measured by qRT-PCR and ELISA. The 4-phenylbutyric acid (4-PBA), siRNA of CHOP (si-CHOP), and QNZ were used to verify the signaling pathways. It was found that USP7 was reduced in the knee joint cartilage of OA mice. The knockdown of USP7 or its inhibitor decreased chondrocyte proliferation and accelerated apoptosis and inflammatory response under inflammation. The USP7 inhibitor exacerbated cartilage destruction in mice with OA. The knockdown of USP7 or its inhibitor activated the BiP-eIF2α-ATF4-CHOP signaling of endoplasmic reticulum stress (ERS) and NF-κB/p65 signaling. 4-PBA, si-CHOP, and QNZ partly reversed chondrocyte proliferation, apoptosis, and inflammatory response caused by USP7 knockdown. In conclusion, through inhibiting the BiP-eIF2α-ATF4-CHOP signaling of ERS and NF-κB/p65 signaling, USP7 promotes chondrocyte proliferation and suppresses the apoptosis and inflammatory response under TNF-α-induced inflammation.
Collapse
|
10
|
Yang HY, Chen JY, Huo YN, Yu PL, Lin PZ, Hsu SC, Huang SM, Tsai CS, Lin CY. The Role of Sirtuin 1 in Palmitic Acid-Induced Endoplasmic Reticulum Stress in Cardiac Myoblasts. Life (Basel) 2022; 12:life12020182. [PMID: 35207470 PMCID: PMC8878829 DOI: 10.3390/life12020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Lipotoxicity causes endoplasmic reticulum (ER) stress, leading to cell apoptosis. Sirtuin 1 (Sirt1) regulates gene transcription and cellular metabolism. In this study, we investigated the role of Sirt1 in palmitate-induced ER stress. Methods: Both H9c2 myoblasts and heart-specific Sirt1 knockout mice fed a palmitate-enriched high-fat diet were used. Results: The high-fat diet induced C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) expression in both Sirt1 knockout mice and controls. The Sirt1 knockout mice showed higher CHOP and ATF4 expression compared to those in the control. Palmitic acid (PA) induced ATF4 and CHOP expression in H9c2 cells. PA-treated H9c2 cells showed decreased cytosolic NAD+/NADH alongside reduced Sirt1′s activity. The H9c2 cells showed increased ATF4 and CHOP expression when transfected with plasmid encoding dominant negative mutant Sirt1. Sirt1 activator SRT1720 did not affect CHOP and ATF4 expression. Although SRT1720 enhanced the nuclear translocation of ATF4, the extent of the binding of ATF4 to the CHOP promoter did not increase in PA treated-H9c2 cells. Conclusion: PA-induced ER stress is mediated through the upregulation of ATF4 and CHOP. Cytosolic NAD+ concentration is diminished by PA-induced ER stress, leading to decreased Sirt1 activity. The Sirt1 activator SRT1720 promotes the nuclear translocation of ATF4 in PA-treated H9c2 cells.
Collapse
Affiliation(s)
- Hsiang-Yu Yang
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | - Jhao-Ying Chen
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | - Yen-Nien Huo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 114, Taiwan;
| | - Pei-Ling Yu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | - Pei-Zhen Lin
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | | | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (C.-S.T.); (C.-Y.L.); Tel.: +886-2-8792-7212 (C.-Y.L.); Fax: +886-2-8792-7376 (C.-Y.L.)
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (P.-L.Y.); (P.-Z.L.); (S.-M.H.)
- Correspondence: (C.-S.T.); (C.-Y.L.); Tel.: +886-2-8792-7212 (C.-Y.L.); Fax: +886-2-8792-7376 (C.-Y.L.)
| |
Collapse
|
11
|
Rellmann Y, Eidhof E, Hansen U, Fleischhauer L, Vogel J, Clausen-Schaumann H, Aszodi A, Dreier R. ER Stress in ERp57 Knockout Knee Joint Chondrocytes Induces Osteoarthritic Cartilage Degradation and Osteophyte Formation. Int J Mol Sci 2021; 23:ijms23010182. [PMID: 35008608 PMCID: PMC8745280 DOI: 10.3390/ijms23010182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ageing or obesity are risk factors for protein aggregation in the endoplasmic reticulum (ER) of chondrocytes. This condition is called ER stress and leads to induction of the unfolded protein response (UPR), which, depending on the stress level, restores normal cell function or initiates apoptotic cell death. Here the role of ER stress in knee osteoarthritis (OA) was evaluated. It was first tested in vitro and in vivo whether a knockout (KO) of the protein disulfide isomerase ERp57 in chondrocytes induces sufficient ER stress for such analyses. ER stress in ERp57 KO chondrocytes was confirmed by immunofluorescence, immunohistochemistry, and transmission electron microscopy. Knee joints of wildtype (WT) and cartilage-specific ERp57 KO mice (ERp57 cKO) were analyzed by indentation-type atomic force microscopy (IT-AFM), toluidine blue, and immunofluorescence/-histochemical staining. Apoptotic cell death was investigated by a TUNEL assay. Additionally, OA was induced via forced exercise on a treadmill. ER stress in chondrocytes resulted in a reduced compressive stiffness of knee cartilage. With ER stress, 18-month-old mice developed osteoarthritic cartilage degeneration with osteophyte formation in knee joints. These degenerative changes were preceded by apoptotic death in articular chondrocytes. Young mice were not susceptible to OA, even when subjected to forced exercise. This study demonstrates that ER stress induces the development of age-related knee osteoarthritis owing to a decreased protective function of the UPR in chondrocytes with increasing age, while apoptosis increases. Therefore, inhibition of ER stress appears to be an attractive therapeutic target for OA.
Collapse
Affiliation(s)
- Yvonne Rellmann
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
| | - Elco Eidhof
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building D3, 48149 Muenster, Germany;
| | - Lutz Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 80335 Munich, Germany;
| | - Jonas Vogel
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
| | - Attila Aszodi
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 80335 Munich, Germany;
| | - Rita Dreier
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
- Correspondence: ; Tel.: +49-251-8355573
| |
Collapse
|
12
|
Danyukova T, Schöneck K, Pohl S. Site-1 and site-2 proteases: A team of two in regulated proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119138. [PMID: 34619164 DOI: 10.1016/j.bbamcr.2021.119138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
The site-1 and site-2 proteases (S1P and S2P) were identified over 20 years ago, and the functions of both have been addressed in numerous studies ever since. Whereas S1P processes a set of substrates independently of S2P, the latter acts in concert with S1P in a mechanism, called regulated intramembrane proteolysis, that controls lipid metabolism and response to unfolded proteins. This review summarizes the molecular roles that S1P and S2P jointly play in these processes. As S1P and S2P deficiencies mainly affect connective tissues, yet with varying phenotypes, we discuss the segregated functions of S1P and S2P in terms of cell homeostasis and maintenance of the connective tissues. In addition, we provide experimental data that point at S2P, but not S1P, as a critical regulator of cell adaptation to proteotoxicity or lipid imbalance. Therefore, we hypothesize that S2P can also function independently of S1P activity.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Hecht JT, Veerisetty AC, Wu J, Coustry F, Hossain MG, Chiu F, Gannon FH, Posey KL. Primary Osteoarthritis Early Joint Degeneration Induced by Endoplasmic Reticulum Stress Is Mitigated by Resveratrol. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1624-1637. [PMID: 34116024 DOI: 10.1016/j.ajpath.2021.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Increasing numbers of people are living with osteoarthritis (OA) due to aging and obesity, creating an urgent need for effective treatment and preventions. Two top risk factors for OA, age and obesity, are associated with endoplasmic reticulum (ER) stress. The I-ERS mouse, an ER stress-driven model of primary OA, was developed to study the role of ER stress in primary OA susceptibility. The I-ERS mouse has the unique ability to induce ER stress in healthy adult articular chondrocytes and cartilage, driving joint degeneration that mimics early primary OA. In this study, ER stress-induced damage occurred gradually and stimulated joint degeneration with OA characteristics including increased matrix metalloproteinase activity, inflammation, senescence, chondrocyte death, decreased proteoglycans, autophagy block, and gait dysfunction. Consistent with human OA, intense exercise hastened and increased the level of ER stress-induced joint damage. Notably, loss of a critical ER stress response protein (CHOP) largely ameliorated ER stress-stimulated OA outcomes including preserving proteoglycan content, reducing inflammation, and relieving autophagy block. Resveratrol diminished ER stress-induced joint degeneration by decreasing CHOP, TNFα, IL-1β, MMP-13, pS6, number of TUNEL-positive chondrocytes, and senescence marker p16 INK4a. The finding, that a dietary supplement can prevent ER stressed-induced joint degeneration in mice, provides a preclinical foundation to potentially develop a prevention strategy for those at high risk to develop OA.
Collapse
Affiliation(s)
- Jacqueline T Hecht
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; McGovern Medical School, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Alka C Veerisetty
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Juliana Wu
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; Department of BioSciences, Rice University, Houston, Texas
| | - Francoise Coustry
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Mohammad G Hossain
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Frankie Chiu
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Francis H Gannon
- Departments of Pathology & Immunology and Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Karen L Posey
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas.
| |
Collapse
|
14
|
Yao J, Liu X, Sun Y, Dong X, Liu L, Gu H. Curcumin-Alleviated Osteoarthritic Progression in Rats Fed a High-Fat Diet by Inhibiting Apoptosis and Activating Autophagy via Modulation of MicroRNA-34a. J Inflamm Res 2021; 14:2317-2331. [PMID: 34103964 PMCID: PMC8179815 DOI: 10.2147/jir.s312139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The mechanism underlying curcumin’s protective effect on osteoarthritis (OA) has not been clarified. This study aimed to determine whether curcumin exerts a chondroprotective effect by inhibiting apoptosis via upregulation of E2F1/PITX1 and activation of autophagy via the Akt/mTOR pathway by targeting microRNA-34a (miR-34a). Methods Male Sprague–Dawley rats were fed a normal diet (ND) or high-fat diet (HFD) for 28 weeks. Five rats from each diet group were selected randomly for histological analysis of OA characteristics. Rats fed a HFD were given a single intra-stifle joint injection of the miR-34a mimic agomir-34a or negative control agomir (NC), followed by weekly low-dose (200 μg/kg body weight) or high-dose (400 μg/kg body weight) curcumin intra-joint injections from weeks 29 to 32. The rats’ stifle joints were submitted to histological analysis and to an apoptotic assay. Expression of miR-34a was detected using a real-time RT-PCR. E2F1 and PITX1 protein levels were determined by Western blot analysis, and the expressions of Beclin1, LC3B, p62, phosphorylated (p)-Akt, and p-mTOR were measured using immunofluorescence analysis. Results We found that rats fed a HFD had OA-like lesions in their articular cartilage and had increased apoptosis of chondrocytes and decreased autophagy compared to rats fed a ND. Curcumin treatment alleviated OA changes, inhibited apoptosis, and upregulated autophagy. Agomir-34a treatment reduced E2F1, PITX1, Beclin1, and LC3B expression and increased p62, p-Akt, and p-mTOR expression in HFD-fed rats given low- or high-dose curcumin. Greater numbers of apoptotic cells, lesser expression of p62, p-Akt, and p-mTOR, and greater expression of E2F1, PITX1, and LC3B were observed in the agomir-34a and high-dose curcumin-treated group than in agomir-34a and low-dose curcumin-treated group. Conclusion Curcumin’s chondroprotective effect was mediated by its suppression of miR-34a, apparently by reducing apoptosis, via upregulation of E2F1/PITX1, and by augmenting autophagy, likely via the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jiayu Yao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaotong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yingxu Sun
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xin Dong
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| |
Collapse
|
15
|
Tan L, Harper LR, Armstrong A, Carlson CS, Yammani RR. Dietary saturated fatty acid palmitate promotes cartilage lesions and activates the unfolded protein response pathway in mouse knee joints. PLoS One 2021; 16:e0247237. [PMID: 33617553 PMCID: PMC7899342 DOI: 10.1371/journal.pone.0247237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/03/2021] [Indexed: 01/10/2023] Open
Abstract
Increased intake of dietary saturated fatty acids has been linked to obesity and the development of Osteoarthritis (OA). However, the mechanism by which these fats promote cartilage degradation and the development of OA is not clearly understood. Here, we report the effects of consumption of common dietary saturated and unsaturated fatty acids, palmitate and oleate, respectively, on body weight, metabolic factors, and knee articular cartilage in a mouse model of diet-induced obesity. Mice fed on a diet rich in saturated or unsaturated fatty acid gained an equal amount of weight; however, mice fed a palmitate diet, but not a control or oleate diet, exhibited more cartilage lesions and increased expression of 1) unfolded protein response (UPR)/endoplasmic reticulum (ER) stress markers including BIP, P-IRE1α, XBP1, ATF4, and CHOP; 2) apoptosis markers CC3 and C-PARP; and 3) negative cell survival regulators Nupr1 and TRB3, in knee articular cartilage. Palmitate-induced apoptosis was confirmed by TUNEL staining. Likewise, dietary palmitate was also increased the circulatory levels of classic proinflammatory cytokines, including IL-6 and TNF-α. Taken together, our results demonstrate that increased weight gain is not sufficient for the development of obesity-linked OA and suggest that dietary palmitate promotes UPR/ER stress and cartilage lesions in mouse knee joints. This study validates our previous in vitro findings and suggests that ER stress could be the critical metabolic factor contributing to the development of diet/obesity induced OA.
Collapse
Affiliation(s)
- Li Tan
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Lindsey R. Harper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Alexandra Armstrong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Raghunatha R. Yammani
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail:
| |
Collapse
|
16
|
Rellmann Y, Eidhof E, Dreier R. Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal 2020; 78:109880. [PMID: 33307190 DOI: 10.1016/j.cellsig.2020.109880] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.
Collapse
Affiliation(s)
- Yvonne Rellmann
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany
| | - Elco Eidhof
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany
| | - Rita Dreier
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany.
| |
Collapse
|
17
|
Eugene SP, Reddy VS, Trinath J. Endoplasmic Reticulum Stress and Intestinal Inflammation: A Perilous Union. Front Immunol 2020; 11:543022. [PMID: 33324392 PMCID: PMC7723926 DOI: 10.3389/fimmu.2020.543022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal tract encompasses the largest mucosal surface fortified with a fine layer of intestinal epithelial cells along with highly sophisticated network of the lamina propria immune cells that are indispensable to sustain gut homeostasis. However, it can be challenging to uphold homeostasis when these cells in the intestine are perpetually exposed to insults of both endogenous and exogenous origin. The complex networking and dynamic microenvironment in the intestine demand highly functional cells ultimately burdening the endoplasmic reticulum (ER) leading to ER stress. Unresolved ER stress is one of the primary contributors to the pathogenesis of inflammatory bowel diseases (IBD). Studies also suggest that ER stress can be the primary cause of inflammation and/or the consequence of inflammation. Therefore, understanding the patterns of expression of ER stress regulators and deciphering the intricate interplay between ER stress and inflammatory pathways in intestinal epithelial cells in association with lamina propria immune cells contribute toward the development of novel therapies to tackle IBD. This review provides imperative insights into the molecular markers involved in the pathogenesis of IBD by potentiating ER stress and inflammation and briefly describes the potential pharmacological intervention strategies to mitigate ER stress and IBD. In addition, genetic mutations in the biomarkers contributing to abnormalities in the ER stress signaling pathways further emphasizes the relevance of biomarkers in potential treatment for IBD.
Collapse
Affiliation(s)
- Sanchez Preethi Eugene
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | | | - Jamma Trinath
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
18
|
Charles-Messance H, Mitchelson KA, De Marco Castro E, Sheedy FJ, Roche HM. Regulating metabolic inflammation by nutritional modulation. J Allergy Clin Immunol 2020; 146:706-720. [DOI: 10.1016/j.jaci.2020.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
|