1
|
Liu CH, Ho YC, Lee WC, Huang CY, Lee YK, Hsieh CB, Huang NC, Wu CC, Nguyen NUN, Hsu CC, Chen CH, Chen YC, Huang WC, Lu YY, Fang CC, Chang YC, Chang CL, Tsai MK, Wen ZH, Li CZ, Li CC, Chuang PK, Yang SM, Chu TH, Huang SC. Sodium-Glucose Co-Transporter-2 Inhibitor Empagliflozin Attenuates Sorafenib-Induced Myocardial Inflammation and Toxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:4844-4858. [PMID: 38884142 DOI: 10.1002/tox.24362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1β/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.
Collapse
Affiliation(s)
- Ching-Han Liu
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Yi Huang
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Nan-Chieh Huang
- Division of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chiu-Hua Chen
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chieh Fang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chen-Lin Chang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Kai Tsai
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiao-Zhu Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chiao-Ching Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Urology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Chung Huang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Pingtung Branch of Kaohsiung Armed Forces General Hospital, Pingtung, Taiwan
| |
Collapse
|
2
|
Hu TH, Wu JC, Huang ST, Chu TH, Han AJ, Shih TW, Chang YC, Yang SM, Ko CY, Lin YW, Kung ML, Tai MH. HDGF stimulates liver tumorigenesis by enhancing reactive oxygen species generation in mitochondria. J Biol Chem 2023; 299:105335. [PMID: 37827291 PMCID: PMC10654039 DOI: 10.1016/j.jbc.2023.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) overexpression and uncontrolled reactive oxygen species (ROS) accumulation are involved in malignant transformation and poor prognosis in various types of cancer. However, the interplay between HDGF and ROS generation has not been elucidated in hepatocellular carcinoma. Here, we first analyzed the profile of HDGF expression and ROS production in newly generated orthotopic hepatomas by ultrasound-guided implantation. In situ superoxide detection showed that HDGF-overexpressing hepatomas had significantly elevated ROS levels compared with adjacent nontumor tissues. Consistently, liver tissues from HDGF-deficient mice exhibited lower ROS fluorescence than those from age- and sex-matched WT mice. ROS-detecting fluorescent dyes and flow cytometry revealed that recombinant HDGF (rHDGF) stimulated the production of superoxide anion, hydrogen peroxide, and mitochondrial ROS generation in cultured hepatoma cells in a dose-dependent manner. In contrast, the inactive Ser103Ala rHDGF mutant failed to promote ROS generation or oncogenic behaviors. Seahorse metabolic flux assays revealed that rHDGF dose dependently upregulated bioenergetics through enhanced basal and total oxygen consumption rate, extracellular acidification rate, and oxidative phosphorylation in hepatoma cells. Moreover, antioxidants of N-acetyl cysteine and MitoQ treatment significantly inhibited HDGF-mediated cell proliferation and invasive capacity. Genetic silencing of superoxide dismutase 2 augmented the HDGF-induced ROS generation and oncogenic behaviors of hepatoma cells. Finally, genetic knockdown nucleolin (NCL) and antibody neutralization of surface NCL, the HDGF receptor, abolished the HDGF-induced increase in ROS and mitochondrial energetics. In conclusion, this study has demonstrated for the first time that the HDGF/NCL signaling axis induces ROS generation by elevating ROS generation in mitochondria, thereby stimulating liver carcinogenesis.
Collapse
Affiliation(s)
- Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jian-Ching Wu
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ai-Jie Han
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ting-Wei Shih
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chou-Yuan Ko
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yu-Wei Lin
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Huang SC, Huang CC, Ko CY, Huang CY, Liu CH, Lee YK, Chen TY, Hsueh CW, Tzou SJ, Tai MH, Hu TH, Tsai MC, Lee WC, Ho YC, Wu CC, Chang YC, Chang JJ, Liu KH, Li CC, Wen ZH, Chang CL, Chu TH. Slow skeletal muscle troponin T acts as a potential prognostic biomarker and therapeutic target for hepatocellular carcinoma. Gene 2023; 865:147331. [PMID: 36871674 DOI: 10.1016/j.gene.2023.147331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Slow skeletal muscle troponin T (TNNT1) as a poor prognostic indicator is upregulated in colon and breast cancers. However, the role of TNNT1 in the disease prognosis and biological functions of hepatocellular carcinoma (HCC) is still unclear. The Cancer Genome Atlas (TCGA), real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to evaluate the TNNT1 expression of human HCC. The impact of TNNT1 levels on disease progression and survival outcome was studied using TCGA analysis. Moreover, the bioinformatics analysis and HCC cell culture were used to investigate the biological functions of TNNT1. Besides, the immunoblot analysis and enzyme-linked immunosorbent assay (ELISA) were used to detect the extracellular TNNT1 of HCC cells and circulating TNNT1 of HCC patients, respectively. The effect of TNNT1 neutralization on oncogenic behaviors and signaling was further validated in the cultured hepatoma cells. In this study, tumoral and blood TNNT1 was upregulated in HCC patients based on the analyses using bioinformatics, fresh tissues, paraffin sections, and serum. From the multiple bioinformatics tools, the TNNT1 overexpression was associated with advanced stage, high grade, metastasis, vascular invasion, recurrence, and poor survival outcome in HCC patients. By the cell culture and TCGA analyses, TNNT1 expression and release were positively correlated with epithelial-mesenchymal transition (EMT) processes in HCC tissues and cells. Moreover, TNNT1 neutralization suppressed oncogenic behaviors and EMT in hepatoma cells. In conclusion, TNNT1 may serve as a non-invasive biomarker and drug target for HCC management. This research finding may provide a new insight for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Shih-Chung Huang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chou-Yuan Ko
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Cheng-Yi Huang
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ching-Han Liu
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yung-Kuo Lee
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Tung-Yuan Chen
- Department of Surgery, Division of Colorectal Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chao-Wen Hsueh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Shiow-Jyu Tzou
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Chao Tsai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Jung-Jui Chang
- Division of Orthopedics, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Kai-Hsi Liu
- Department of Internal Medicine, Division of Cardiology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chiao-Ching Li
- Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chen-Lin Chang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.
| | - Tian-Huei Chu
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Chu TH, Ko CY, Tai PH, Chang YC, Huang CC, Wu TY, Chan HH, Wu PH, Weng CH, Lin YW, Kung ML, Fang CC, Wu JC, Wen ZH, Lee YK, Hu TH, Tai MH. Leukocyte cell-derived chemotaxin 2 regulates epithelial-mesenchymal transition and cancer stemness in hepatocellular carcinoma. J Biol Chem 2022; 298:102442. [PMID: 36055405 PMCID: PMC9530851 DOI: 10.1016/j.jbc.2022.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) acts as a tumor suppressor in hepatocellular carcinoma (HCC). However, the antineoplastic mechanism of LECT2, especially its influence on hepatic cancer stem cells (CSCs), remains largely unknown. In The Cancer Genome Atlas cohort, LECT2 mRNA expression was shown to be associated with stage, grade, recurrence, and overall survival in human HCC patients, and LECT2 expression was downregulated in hepatoma tissues compared with the adjacent nontumoral liver. Here, we show by immunofluorescence and immunoblot analyses that LECT2 was expressed at lower levels in tumors and in poorly differentiated HCC cell lines. Using functional assays, we also found LECT2 was capable of suppressing oncogenic behaviors such as cell proliferation, anchorage-independent growth, migration, invasiveness, and epithelial-mesenchymal transition in hepatoma cells. Moreover, we show exogenous LECT2 treatment inhibited CSC functions such as tumor sphere formation and drug efflux. Simultaneously, hepatic CSC marker expression was also downregulated, including expression of CD133 and CD44. This was supported by infection with adenovirus encoding LECT2 (Ad-LECT2) in HCC cells. Furthermore, in animal experiments, Ad-LECT2 gene therapy showed potent efficacy in treating HCC. We demonstrate LECT2 overexpression significantly promoted cell apoptosis and reduced neovascularization/CSC expansion in rat hepatoma tissues. Mechanistically, we showed using immunoblot and immunofluorescence analyses that LECT2 inhibited β-catenin signaling via the suppression of the hepatocyte growth factor/c-MET axis to diminish CSC properties in HCC cells. In summary, we reveal novel functions of LECT2 in the suppression of hepatic CSCs, suggesting a potential alternative strategy for HCC therapy.
Collapse
Affiliation(s)
- Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Po-Han Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tung-Yang Wu
- Department of Chest Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Hoi-Hung Chan
- Division of Gastroenterology, Department of Medicine, Conde S. Januário Hospital, Macau, China
| | - Ping-Hsuan Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Hui Weng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Wei Lin
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Chieh Fang
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jian-Ching Wu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan; LabTurbo Biotech Corporation, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Shi S, Bonaccorsi-Riani E, Schurink I, van den Bosch T, Doukas M, Lila KA, Roest HP, Xhema D, Gianello P, de Jonge J, Verstegen MMA, van der Laan LJW. Liver Ischemia and Reperfusion Induce Periportal Expression of Necroptosis Executor pMLKL Which Is Associated With Early Allograft Dysfunction After Transplantation. Front Immunol 2022; 13:890353. [PMID: 35655777 PMCID: PMC9152120 DOI: 10.3389/fimmu.2022.890353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Early allograft dysfunction (EAD) following liver transplantation (LT) remains a major threat to the survival of liver grafts and recipients. In animal models, it is shown that hepatic ischemia-reperfusion injury (IRI) triggers phosphorylation of Mixed Lineage Kinase domain-like protein (pMLKL) inducing necroptotic cell death. However, the clinical implication of pMLKL-mediated cell death in human hepatic IRI remains largely unexplored. In this study, we aimed to investigate the expression of pMLKL in human liver grafts and its association with EAD after LT. Methods The expression of pMLKL was determined by immunohistochemistry in liver biopsies obtained from both human and rat LT. Human liver biopsies were obtained at the end of preservation (T0) and ~1 hour after reperfusion (T1). The positivity of pMLKL was quantified electronically and compared in rat and human livers and post-LT outcomes. Multiplex immunofluorescence staining was performed to characterize the pMLKL-expressing cells. Results In the rat LT model, significant pMLKL expression was observed in livers after IRI as compared to livers of sham-operation animals. Similarly, the pMLKL score was highest after IRI in human liver grafts (in T1 biopsies). Both in rats and humans, the pMLKL expression is mostly observed in the portal triads. In grafts who developed EAD after LT (n=24), the pMLKL score at T1 was significantly higher as compared to non-EAD grafts (n=40). ROC curve revealed a high predictive value of pMLKL score at T1 (AUC 0.70) and the ratio of pMLKL score at T1 and T0 (pMLKL-index, AUC 0.82) for EAD. Liver grafts with a high pMLKL index (>1.64) had significantly higher levels of serum ALT, AST, and LDH 24 hours after LT compared to grafts with a low pMLKL index. Multivariate logistical regression analysis identified the pMLKL-index (Odds ratio=1.3, 95% CI 1.1-1.7) as a predictor of EAD development. Immunohistochemistry on serial sections and multiplex staining identified the periportal pMLKL-positive cells as portal fibroblasts, fibrocytes, and a minority of cholangiocytes. Conclusion Periportal pMLKL expression increased significantly after IRI in both rat and human LT. The histological score of pMLKL is predictive of post-transplant EAD and is associated with early liver injury after LT. Periportal non-parenchymal cells (i.e. fibroblasts) appear most susceptible to pMLKL-mediated cell death during hepatic IRI.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Eliano Bonaccorsi-Riani
- Abdominal Transplant Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.,Pôle de Chirurgie Expérimentale et Transplantation Institute de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ivo Schurink
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Thierry van den Bosch
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Michael Doukas
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Karishma A Lila
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Daela Xhema
- Pôle de Chirurgie Expérimentale et Transplantation Institute de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre Gianello
- Pôle de Chirurgie Expérimentale et Transplantation Institute de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Shi S, Verstegen MMA, Roest HP, Ardisasmita AI, Cao W, Roos FJM, de Ruiter PE, Niemeijer M, Pan Q, IJzermans JNM, van der Laan LJW. Recapitulating Cholangiopathy-Associated Necroptotic Cell Death In Vitro Using Human Cholangiocyte Organoids. Cell Mol Gastroenterol Hepatol 2021; 13:541-564. [PMID: 34700031 PMCID: PMC8688721 DOI: 10.1016/j.jcmgh.2021.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Liver and bile duct diseases often are associated with extensive cell death of cholangiocytes. Necroptosis represents a common mode of programmed cell death in cholangiopathy, however, detailed mechanistic knowledge is limited owing to the lack of appropriate in vitro models. To address this void, we investigated whether human intrahepatic cholangiocyte organoids (ICOs) can recapitulate cholangiopathy-associated necroptosis and whether this model can be used for drug screening. METHODS We evaluated the clinical relevance of necroptosis in end-stage liver diseases and liver transplantation by immunohistochemistry. Cholangiopathy-associated programmed cell death was evoked in ICOs derived from healthy donors or patients with primary sclerosing cholangitis or alcoholic liver diseases by the various stimuli. RESULTS The expression of key necroptosis mediators, receptor-interacting protein 3 and phosphorylated mixed lineage kinase domain-like, in cholangiocytes during end-stage liver diseases was confirmed. The phosphorylated mixed lineage kinase domain-like expression was etiology-dependent. Gene expression analysis confirmed that primary cholangiocytes are more prone to necroptosis compared with primary hepatocytes. Both apoptosis and necroptosis could be specifically evoked using tumor necrosis factor α and second mitochondrial-derived activator of caspases mimetic, with or without caspase inhibition in healthy and patient-derived ICOs. Necroptosis also was induced by ethanol metabolites or human bile in ICOs from donors and patients. The organoid cultures further uncovered interdonor variable and species-specific drug responses. Dabrafenib was identified as a potent necroptosis inhibitor and showed a protective effect against ethanol metabolite toxicity. CONCLUSIONS Human ICOs recapitulate cholangiopathy-associated necroptosis and represent a useful in vitro platform for the study of biliary cytotoxicity and preclinical drug evaluation.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arif I Ardisasmita
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, P. R. China
| | - Floris J M Roos
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Petra E de Ruiter
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marije Niemeijer
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Blocking Hepatoma-Derived Growth Factor Attenuates Vasospasm and Neuron Cell Apoptosis in Rats Subjected to Subarachnoid Hemorrhage. Transl Stroke Res 2021; 13:300-310. [PMID: 34227049 PMCID: PMC8918468 DOI: 10.1007/s12975-021-00928-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Subarachnoid hemorrhage (SAH) is an important subcategory of stroke due to its unacceptably high mortality rate as well as the severe complications it causes, such as cerebral vasospasm, neurological deficits, and cardiopulmonary abnormality. Hepatoma-derived growth factor (HDGF) is a growth factor related to normal development and is involved in liver development and regeneration. This study explored the relationship between SAH and HDGF. Sixty rats were divided into five groups (n = 12/group): (A) control group; (B) rHDGF ab only group [normal animals treated with 50 µM recombinant HDGF antibodies (rHDGF ab)]; (C) SAH group; (D) SAH + pre-rHDGF ab group (SAH animals pre-treated with 50 µM rHDGF ab into the subarachnoid space within 24 h before SAH); and (E) SAH + post-rHDGF ab group (SAH animals post-treated with 50 µM rHDGF ab into the subarachnoid space within 24 h after SAH). At 48 h after SAH, serum and cerebrospinal fluid (CSF) samples were collected to measure the levels of pro-inflammatory factors by ELISA, and rat cortex tissues were used to measure protein levels by western blot analysis. Immunofluorescence staining for Iba-1, GFAP, TUNEL, and NeuN was detected proliferation of microglia and astrocyte and apoptosis of neuron cells. Neurological outcome was assessed by ambulation and placing/stepping reflex responses. Morphology assay showed that pre-treatment and post-treatment with rHDGF ab attenuated vasospasm after SAH. SAH up-regulated the levels of TNF-α, IL-1β, and IL-6 in both the CSF and serum samples, and both pre- and post-treatment with rHDGF ab inhibited the up-regulation of these pro-inflammatory factors, except for the serum IL-6 levels. Western blot analysis demonstrated that SAH up-regulated pro-BDNF and NFκB protein levels, and both pre- and post-treatment with rHDGF ab significantly reduced the up-regulation. The result from immunofluorescence staining showed that SAH induced proliferation of microglia and astrocyte and apoptosis of neuron cells. Both pre- and post-treatment with rHDGF ab significantly attenuated proliferation of microglia and astrocyte and inhibited apoptosis of neuron cells. Furthermore, treatment with rHDGF ab significantly improved neurological outcome. Blocking HDGF attenuates neuron cell apoptosis and vasospasm through inhibiting inflammation in brain tissue at early phase after SAH.
Collapse
|