1
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Kim EH, Ha S, Shin E, Choi H, Kim KW, Jeon S, Oh GT, Seok YJ. Ninjurin1 deficiency differentially mitigates colorectal cancer induced by azoxymethane and dextran sulfate sodium in male and female mice. Int J Cancer 2025; 156:826-839. [PMID: 39417611 DOI: 10.1002/ijc.35225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024]
Abstract
This study investigated the role of Ninjurin1 (Ninj1), encoding a small transmembrane protein, in colitis-associated colon tumorigenesis in relation to sex hormones. Male and female wild-type (WT) and Ninj1 knockout (KO) mice were treated with azoxymethane (AOM) and dextran sulfate sodium (DSS), with or without testosterone propionate (TP). At week 2 (acute colitis stage), Ninj1 KO exhibited an alleviation in the colitis symptoms in both male and female mice. The M2 macrophage population increased and CD8+ T cell population decreased only in the female Ninj1 KO than in the female WT AOM/DSS group. In the female AOM/DSS group, TP treatment exacerbated colon shortening in the Ninj1 KO than in the WT. At week 13 (tumorigenesis stage), male Ninj1 KO mice had fewer tumors, but females showed similar tumors. In the WT AOM/DSS group, females had more M2 macrophages and fewer M1 macrophages than males, but this difference was absent in Ninj1 KO mice. In the Ninj1 KO versus WT group, the expression of pro-inflammatory mediators and Ho-1 and CD8+ T cell populations decreased in both female and male Ninj1 KO mice. In the WT group, M2 macrophage populations were increased by AOM/DSS treatment and decreased by TP treatment. However, neither treatment changed the cell populations in the Ninj1 KO group. These results suggest that Ninj1 is involved in colorectal cancer development in a testosterone-dependent manner, which was different in male and female. This highlights the importance of considering sex disparities in understanding Ninj1's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Nayoung Kim
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Soo In Choi
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Jae Young Jang
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Eun Hye Kim
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Sungchan Ha
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Eun Shin
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi-do, South Korea
| | - Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sejin Jeon
- Department of Vaccine Biothechnology, Andong National University, Andong, South Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, South Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Cai Y, Huang Y, Wang Y, Lin C, Qiu L, Wei H. Lactobacillus johnsonii GLJ001 prevents DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis. Int Immunopharmacol 2025; 144:113671. [PMID: 39615110 DOI: 10.1016/j.intimp.2024.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory Bowel Disease (IBD) is increasing worldwide and has become a global emergent disease. Probiotics have been reported to be effective in relieving colitis. Previous studies found ripened Pu-erh tea (RPT) promoted gut microbiota resilience against dextran sulfate sodium (DSS)-induced colitis in mice by increasing relative abundance of Lactobacillus. However, whether and how it alleviated DSS-induced colitis in mice need to be explored. Here, we screened a probiotic Lactobacillus johnsonii GLJ001 from feces of ripened Pu-erh tea (RPT)-administrated mice. In this study, L. johnsonii GLJ001 attenuated symptoms of DSS-induced colitis in mice, including weight loss, increased disease activity index (DAI), colon shortening and colon tissue damage, as well as high expression of inflammatory cytokines and disturbances of intestine barrier function. Furthermore, abundances of short-chain fatty acids (SCFAs)-producing bacteria (i.e. Clostridium cluster IV and XIVa, Lachnospiracea_incertae_sedis and Ruminococcus) were enhanced in the cecum of mice treated with L. johnsonii GLJ001, accompanying by an increase of SCFAs. It was also found that SCFAs inhibited mRNA expression of M1 macrophage markers (Inos and CD86), inflammatory cytokines (TNF-α and Il-1β) and SCFAs receptors (Gpr41 and Gpr43) induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in THP-1 cell line. Collectively, L. johnsonii GLJ001 prevented DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis, and can be administered for management of colitis.
Collapse
Affiliation(s)
- Yunjie Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yina Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Cuiyao Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Liang Qiu
- Centre for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, People's Republic of China.
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China.
| |
Collapse
|
3
|
Zeng L, Chen J, Xie H, Liu W, Wang C. Adropin regulates macrophage phenotype via PPARγ signalling: A preliminary study of adropin and Crohn's disease. Scand J Immunol 2024; 100:e13415. [PMID: 39487564 DOI: 10.1111/sji.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
Macrophage polarization is increasingly recognized as a vital pathogenetic factor in Crohn's disease (CD). Adropin is a secreted protein implicated in energy homeostasis, chiefly linked to glucose and lipid metabolism. However, the significance of adropin in CD is not clear. The objective of this study was to detect the expression of adropin in CD patients and investigate the effect of adropin on macrophage polarization induced by lipopolysaccharide (LPS) and its potential mechanism. Our study showed that serum adropin levels were markedly lower in patients with CD in active (CDA) than patients with CD in remission (CDR) and control groups (p < 0.01), however, there was no significant difference between in remission CD and healthy controls (p > 0.05). The colon mucous adropin levels in CDA were distinctly higher than CDR and controls (p < 0.01), while a significant difference between in remission CD and in healthy controls was not observed (p > 0.05). Exploration of the specific mechanism of action indicated that adropin promoted LPS-induced RAW264.7 macrophage polarization to M2 phenotype by modulating the expression and nuclear translocation of peroxisome proliferator receptor gamma (PPARγ), which may help weaken the intestinal inflammatory response. PPARγ inhibitor GW9662 reversed adropin-induced M2 macrophage polarization. Knockdown of GPR19, an adropin receptor, abrogated the M2 macrophage polarization caused by PPARγ. These findings suggest that adropin in colonic mucosa is a protective response in patients with active Crohn's disease.
Collapse
Affiliation(s)
- Lingli Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jintong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hongchai Xie
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenming Liu
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengdang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Ullah H, Alioui Y, Ali M, Ali S, Farooqui NA, Siddiqui NZ, Alsholi DM, Ilyas M, Rahman MU, Xin Y, Wang L. Sea conch ( Rapana venosa) peptide hydrolysate regulates NF-κB pathway and restores intestinal immune homeostasis in DSS-induced colitis mice. Food Sci Nutr 2024; 12:10070-10086. [PMID: 39723032 PMCID: PMC11666983 DOI: 10.1002/fsn3.4410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 12/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. Sea conch peptide hydrolysate (CPH) was produced by enzymatic digestion of fresh conch meat with trypsin enzyme. To analyze the molecular composition, functional groups, and structural morphology of the hydrolysate, we employed liquid chromatography-mass spectrometry (LC-MS), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results confirmed that crude protein could be effectively digested by enzymes to generate peptides. In this study, we evaluated the bioactivities of CPH on dextran sulfate solution (DSS)-induced colitis in mice. The findings demonstrated that CPH supplementation improved body weight, food and water intake, and colon length. The therapeutic efficacy and immunoregulatory effect of CPH were further determined. Our results exhibited that CPH treatment significantly ameliorated pathological symptoms by enhancing intestinal integrity, mucin production, and goblet cell count. Moreover, the immunoregulatory effect of CPH on mRNA expression levels of different pro- and anti-inflammatory cytokines was determined. Results exhibited a decrease in the expression of pro-inflammatory cytokines and an increase in anti-inflammatory cytokines in the colon. Additionally, the CPH administration modulates the nuclear factor kappa B (NF-κB) pathway, preventing DNA damage and cell death. Assays for apoptosis and DNA damage revealed that CPH reduced oxidative DNA damage and apoptosis. These findings highlight the immunomodulatory and treatment amelioration effect of CPH in reducing the severity of colitis.
Collapse
Affiliation(s)
- Hidayat Ullah
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Muhsin Ali
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Sharafat Ali
- Department of Biochemistry and Molecular Biology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Nimra Z. Siddiqui
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Duaa M. Alsholi
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Muhammad Ilyas
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Mujeeb U. Rahman
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine CenterThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
5
|
Cao W, Xiong Y, Chen D. Contradiction: Inhibiting inflammation and immunosuppression in the treatment of IBD. Proc Natl Acad Sci U S A 2024; 121:e2415439121. [PMID: 39284069 PMCID: PMC11441512 DOI: 10.1073/pnas.2415439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Affiliation(s)
- Wenfu Cao
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, Liaoning Province 116044, China
| | - Yongjian Xiong
- First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning province 116044, China
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, Liaoning Province 116044, China
| |
Collapse
|
6
|
Xiong Y, Cao W, Chen D. Commentary on: Vanillic acid restores homeostasis of intestinal epithelium in colitis through inhibiting CA9/STIM1-mediated ferroptosis. Pharmacol Res 2024; 204:107226. [PMID: 38777111 DOI: 10.1016/j.phrs.2024.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Yongjian Xiong
- First Affiliated Hospital of Dalian Medical University, Dalian city, Liaoning province 116044, China
| | - Wenfu Cao
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian city, Liaoning province 116044, China
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian city, Liaoning province 116044, China.
| |
Collapse
|
7
|
Wang Y, He Q, Yao D, Huang Y, Xia W, Chen W, Cui Z, Li Y. Histological Image-based Ensemble Model to Identify Myenteric Plexitis and Predict Endoscopic Postoperative Recurrence in Crohn's Disease: A Multicentre, Retrospective Study. J Crohns Colitis 2024; 18:727-737. [PMID: 38001024 DOI: 10.1093/ecco-jcc/jjad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND AIMS Myenteric plexitis is correlated with postoperative recurrence of Crohn's disease when relying on traditional statistical methods. However, comprehensive assessment of myenteric plexus remains challenging. This study aimed to develop and validate a deep learning system to predict postoperative recurrence through automatic screening and identification of features of the muscular layer and myenteric plexus. METHODS We retrospectively reviewed 205 patients who underwent bowel resection surgery from two hospitals. Patients were divided into a training cohort [n = 108], an internal validation cohort [n = 47], and an external validation cohort [n = 50]. A total of 190 960 patches from 278 whole-slide images of surgical specimens were analysed using the ResNet50 encoder, and 6144 features were extracted after transfer learning. We used five robust algorithms to construct classification models. The performances of the models were evaluated based on the area under the receiver operating characteristic curve [AUC] in three cohorts. RESULTS The stacking model achieved satisfactory accuracy in predicting postoperative recurrence of CD in the training cohort (AUC: 0.980; 95% confidence interval [CI] 0.960-0.999), internal validation cohort [AUC: 0.908; 95% CI 0.823-0.992], and external validation cohort [AUC: 0.868; 95% CI 0.761-0.975]. The accuracy for identifying the severity of myenteric plexitis was 0.833, 0.745, and 0.694 in the training, internal validation and external validation cohorts, respectively. CONCLUSIONS Our work initially established an interpretable stacking model based on features of the muscular layer and myenteric plexus extracted from histological images to identify the severity of myenteric plexitis and predict postoperative recurrence of CD.
Collapse
Affiliation(s)
- Yuexin Wang
- Department of General Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi He
- Department of General Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danhua Yao
- Department of General Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Huang
- Department of General Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwen Xia
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weilin Chen
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yousheng Li
- Department of General Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Lai J, Fang B, Luo L, Xie W, Xu Y, Li J. Causal relationship between asthma and inflammatory bowel disease : A two-sample bidirectional mendelian randomization analysis. Heart Lung 2024; 63:108-113. [PMID: 37844535 DOI: 10.1016/j.hrtlng.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Based on the findings of current observational studies, asthma and inflammatory bowel disease (including Crohn's disease and ulcerative colitis) are associated; however, their causal association cannot be established due to methodological limitations. OBJECTIVES we use two-sample bidirectional mendelian randomization (MR) to overcome the confounding factors and explore the causal link between asthma and inflammatory bowel disease. METHODS After selecting asthma and IBD-related genome-wide association studies (GWAS) data and screening single nucleotide polymorphisms (SNPs), MR analysis was performed by four methods: inverse variance weighted (IVW), MR-Egger, maximum likelihood, and weighted median (WM), while Cochran's Q test was used to detect heterogeneity and MR-Egger intercept to detect horizontal pleiotropy. Finally, we used the leave-one-out method and funnel plot to perform sensitivity analysis. RESULTS We screened 57, 59, and 60 SNPs in the association analysis of asthma and IBD, CD, and UC, respectively. The results of MR analysis showed that asthma only increased the risk of CD (IVW: OR = 1.1712, 95% CI = 1.0418-1.3167, P value = 0.0082; maximum likelihood: OR = 1.1739, 95% CI = 1.0428-1.3215, P value = 0.0080). Neither forward nor reverse MR analysis revealed heterogeneity or horizontal pleiotropy. Similarly, we did not find potential directional pleiotropy by funnel plot, and the leave-one-out method did not suggest a significant effect of a single SNP on the overall results. CONCLUSIONS we found a negative correlation between asthma and Crohn's disease, but more research is needed to confirm this.
Collapse
Affiliation(s)
- Jianxiong Lai
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621054, Sichuan Province, China
| | - Bin Fang
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621054, Sichuan Province, China
| | - Lirong Luo
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621054, Sichuan Province, China
| | - Wenjie Xie
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621054, Sichuan Province, China
| | - Yuanhui Xu
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621054, Sichuan Province, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621054, Sichuan Province, China.
| |
Collapse
|
9
|
Xia Y, Zhang L, Ocansey DKW, Tu Q, Mao F, Sheng X. Role of glycolysis in inflammatory bowel disease and its associated colorectal cancer. Front Endocrinol (Lausanne) 2023; 14:1242991. [PMID: 37881499 PMCID: PMC10595037 DOI: 10.3389/fendo.2023.1242991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) has been referred to as the "green cancer," and its progression to colorectal cancer (CRC) poses a significant challenge for the medical community. A common factor in their development is glycolysis, a crucial metabolic mechanism of living organisms, which is also involved in other diseases. In IBD, glycolysis affects gastrointestinal components such as the intestinal microbiota, mucosal barrier function, and the immune system, including macrophages, dendritic cells, T cells, and neutrophils, while in CRC, it is linked to various pathways, such as phosphatidylinositol-3-kinase (PI3K)/AKT, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and transcription factors such as p53, Hypoxia-inducible factor (HIF), and c-Myc. Thus, a comprehensive study of glycolysis is essential for a better understanding of the pathogenesis and therapeutic targets of both IBD and CRC. This paper reviews the role of glycolysis in diseases, particularly IBD and CRC, via its effects on the intestinal microbiota, immunity, barrier integrity, signaling pathways, transcription factors and some therapeutic strategies targeting glycolytic enzymes.
Collapse
Affiliation(s)
- Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Qiang Tu
- Clinical Laboratory, Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiumei Sheng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
10
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Hu Y, Zhan F, Wang Y, Wang D, Lu H, Wu C, Xia Y, Meng L, Zhang F, Wang X, Zhou S. The Ninj1/Dusp1 Axis Contributes to Liver Ischemia Reperfusion Injury by Regulating Macrophage Activation and Neutrophil Infiltration. Cell Mol Gastroenterol Hepatol 2023; 15:1071-1084. [PMID: 36731792 PMCID: PMC10036740 DOI: 10.1016/j.jcmgh.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Liver ischemia-reperfusion (IR) injury represents a major risk factor in both partial hepatectomy and liver transplantation. Nerve injury-induced protein 1 (Ninj1) is widely recognized as an adhesion molecule in leukocyte trafficking under inflammatory conditions, but its role in regulating sterile inflammation during liver IR injury remains unclear. METHODS Myeloid Ninj1-deficient mice were generated by bone marrow chimeric models using Ninj1 knockout mice and wild-type mice. In vivo, a liver partial warm ischemia model was applied. Liver injury and hepatic inflammation were investigated. In vitro, primary Kupffer cells (KCs) isolated from Ninj1 knockout and wild-type mice were used to explore the function and mechanism of Ninj1 in modulating KC inflammation upon lipopolysaccharide stimulation. RESULTS Ninj1 deficiency in KCs protected mice against liver IR injury during the later phase of reperfusion, especially in neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. This prompted ischemia-primed KCs to decrease proinflammatory cytokine production. In vitro and in vivo, using small-interfering RNA against dual-specificity phosphatase 1 (DUSP1), we found that Ninj1 deficiency diminished the inflammatory response in KCs and neutrophil infiltration through DUSP1-dependent deactivation of the c-Jun-N-terminal kinase and p38 pathways. Sivelestat, a neutrophil elastase inhibitor, functioned similarly to Ninj1 deficiency, resulting in both mitigated hepatic IR injury in mice and a more rapid recovery of liver function in patients undergoing liver resection. CONCLUSIONS The Ninj1/Dusp1 axis contributes to liver IR injury by regulating the proinflammatory response of KCs, and influences neutrophil infiltration, partly by subsequent regulation of C-X-C motif chemokine ligand 1 (CXCL1) production after IR.
Collapse
Affiliation(s)
- Yuanchang Hu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Feng Zhan
- Department of Hepatobiliary and Laparoscopic Surgery, The Affiliated Yixing Hospital, Jiangsu University, Yixing, China
| | - Yong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chen Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lijuan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xun Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Shun Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
12
|
Huang L, Lu Z, Zhang H, Wen H, Li Z, Liu Q, Wang R. A Novel Strategy for Alzheimer's Disease Based on the Regulatory Effect of Amyloid-β on Gut Flora. J Alzheimers Dis 2023; 94:S227-S239. [PMID: 36336932 PMCID: PMC10473151 DOI: 10.3233/jad-220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-β (Aβ) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aβ in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aβ on the gut flora.
Collapse
Affiliation(s)
- Li Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhaogang Lu
- Department of Pharmacy, People’s Hospital of Ningxia /First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Hexin Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hongyong Wen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zongji Li
- Laboratory Department, Clinical College of Ningxia Medical University, Yinchuan, China
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Rui Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Hu S, Guo W, Shen Y. Potential link between the nerve injury-induced protein (Ninjurin) and the pathogenesis of endometriosis. Int Immunopharmacol 2023; 114:109452. [PMID: 36446236 DOI: 10.1016/j.intimp.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis remains a widespread but severe gynecological disease in women of reproductive age, with an unknown etiology and few treatment choices. The menstrual reflux theory is largely accepted as the underlying etiology but does not explain the morbidity or unpleasant pain sensations of endometriosis. The neurological and immune systems are both involved in pain mechanisms of endometriosis, and interlinked through a complex combination of cytokines and neurotransmitters. Numerous pieces of evidence suggest that the nerve injury-inducible protein, Ninjurin, is actively expressed in endometriosis lesions, which contributes to the etiology and development of endometriosis. It may be explored in the future as a novel therapeutic target. The aim of the present review was to elucidate the multifaceted role of Ninjurin. Furthermore, we summarize the association of Ninjurin with the pain mechanism of endometriosis and outline the future research directions. A novel therapeutic pathway can be discovered based on the potential pathogenic variables.
Collapse
Affiliation(s)
- Sijian Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Xu D, Zhuang L, Gao S, Ma H, Cheng J, Liu J, Liu D, Fu S, Hu G. Orally Administered Ginkgolide C Attenuates DSS-Induced Colitis by Maintaining Gut Barrier Integrity, Inhibiting Inflammatory Responses, and Regulating Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14718-14731. [PMID: 36375817 DOI: 10.1021/acs.jafc.2c06177] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ulcerative colitis (UC), one of the foremost common forms of inflammatory bowel disease, poses a serious threat to human health. Currently, safe and effective treatments are not available. This study investigated the protective effect of ginkgolide C (GC), a terpene lactone extracted from Ginkgo biloba leaves, on UC and its underlying mechanism. The results showed that GC remarkably mitigated the severity of DSS-induced colitis in mice, as demonstrated by decreased body weight loss, reduced disease activity index, mitigated tissue damage, and increased colon length. Furthermore, GC inhibited DSS-induced hyperactivation of inflammation-related signaling pathways (NF-κB and MAPK) to reduce the production of inflammatory mediators, thereby mitigating the inflammatory response in mice. GC administration also restored gut barrier function by elevating the number of goblet cells and boosting the levels of tight junction-related proteins (claudin-3, occludin, and ZO-1). In addition, GC rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora, elevating the abundance of beneficial bacteria, such as Lactobacillus and Allobaculum, and decreasing the abundance of harmful bacteria, such as Bacteroides, Oscillospira, Ruminococcus, and Turicibacter. Taken together, these results suggest that GC administration effectively alleviates DSS-induced colitis by inhibiting the inflammatory response, maintaining mucosal barrier integrity, and regulating intestinal flora. This study may provide a scientific basis for the rational use of GC in preventing colitis and other related diseases.
Collapse
Affiliation(s)
- Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Lu Zhuang
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing 100853, China
- Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing 100000, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, China
| | - Shan Gao
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - He Ma
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| |
Collapse
|
15
|
Elevated Serum Ninjurin-1 Is Associated with a High Risk of Large Artery Atherosclerotic Acute Ischemic Stroke. Transl Stroke Res 2022:10.1007/s12975-022-01077-6. [PMID: 36205878 DOI: 10.1007/s12975-022-01077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 10/10/2022]
Abstract
Ninjurin-1 is a novel adhesion molecule which is involved in many inflammatory diseases. Functional blockage of Ninjurin-1 has exerted an atheroprotective effect. The aim of the study is to explore the association between serum Ninjurin-1 and the risk of large artery atherosclerotic acute ischemic stroke. From August 2020 through December 2021, patients with large artery atherosclerotic acute ischemic stroke (LAA-AIS) admitted to the First Hospital Affiliated to Soochow University, and age- and sex-matched controls free of ischemic stroke were recruited. Serum Ninj1 was measured with an enzyme-linked immunosorbent assay. Multivariable logistic regression models were used to calculate the odds ratios and 95% confidence intervals of LAA-AIS associated with serum Ninj1 levels, and receiver operating characteristic (ROC) curves were performed to assess the improvement value of Ninj1 for the prediction of LAA-AIS after adding Ninj1 to established risk factors. Of the 110 patients and 110 age- and sex-matched controls free of ischemic stroke enrolled, serum Ninj1 levels in LAA-AIS patients were significantly higher than that in control group (142.70 ng/ml [IQR: 110.41-163.44] vs 101.62 ng/ml [IQR: 86.63-120.86], p < 0.001). In multivariable analysis, Ninj1 levels were expressed as continuous variable and ordinal variable (tertiles), and it turned out that Ninj1 levels were positively associated with increased risk of LAA-AIS, especially in tertile3 compared with tertile1 (adjusted OR = 12.567, 95%CI: 5.148-30.678, p < 0.001), and the adjusted odds OR per 10 ng/ml increment was 1.541, 95%CI: 1.348-1.763, p < 0.001. Furthermore, adding Ninj1 to a multivariate logistic model including conventional risk factors associated LAA-AIS improved the area under ROC curves from 0.787 to 0.874. Elevated circulating levels of Ninj1 were associated with increased risk of LAA-AIS, indicating that serum Ninj1 may act as a predictor independent of established conventional risk factors.
Collapse
|
16
|
Tang D, Cao F, Yan C, Fang K, Ma J, Gao L, Sun B, Wang G. Extracellular Vesicle/Macrophage Axis: Potential Targets for Inflammatory Disease Intervention. Front Immunol 2022; 13:705472. [PMID: 35769456 PMCID: PMC9234271 DOI: 10.3389/fimmu.2022.705472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) can regulate the polarization of macrophages in a variety of inflammatory diseases by mediating intercellular signal transduction and affecting the occurrence and development of diseases. After macrophages are regulated by EVs, they mainly show two phenotypes: the proinflammatory M1 type and the anti-inflammatory M2 type. A large number of studies have shown that in diseases such as mastitis, inflammatory bowel disease, Acute lung injury, and idiopathic pulmonary fibrosis, EVs promote the progression of the disease by inducing the M1-like polarization of macrophages. In diseases such as liver injury, asthma, and myocardial infarction, EVs can induce M2-like polarization of macrophages, inhibit the inflammatory response, and reduce the severity of the disease, thus indicating new pathways for treating inflammatory diseases. The EV/macrophage axis has become a potential target for inflammatory disease pathogenesis and comprehensive treatment. This article reviews the structure and function of the EV/macrophage axis and summarizes its biological functions in inflammatory diseases to provide insights for the diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Desheng Tang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Changsheng Yan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kun Fang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Ma
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Gang Wang,
| |
Collapse
|
17
|
Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:919567. [PMID: 35712726 PMCID: PMC9194562 DOI: 10.3389/fphar.2022.919567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the gastrointestinal tract, associated with high levels of inflammatory cytokine production. Human caspases-4 and -5, and their murine ortholog caspase-11, are essential components of the innate immune pathway, capable of sensing and responding to intracellular lipopolysaccharide (LPS), a component of Gram-negative bacteria. Following their activation by LPS, these caspases initiate potent inflammation by causing pyroptosis, a lytic form of cell death. While this pathway is essential for host defence against bacterial infection, it is also negatively associated with inflammatory pathologies. Caspases-4/-5/-11 display increased intestinal expression during IBD and have been implicated in chronic IBD inflammation. This review discusses the current literature in this area, identifying links between inflammatory caspase activity and IBD in both human and murine models. Differences in the expression and functions of caspases-4, -5 and -11 are discussed, in addition to mechanisms of their activation, function and regulation, and how these mechanisms may contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Emma M. Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Sheng K, Xu Y, Kong X, Wang J, Zha X, Wang Y. Probiotic Bacillus cereus Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice through Improvement of the Intestinal Barrier Function, Anti-Inflammation, and Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14810-14823. [PMID: 34677958 DOI: 10.1021/acs.jafc.1c03375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dysbiosis leads to continuous progress of inflammatory bowel disease (IBD). However, current therapeutic approaches for IBD have limited efficacy and are associated with various side effects. This study focused on exploring the positive effect of a new Bacillus cereus (B. cereus) strain (HMPM18123) in a colitis mouse model and elucidate the underlying molecular mechanisms. The colitis symptoms were alleviated by the B. cereus administration as evidenced by decreased body weight loss, colon length shortening, disease activity index score, and histopathological score. The B. cereus mitigated intestinal epithelial barrier damage by upregulating tight junction protein expression. Moreover, B. cereus exerted anti-inflammatory effects by regulating macrophage polarization and suppressing the TLR4-NF-κB-NLRP3 inflammasome signaling pathways. B. cereus also rebalanced the damaged gut microbiota. Thus, the molecular mechanism of alleviating colitis by B. cereus treatment involved the regulation of the TLR4-NF-κB-NLRP3 inflammasome signaling pathways in intestinal mucosal barriers by modulating gut microbiota composition.
Collapse
Affiliation(s)
- Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Yifan Xu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Xiangdong Zha
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
19
|
Probiotics in Intestinal Mucosal Healing: A New Therapy or an Old Friend? Pharmaceuticals (Basel) 2021; 14:ph14111181. [PMID: 34832962 PMCID: PMC8622522 DOI: 10.3390/ph14111181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), Crohn’s disease, and ulcerative colitis are characterized by chronic and relapsing inflammation, while their pathogenesis remains mostly unelucidated. Gut commensal microbiota seem to be one of the various implicated factors, as several studies have shown a significant decrease in the microbiome diversity of patients with IBD. Although the question of whether microbiota dysbiosis is a causal factor or the result of chronic inflammation remains unanswered, one fact is clear; active inflammation in IBD results in the disruption of the mucus layer structure, barrier function, and also, colonization sites. Recently, many studies on IBD have been focusing on the interplay between mucosal and luminal microbiota, underlining their possible beneficial effect on mucosal healing. Regarding this notion, it has now been shown that specific probiotic strains, when administrated, lead to significantly decreased inflammation, amelioration of colitis, and improved mucosal healing. Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate quantity. The aim of this review was to present and discuss the current findings on the role of gut microbiota and their metabolites in intestinal wound healing and the effects of probiotics on intestinal mucosal wound closure.
Collapse
|
20
|
Li Y, Jiang MY, Chen JY, Xu ZW, Zhang JW, Li T, Zhang LL, Wei W. CP-25 exerts therapeutic effects in mice with dextran sodium sulfate-induced colitis by inhibiting GRK2 translocation to downregulate the TLR4-NF-κB-NLRP3 inflammasome signaling pathway in macrophages. IUBMB Life 2021; 73:1406-1422. [PMID: 34590407 DOI: 10.1002/iub.2564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Deficiency of G protein-coupled receptor kinase 2 (GRK2) was found to protect mice from dextran sulfate sodium (DSS)-induced colitis. Paeoniflorin-6'-O-benzene sulfonate (CP-25) has been shown to exert anti-inflammatory immune regulatory effects in animal models of inflammatory autoimmune disease. This study aimed to investigate the of GRK2 in the pathogenesis of ulcerative colitis (UC) and its effects on macrophage polarization, macrophage subtype regulation of intestinal barrier function, and therapeutic effects of CP-25 in mice with DSS-induced colitis. We found imbalanced macrophage polarization, intestinal barrier dysfunction, and abnormal activation of GRK2 and TLR4-NF-κB-NLRP3 inflammasome signaling pathway in the colonic mucosa of patients with UC. CP-25, restored the damaged intestinal barrier function by inhibiting the transmembrane region of GRK2 in macrophages stimulated by lipopolysaccharides. CP-25 exerted therapeutic effects by ameliorating clinical manifestation, regulating macrophage polarization, and restoring abnormally activated TLR4-NF-κB-NLRP3 inflammasome signaling pathway by inhibiting GRK2. These data suggest the pathogenesis of UC may be related to the imbalance of macrophage polarization, which leads to abnormal activation of TLR4-NF-κB-NLRP3 inflammasome signaling pathway mediated by GRK2 and destruction of the intestinal mucosal barrier. CP-25 confers therapeutic effects on colitis by inhibiting GRK2 translocation to induce the downregulation of TLR4-NF-κB-NLRP3 inflammasome signaling in macrophages.
Collapse
Affiliation(s)
- Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Meng-Ya Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Jing-Yu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Wei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| |
Collapse
|
21
|
Hwang SJ, Song YS, Lee HJ. Phaseolin Attenuates Lipopolysaccharide-Induced Inflammation in RAW 264.7 Cells and Zebrafish. Biomedicines 2021; 9:biomedicines9040420. [PMID: 33924583 PMCID: PMC8069760 DOI: 10.3390/biomedicines9040420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.
Collapse
Affiliation(s)
| | | | - Hyo-Jong Lee
- Correspondence: ; Tel.: +82-31-290-7731; Fax: +82-50-4363-2221
| |
Collapse
|
22
|
Liu K, Wang Y, Li H. The Role of Ninjurin1 and Its Impact beyond the Nervous System. Dev Neurosci 2021; 42:159-169. [PMID: 33657559 DOI: 10.1159/000512222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 11/19/2022] Open
Abstract
Ninjurin1 (Ninj1) is a double-transmembrane cell surface protein that could promote nerve regeneration in the process of the peripheral nervous system injury and repairment. Nonetheless, the accurate function of Ninj1 in the central nervous system and outside the nervous system is not completely clear. According to the recent studies, we found that Ninj1 is also aberrantly expressed in various pathophysiological processes in vivo, including inflammation, tumorigenesis, and vascular, bone, and muscle homeostasis. These findings suggest that Ninj1 may play an influential role during these pathophysiological processes. Our review summarizes the diverse roles of Ninj1 in multiple pathophysiological processes inside and outside the nervous system. Ninj1 should be considered as an important and novel therapeutic target in certain diseases, such as inflammatory diseases and ischemic diseases. Our study provided a better understanding of Ninj1 in different pathophysiological processes and thereby provided the theoretical support for further research.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongge Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|