1
|
Fang ZX, Chen WJ, Wu Z, Hou YY, Lan YZ, Wu HT, Liu J. Inflammatory response in gastrointestinal cancers: Overview of six transmembrane epithelial antigens of the prostate in pathophysiology and clinical implications. World J Clin Oncol 2024; 15:9-22. [PMID: 38292664 PMCID: PMC10823946 DOI: 10.5306/wjco.v15.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Chronic inflammation is known to increase the risk of gastrointestinal cancers (GICs), the common solid tumors worldwide. Precancerous lesions, such as chronic atrophic inflammation and ulcers, are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis. Unfortunately, due to the lack of effective therapeutic targets, the prognosis of patients with GICs is still unsatisfactory. Interestingly, it is found that six transmembrane epithelial antigens of the prostate (STEAPs), a group of metal reductases, are significantly associated with the progression of malignancies, playing a crucial role in systemic metabolic homeostasis and inflammatory responses. The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress, responding to inflammatory reactions. Under the imbalance status of abnormal oxidative stress, STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process. This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms, with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
2
|
Yue F, Shi Y, Wu S, Xing L, He D, Wei L, Qiu A, Russell R, Zhang D. Metformin alleviates hepatic iron overload and ferroptosis through AMPK-ferroportin pathway in HFD-induced NAFLD. iScience 2023; 26:108560. [PMID: 38089577 PMCID: PMC10711470 DOI: 10.1016/j.isci.2023.108560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2025] Open
Abstract
Metformin prevents progression of non-alcoholic fatty liver disease (NAFLD). However, the potential mechanism is not entirely understood. Ferroptosis, a recently recognized nonapoptotic form of regulated cell death, has been reported to be involved in the pathogenesis of NAFLD. Here, we investigated the effects of metformin on ferroptosis and its potential mechanism in NAFLD. We found that metformin prevented the progression of NAFLD, and alleviated hepatic iron overload (HIO), ferroptosis and upregulated ferroportin (FPN) expression in vivo and in vitro. Mechanically, metformin reduced the lysosomal degradation pathway of FPN through activation AMPK, thus upregulated the expression of FPN protein, alleviated HIO and ferroptosis, and prevented progression of NAFLD. These findings discover a mechanism of metformin, suggesting that targeting FPN may have the therapeutic potential for treating NAFLD and related disorders.
Collapse
Affiliation(s)
- Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha 410011, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dan He
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Anqi Qiu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Park JB, Ko K, Baek YH, Kwon WY, Suh S, Han SH, Kim YH, Kim HY, Yoo YH. Pharmacological Prevention of Ectopic Erythrophagocytosis by Cilostazol Mitigates Ferroptosis in NASH. Int J Mol Sci 2023; 24:12862. [PMID: 37629045 PMCID: PMC10454295 DOI: 10.3390/ijms241612862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatic iron overload (HIO) is a hallmark of nonalcoholic fatty liver disease (NAFLD) with a poor prognosis. Recently, the role of hepatic erythrophagocytosis in NAFLD is emerging as a cause of HIO. We undertook various assays using human NAFLD patient pathology samples and an in vivo nonalcoholic steatohepatitis (NASH) mouse model named STAMTM. To make the in vitro conditions comparable to those of the in vivo NASH model, red blood cells (RBCs) and platelets were suspended and subjected to metabolic and inflammatory stresses. An insert-coculture system, in which activated THP-1 cells and RBCs are separated from HepG2 cells by a porous membrane, was also employed. Through various analyses in this study, the effect of cilostazol was examined. The NAFLD activity score, including steatosis, ballooning degeneration, inflammation, and fibrosis, was increased in STAMTM mice. Importantly, hemolysis occurred in the serum of STAMTM mice. Although cilostazol did not improve lipid or glucose profiles, it ameliorated hepatic steatosis and inflammation in STAMTM mice. Platelets (PLTs) played an important role in increasing erythrophagocytosis in the NASH liver. Upregulated erythrophagocytosis drives cells into ferroptosis, resulting in liver cell death. Cilostazol inhibited the augmentation of PLT and RBC accumulation. Cilostazol prevented the PLT-induced increase in ectopic erythrophagocytosis in in vivo and in vitro NASH models. Cilostazol attenuated ferroptosis of hepatocytes and phagocytosis of RBCs by THP-1 cells. Augmentation of hepatic erythrophagocytosis by activated platelets in NASH exacerbates HIO. Cilostazol prevents ectopic erythrophagocytosis, mitigating HIO-mediated ferroptosis in NASH models.
Collapse
Affiliation(s)
- Joon Beom Park
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (J.B.P.); (K.K.); (W.Y.K.)
| | - Kangeun Ko
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (J.B.P.); (K.K.); (W.Y.K.)
| | - Yang Hyun Baek
- Department of Gastroenterology, Dong-A University College of Medicine, Busan 49201, Republic of Korea;
| | - Woo Young Kwon
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (J.B.P.); (K.K.); (W.Y.K.)
| | - Sunghwan Suh
- Department of Endocrinology, Dong-A University College of Medicine, Busan 49201, Republic of Korea;
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan 49201, Republic of Korea;
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Hye Young Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (J.B.P.); (K.K.); (W.Y.K.)
| |
Collapse
|
4
|
Ju MH, Jang EJ, Kang SH, Roh YH, Jeong JS, Han SH. Six-Transmembrane Epithelial Antigen of Prostate 4: An Indicator of Prognosis and Tumor Immunity in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:643-658. [PMID: 37101765 PMCID: PMC10124562 DOI: 10.2147/jhc.s394973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/14/2023] [Indexed: 04/28/2023] Open
Abstract
Purpose The six-transmembrane epithelial antigen of prostate 4 (STEAP4) has been linked to tumor progression via its involvement in inflammatory responses, oxidative stress, and metabolism. However, STEAP4 has rarely been studied in hepatocellular carcinoma (HCC). We explored STEAP4 expression associated with tumor prognosis to understand its role in tumor biology in HCC. Patients and Methods STEAP4 mRNA and protein expressions were primarily analyzed using bioinformatics tools based on The Cancer Genome Atlas database to understand the expression pattern, molecular mechanism, prognostic impact, and association with immune cell infiltration. We further investigated the association between STEAP4 protein expression and clinicopathological parameters and their predictive value in HCC patients using immunohistochemical staining of tissue microarrays. Results The expression of STEAP4 mRNA and protein in HCC tissues was significantly lower than in normal liver tissues. Reduced expression of STEAP4 was linked to advanced HCC stages, poor recurrence-free survival (RFS), and overall survival. Furthermore, reduced STEAP4 expression was a significant predictor of worse RFS in univariate and multivariate analyses in the immunohistochemical cohort. GO, KEGG, and GSEA analyses revealed that STEAP4 is related to numerous biological processes and pathways, including drug metabolism, DNA replication, RNA metabolism, and immune response. In terms of the immune system, the decreased level of STEAP4 was correlated with the immunosuppressive microenvironment. Conclusion Our data indicated that reduced STEAP4 expression was significantly associated with tumor aggressiveness and poor prognosis, possibly because of its link to various biological processes and induction of HCC immune evasion. Therefore, STEAP4 expression may serve as a potential prognostic biomarker for cancer progression and immunity, as well as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Mi Ha Ju
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Eun Jeong Jang
- Department of Surgery, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Sung Hwa Kang
- Department of Surgery, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Young Hoon Roh
- Department of Surgery, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
- Correspondence: Song-Hee Han, Department of Pathology, Dong-A University College of Medicine, 26, Daesingongwon-ro, Seo-gu, Busan, 49201, Republic of Korea, Tel +82-51-240-2863, Fax +82-51-240-7396, Email
| |
Collapse
|
5
|
Ma C, Han L, Zhu Z, Heng Pang C, Pan G. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases. Biochem Pharmacol 2022; 205:115242. [PMID: 36084708 DOI: 10.1016/j.bcp.2022.115242] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide. Minerals including iron, copper, zinc, and selenium, fulfil an essential role in various biochemical processes. Moreover, the identification of ferroptosis and cuproptosis further underscores the importance of intracellular mineral homeostasis. However, perturbation of minerals has been frequently reported in patients with NAFLD and related diseases. Interestingly, studies have attempted to establish an association between mineral disorders and NAFLD pathological features, including oxidative stress, mitochondrial dysfunction, inflammatory response, and fibrogenesis. In this review, we aim to provide an overview of the current understanding of mineral metabolism (i.e., absorption, utilization, and transport) and mineral interactions in the pathogenesis of NAFLD. More importantly, this review highlights potential therapeutic strategies, challenges, future directions for targeting mineral metabolism in the treatment of NAFLD.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK.
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Kim HY, Park CH, Park JB, Ko K, Lee MH, Chung J, Yoo YH. Hepatic STAMP2 alleviates polychlorinated biphenyl-induced steatosis and hepatic iron overload in NAFLD models. ENVIRONMENTAL TOXICOLOGY 2022; 37:2223-2234. [PMID: 35616167 DOI: 10.1002/tox.23589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/03/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been associated with neurotoxicity, hepatoxicity, oncogenicity, and endocrine-disrupting effects. Although the recent studies have demonstrated that PCB exposure leads to nonalcoholic fatty liver disease (NAFLD), the underlying mechanism has remained unsolved. In this study, we examined the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, and PCB 126 in C57BL/6 mice. Male C57Bl/6 mice were fed a standard diet or a 60% high-fat diet and exposed to Aroclor 1260 (10 mg/kg or 20 mg/kg) or PCB 126 (1 mg/kg or 5 mg/kg) by intraperitoneal injection for a total of four injections (2, 3, 4, and 5 weeks) for 6 weeks. In mice, both Aroclor 1260 and PCB 126-induced liver damage, hepatic steatosis and inflammation. We also observed that PCB exposure-induced hepatic iron overload (HIO). We previously demonstrated that hepatic six transmembrane protein of prostate 2 (STAMP2) may represent a suitable therapeutic target for NAFLD patients. Thus, we further examined whether hepatic STAMP2 is involved in PCB-induced NAFLD. We observed that hepatic STAMP2 was significantly decreased in PCB-induced NAFLD models in vivo and in vitro. Furthermore, overexpression of hepatic STAMP2 using an adenoviral delivery system resulted in improvement of PCB-induced steatosis and HIO in vivo and in vitro. Our findings indicate that enhancing hepatic STAMP2 expression represents a potential therapeutic avenue for the treatment of PCB exposure-induced NAFLD.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
- Department of Oral Microbiology and Oral Genomics Research Center, School of Dentistry, Pusan National University, Busan, Republic of Korea
| | - Chul Hee Park
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Joon Beom Park
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Kangeun Ko
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology and Oral Genomics Research Center, School of Dentistry, Pusan National University, Busan, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
7
|
Kim HY, Yoo YH. The Role of STAMP2 in Pathogenesis of Chronic Diseases Focusing on Nonalcoholic Fatty Liver Disease: A Review. Biomedicines 2022; 10:biomedicines10092082. [PMID: 36140186 PMCID: PMC9495648 DOI: 10.3390/biomedicines10092082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health issue. NAFLD can progress from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH). NASH can progress to cirrhosis or hepatocellular carcinoma. Unfortunately, there is no currently approved pharmacologic therapy for NAFLD patients. The six transmembrane protein of prostate 2 (STAMP2), a metalloreductase involved in iron and copper homeostasis, is well known for its critical role in the coordination of glucose/lipid metabolism and inflammation in metabolic tissues. We previously demonstrated that hepatic STAMP2 could be a suitable therapeutic target for NAFLD. In this review, we discuss the emerging role of STAMP2 in the dysregulation of iron metabolism events leading to NAFLD and suggest therapeutic strategies targeting STAMP2.
Collapse
|
8
|
Recombinant FGF21 Attenuates Polychlorinated Biphenyl-Induced NAFLD/NASH by Modulating Hepatic Lipocalin-2 Expression. Int J Mol Sci 2022; 23:ijms23168899. [PMID: 36012166 PMCID: PMC9408415 DOI: 10.3390/ijms23168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Although recent studies have demonstrated that polychlorinated biphenyls (PCB) exposure leads to toxicant-associated steatohepatitis, the underlying mechanism of this condition remains unsolved. Male C57Bl/6 mice fed a standard diet (SD) or 60% high fat diet (HFD) were exposed to the nondioxin-like PCB mixture Aroclor1260 or dioxin-like PCB congener PCB126 by intraperitoneal injection for a total of four times for six weeks. We observed hepatic injury, steatosis, inflammation, and fibrosis in not only the Aroclor1260-treated mice fed a HFD but the PCB126-treated mice fed either a SD or a HFD. We also observed that both types of PCB exposure induced hepatic iron overload (HIO). Noticeably, the expression of hepatic lipocalin-2 (LCN2) was significantly increased in the PCB-induced nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) models. The knockdown of LCN2 resulted in improvement of PCB-induced lipid and iron accumulation in vitro, suggesting that LCN2 plays a pivotal role in PCB-induced NAFLD/NASH. We observed that recombinant FGF21 improved hepatic steatosis and HIO in the PCB-induced NAFLD/NASH models. Importantly, recombinant FGF21 reduced the PCB-induced overexpression of hepatic LCN2 in vivo and in vitro. Our findings indicate that recombinant FGF21 attenuates PCB-induced NAFLD/NASH by modulating hepatic lipocalin-2 expression. Our data suggest that hepatic LCN2 might represent a suitable therapeutic target for improving PCB-induced NAFLD/NASH accompanying HIO.
Collapse
|
9
|
Tsuchiya H. Iron-Induced Hepatocarcinogenesis—Preventive Effects of Nutrients. Front Oncol 2022; 12:940552. [PMID: 35832553 PMCID: PMC9271801 DOI: 10.3389/fonc.2022.940552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 01/10/2023] Open
Abstract
The liver is a primary organ that stores body iron, and plays a central role in the regulation of iron homeostasis. Hepatic iron overload (HIO) is a prevalent feature among patients with chronic liver diseases (CLDs), including alcoholic/nonalcoholic liver diseases and hepatitis C. HIO is suggested to promote the progression toward hepatocellular carcinoma because of the pro-oxidant nature of iron. Iron metabolism is tightly regulated by various factors, such as hepcidin and ferroportin, in healthy individuals to protect the liver from such deteriorative effects. However, their intrinsic expressions or functions are frequently compromised in patients with HIO. Thus, various nutrients have been reported to regulate hepatic iron metabolism and protect the liver from iron-induced damage. These nutrients are beneficial in HIO-associated CLD treatment and eventually prevent iron-mediated hepatocarcinogenesis. This mini-review aimed to discuss the mechanisms and hepatocarcinogenic risk of HIO in patients with CLDs. Moreover, nutrients that hold the potential to prevent iron-induced hepatocarcinogenesis are summarized.
Collapse
|
10
|
Liu X, Zhang Y, Ma C, Lin J, Du J. Alternate-day fasting alleviates high fat diet induced non-alcoholic fatty liver disease through controlling PPARα/Fgf21 signaling. Mol Biol Rep 2022; 49:3113-3122. [PMID: 35107741 DOI: 10.1007/s11033-022-07142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that ultimately leads to cirrhosis and hepatocellular carcinoma. Intermittent fasting has been proposed as a nonpharmacological dietary approach against metabolic diseases, including NAFLD. In this study, we aimed to investigate the effect of alternate day fasting (ADF) on high-fat diet (HFD)-induced NAFLD in C57BL/6 mice. METHODS A mouse model of fatty liver disease was established by feeding the mice a HFD for 16 weeks. The mice were administered by body weight, lipid accumulation and inflammation. PPARα, FGF21, serum triglycerides (TG), total cholesterol (TC), transaminase and lipogenesis were assessed. RESULTS The results showed that long-term ADF can attenuate fatty liver disease by reducing hepatic inflammation and lipid accumulation in a mouse model. Meanwhile, fasting elevated the expression of serum and hepatic fibroblast growth Factor 21 (Fgf21), a circulating hormone produced predominantly in the liver, and could effectively prevent and ameliorate the pathogenesis of NAFLD. Serum starvation also enhanced Fgf21 expression and reduced free fatty acid (FFA)-induced lipid storage in hepatocytes. Moreover, refeeding inhibited the increase in Fgf21 expression induced by fasting. This fasted-to-refed transition is closely related to the expression of Fgf21. Further in vitro and in vivo studies showed that fasting-sensitive PPARα is indispensable for the expression of Fgf21 and its protective effect on NAFLD. CONCLUSION These findings indicated that long-term ADF protects mouse livers against HFD induced fatty liver disease through controlling PPARα/Fgf21 signaling. In conclusion, ADF can emerge as a non-pharmacological dietary approach against fatty liver disease.
Collapse
Affiliation(s)
- Xinlei Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yan Zhang
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chunya Ma
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China. .,Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Jiang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China. .,Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
11
|
Chakravarty D, Ray AG, Chander V, Mabalirajan U, Mondal PC, Siddiqui KN, Sinha BP, Konar A, Bandyopadhyay A. Systemic deficiency of vitronectin is associated with aortic inflammation and plaque progression in ApoE-Knockout mice. FASEB Bioadv 2022; 4:121-137. [PMID: 35141476 PMCID: PMC8814562 DOI: 10.1096/fba.2021-00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
Optimal cell spreading and interplay of vascular smooth muscle cells (VSMC), inflammatory cells, and cell adhesion molecules (CAM) are critical for progressive atherosclerosis and cardiovascular complications. The role of vitronectin (VTN), a major cell attachment glycoprotein, in the pathogenesis of atherosclerosis remains elusive. In this study, we attempt to examine the pathological role of VTN in arterial plaque progression and inflammation. We found that, relative expression analysis of VTN from the liver of Apolipoprotein E (ApoE) Knockout mice revealed that atherosclerotic progression induced by feeding mice with high cholesterol diet (HCD) causes a significant downregulation of VTN mRNA as well as protein after 60 days. Promoter assay confirmed that cholesterol modulates the expression of VTN by influencing its promoter. Mimicking VTN reduction with siRNA in HCD fed ApoE Knockout mice, accelerated athero-inflammation with an increase in NF-kB, ICAM-1, and VCAM-1 at the site of the plaque along with upregulation of inflammatory proteins like MCP-1 and IL-1β in the plasma. Also, matrix metalloprotease (MMP)-9 and MMP-12 expression were increased and collagen content was decreased in the plaque, in VTN deficient condition. This might pose a challenge to plaque integrity. Human subjects with acute coronary syndrome or having risk factors of atherosclerosis have lower levels of VTN compared to healthy controls suggesting a clinical significance of plasma VTN in the pathophysiology of coronary artery disease. We establish that, VTN plays a pivotal role in cholesterol-driven atherosclerosis and aortic inflammation and might be a useful indicator for atherosclerotic plaque burden and stability.
Collapse
Affiliation(s)
- Devasmita Chakravarty
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Aleepta Guha Ray
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Vivek Chander
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Ulaganathan Mabalirajan
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | | | | | - Bishnu Prasad Sinha
- Department of Cancer Biology and Inflammatory DisorderCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Aditya Konar
- Department of Laboratory Animal FacilityCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Arun Bandyopadhyay
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Department of Cancer Biology and Inflammatory DisorderCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Department of Laboratory Animal FacilityCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| |
Collapse
|
12
|
Zhu M, Chen H, Zhou S, Zheng L, Li X, Chu R, Chen W, Wang B, Wang M, Chai Z, Feng W. Iron oxide nanoparticles aggravate hepatic steatosis and liver injury in nonalcoholic fatty liver disease through BMP-SMAD-mediated hepatic iron overload. Nanotoxicology 2021; 15:761-778. [PMID: 33961538 DOI: 10.1080/17435390.2021.1919329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading hepatic manifestation of metabolic syndrome worldwide, and is clinically accompanied by iron overload. As the increasing application of iron oxide nanoparticles (IONPs) on the imaging and diagnosis in NAFLD, the potential hepatic effect and mechanism of IONPs on NAFLD should be well studied. Here, we demonstrate that carboxyl-modified (COOH-IONPs) and amino-coated IONPs (NH2-IONPs) exhibit no significant hepatic toxicity in normal mice at the clinical injection dose, but aggravate SREBP-1c-mediated de novo lipogenesis (DNL) in the livers of mice with NAFLD induced by high-fat diet (HFD) and in HepG2 cells incubated with oleic acid (OA), especially in those treated by the positive NH2-IONPs. In the present study, mice receiving IONPs for 7 day show mild iron overload in the liver and exhibit enhanced hepatic inflammation in NAFLD. The BMP-SMAD pathway is initiated by hepatic iron overload and is aggravated in NAFLD. In conclusion, BMP-SMAD-mediated hepatic iron overload aggravated lipid accumulation in the liver and hepatic inflammatory responses, implying that effective measures in addition to hepatic iron overload are needed for individuals at the risk of IONPs in NAFLD.
Collapse
Affiliation(s)
- Meilin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Hanqing Chen
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuang Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Runxuan Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|