1
|
Tello-Palencia MA, Yang T, Sularz O, Demers LE, Ma Y, Boycott C, Zhang HA, Lubecka-Gajewska K, Kumar S, Ramsey BS, Torregrosa-Allen S, Elzey BD, Lanman NA, Korthauer K, Stefanska B. Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats. Mol Nutr Food Res 2024; 68:e2400662. [PMID: 39562169 DOI: 10.1002/mnfr.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 11/21/2024]
Abstract
SCOPE Polyphenols from the phytoestrogen group, including pterostilbene (PTS), are known for their antioxidant, anti-inflammatory, and anti-cancer effects. In recent reports, phytoestrogens attenuate age-related diseases; however, their pro-longevity effects in healthy models in mammals remain unknown. As longevity research demonstrates age-related transcriptomic signatures in human blood, the current study hypothesizes that phytoestrogen-supplemented diet may induce changes in gene expression that ultimately confer pro-longevity benefits. METHODS AND RESULTS In the present study, RNA sequencing is conducted to determine transcriptome-wide changes in gene expression in whole blood of healthy rats consuming diets supplemented with phytoestrogens. Ortholog cell deconvolution is applied to analyze the omics data. The study discovered that PTS leads to changes in the gene expression landscape and PTS-target genes are associated with functions counteracting hallmarks of aging, including genomic instability, epigenetic alterations, compromised autophagy, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular interaction, and loss of proteostasis. These functions bridge together under anti-inflammatory effects through multiple pathways, including immunometabolism, where changes in cellular metabolism (e.g., ribosome biogenesis) impact the immune system. CONCLUSION The findings provide a rationale for pre-clinical and clinical longevity studies and encourage investigations on PTS in maintaining cellular homeostasis, decelerating the process of aging, and improving conditions with chronic inflammation.
Collapse
Affiliation(s)
- Marco A Tello-Palencia
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Olga Sularz
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, 31-120, Poland
| | - Louis Erik Demers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Huiying Amelie Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Sadhri Kumar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin S Ramsey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Bennett D Elzey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadia Atallah Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Keegan Korthauer
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, V6H 0B3, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Qin D, Liu J, Guo W, Ju T, Fu S, Liu D, Hu G. Arbutin alleviates intestinal colitis by regulating neutrophil extracellular traps formation and microbiota composition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155741. [PMID: 38772182 DOI: 10.1016/j.phymed.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic recurrent intestinal disease lacking effective treatments. β-arbutin, a glycoside extracted from the Arctostaphylos uva-ursi leaves, that can regulate many pathological processes. However, the effects of β-arbutin on UC remain unknown. PURPOSE In this study, we investigated the role of β-arbutin in relieving colitis and explored its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS In C75BL/6 J mice, DSS was used to induce colitis and concomitantly β-arbutin (50 and 100 mg/kg) was taken orally to evaluate its curative effect by evaluating disease activity index (DAI) score, colon length and histopathology. Alcian blue periodic acid schiff (AB-PAS) staining, immunohistochemistry (IHC), immunofluorescence (IF) and TdT-mediated dUTP Nick-End Labeling (Tunel) staining were used to assess intestinal barrier function. Flow cytometry, double-IF and western blotting (WB) were performed to verify the regulatory mechanism of β-arbutin on neutrophil extracellular traps (NETs) in vivo and in vitro. NETs depletion experiments were used to demonstrate the role of NETs in UC. Subsequently, the 16S rRNA gene sequencing was used to analyze the intestinal microflora of mouse. RESULTS Our results showed that β-arbutin can protect mice from DSS-induced colitis characterized by a lower DAI score and intestinal pathological damage. β-arbutin reduced inflammatory factors secretion, notably regulated neutrophil functions, and inhibited NETs formation in an ErK-dependent pathway, contributing to the resistance to colitis as demonstrated by in vivo and in vitro experiments. Meanwhile, remodeled the intestinal flora structure and increased the diversity and richness of intestinal microbiota, especially the abundance of probiotics and butyric acid-producing bacteria. It further promoted the protective effect in the resistance of colitis. CONCLUSION β-arbutin promoted the maintenance of intestinal homeostasis by inhibiting NETs formation, maintaining mucosal-barrier integrity, and shaping gut-microbiota composition, thereby alleviating DSS-induced colitis. This study provided a scientific basis for the rational use of β-arbutin in preventing colitis and other related diseases.
Collapse
Affiliation(s)
- Di Qin
- College of Animal Science, Jilin University, Changchun, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weiwei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tianyuan Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China.
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
4
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
5
|
Wang Y, Li Z, Bao Y, Cui H, Li J, Song B, Wang M, Li H, Cui X, Chen Y, Chen W, Yang S, Yang Y, Jin Z, Si X, Li B. Colon-targeted delivery of polyphenols: construction principles, targeting mechanisms and evaluation methods. Crit Rev Food Sci Nutr 2023; 65:64-86. [PMID: 37823723 DOI: 10.1080/10408398.2023.2266842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Polyphenols have received considerable attention for their promotive effects on colonic health. However, polyphenols are mostly sensitive to harsh gastrointestinal environments, thus, must be protected. It is necessary to design and develop a colon-targeted delivery system to improve the stability, colon-targeting and bioavailability of polyphenols. This paper mainly introduces research on colon-targeted controlled release of polyphenols. The physiological features affecting the dissolution, release and absorption of polyphenol-loaded delivery systems in the colon are first discussed. Simultaneously, the types of colon-targeted carriers with different release mechanisms are described, and colon-targeting assessment models that have been studied so far and their advantages and limitations are summarized. Based on the current research on polyphenols colon-targeting, outlook and reflections are proposed, with the goal of inspiring strategic development of new colon-targeted therapeutics to ensure that the polyphenols reach the colon with complete bioactivity.
Collapse
Affiliation(s)
- Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mengzhu Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xingyue Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Loos JA, Franco M, Chop M, Rodriguez Rodrigues C, Cumino AC. Resveratrol against Echinococcus sp.: Discrepancies between In Vitro and In Vivo Responses. Trop Med Infect Dis 2023; 8:460. [PMID: 37888588 PMCID: PMC10610609 DOI: 10.3390/tropicalmed8100460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
In an attempt to find new anti-echinococcal drugs, resveratrol (Rsv) effectiveness against the larval stages of Echinococcus granulosus and E. multilocularis was evaluated. The in vitro effect of Rsv on parasites was assessed via optical and electron microscopy, RT-qPCR and immunohistochemistry. In vivo efficacy was evaluated in murine models of cystic (CE) and alveolar echinococcosis (AE). The impact of infection and drug treatment on the mouse bone marrow hematopoietic stem cell (HSC) population and its differentiation into dendritic cells (BMDCs) was investigated via flow cytometry and RT-qPCR. In vitro treatment with Rsv reduced E. granulosus metacestode and protoscolex viability in a concentration-dependent manner, caused ultrastructural damage, increased autophagy gene transcription, and raised Eg-Atg8 expression while suppressing Eg-TOR. However, the intraperitoneal administration of Rsv was not only ineffective, but also promoted parasite development in mice with CE and AE. In the early infection model of AE treated with Rsv, an expansion of HSCs was observed followed by their differentiation towards BMCDs. The latter showed an anti-inflammatory phenotype and reduced LPS-stimulated activation compared to control BMDCs. We suggest that Rsv ineffectiveness could have been caused by the low intracystic concentration achieved in vivo and the drug's hormetic effect, with opposite anti-parasitic and immunomodulatory responses in different doses.
Collapse
Affiliation(s)
- Julia A. Loos
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
| | - Micaela Franco
- Hospital Interzonal General de Agudos “Dr. Oscar E Alende”, Mar del Plata 7600, Argentina;
| | - Maia Chop
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| | - Andrea C. Cumino
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| |
Collapse
|
7
|
Zhang ZT, Deng SM, Chen C, He QH, Peng XW, Liang QF, Zhuang GD, Wang SM, Tang D. Pterostilbene could alleviate diabetic cognitive impairment by suppressing TLR4/NF-кB pathway through microbiota-gut-brain axis. Phytother Res 2023; 37:3522-3542. [PMID: 37037513 DOI: 10.1002/ptr.7827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Diabetic cognitive impairment (DCI) is a serious neurodegenerative disorder caused by diabetes, with chronic inflammation being a crucial factor in its pathogenesis. Pterostilbene is a well-known natural stilbene derivative that has excellent anti-inflammatory activity, suggesting its potential medicinal advantages for treating DCI. Therefore, this study is to explore the beneficial effects of pterostilbene for improving cognitive dysfunction in DCI mice. A diabetic model was induced by a high-fat diet plus streptozotocin (40 mg·kg-1 ) for consecutive 5 days. After the animals were confirmed to be in a diabetic state, they were treated with pterostilbene (20 or 60 mg·kg-1 , i.g.) for 10 weeks. Pharmacological evaluation showed pterostilbene could ameliorate cognitive dysfunction, regulate glycolipid metabolism disorders, improve neuronal damage, and reduce the accumulation of β-amyloid in DCI mice. Pterostilbene alleviated neuroinflammation by suppressing oxidative stress and carbonyl stress damage, astrocyte and microglia activation, and dopaminergic neuronal loss. Further investigations showed that pterostilbene reduced the level of lipopolysaccharide, modulated colon and brain TLR4/NF-κB signaling pathways, and decreased the release of inflammatory factors, which in turn inhibited intestinal inflammation and neuroinflammation. Furthermore, pterostilbene could also improve the homeostasis of intestinal microbiota, increase the levels of short-chain fatty acids and their receptors, and suppress the loss of intestinal tight junction proteins. In addition, the results of plasma non-targeted metabolomics revealed that pterostilbene could modulate differential metabolites and metabolic pathways associated with inflammation, thereby suppressing systemic inflammation in DCI mice. Collectively, our study found for the first time that pterostilbene could alleviate diabetic cognitive dysfunction by inhibiting the TLR4/NF-κB pathway through the microbiota-gut-brain axis, which may be one of the potential mechanisms for its neuroprotective effects.
Collapse
Affiliation(s)
- Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
- School of Pharmacy, Jiangsu Engineering Research Center for Development and Application of External Drugs in TCM, Nanjing University of Chinese Medicine, Nanjing, China
| | - Si-Min Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chong Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing-Hui He
- Amway (China) R&D Co. Ltd., Guangzhou, China
| | | | - Qing-Feng Liang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Liu P, Zhou P, Zhang X, Zhao D, Chen H, Hu K. Pterostilbene mediates glial and immune responses to alleviate chronic intermittent hypoxia-induced oxidative stress in nerve cells. PLoS One 2023; 18:e0286686. [PMID: 37267263 DOI: 10.1371/journal.pone.0286686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) induces oxidative stress in the brain, causing sleep disorders. Herein, we investigated the role of pterostilbene (Pte) in CIH-mediated oxidative stress in the brain tissue. A CIH mouse model was constructed by alternately reducing and increasing oxygen concentration in a sealed box containing the mouse; brain tissue and serum were then collected after intragastric administration of Pte. Neurological function was evaluated through field experiments. The trajectory of the CIH mice to the central region initially decreased and then increased after Pte intervention. Pte increased the number of neuronal Nissl bodies in the hippocampus of CIH mice, upregulated the protein levels of Bcl-2, occludin, and ZO-1 as well as the mRNA and protein levels of cAMP-response element binding protein (CREB) and p-BDNF, and reduced the number of neuronal apoptotic cells, Bax protein levels, IBA-1, and GFAP levels. Simultaneously, Pte reversed the decreased levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and BDNF and increased levels of malondialdehyde (MDA) in the serum of CIH mice. Pte increased Th2 cells, Treg cells, IL-4, IL-10, and TGF-β1 levels and decreased Th1 cells, Th17 cells, IFN-γ, IL-6, and IL- 17A levels in activated BV2 cells and hippocampus in CIH mice. The protein levels of p-ERK1/2, TLR4, p-p38, p-p65, and Bax, apoptosis rate, MDA concentration, Bcl-2 protein level, cell viability, and SOD and GSH-PX concentrations decreased after the activation of BV2 cells. Pte inhibited gliocytes from activating T-cell immune imbalance through p-ERK signaling to alleviate oxidative stress injury in nerve cells.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Zhou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyue Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Yan X, Meng L, Zhang X, Deng Z, Gao B, Zhang Y, Yang M, Ma Y, Zhang Y, Tu K, Zhang M, Xu Q. Reactive oxygen species-responsive nanocarrier ameliorates murine colitis by intervening colonic innate and adaptive immune responses. Mol Ther 2023; 31:1383-1401. [PMID: 36855303 PMCID: PMC10188638 DOI: 10.1016/j.ymthe.2023.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic or relapsing inflammatory disease with limited therapeutic outcomes. Pterostilbene (PSB) is a polyphenol-based anti-oxidant that has received extensive interest for its intrinsic anti-inflammatory and anti-oxidative activities. This work aims to develop a reactive oxygen species (ROS)-responsive, folic acid (FA)-functionalized nanoparticle (NP) for efficient PSB delivery to treat UC. The resulting PSB@NP-FA had a nano-scaled diameter of 231 nm and a spherical shape. With ROS-responsive release and ROS-scavenging properties, PSB@NP could effectively scavenge H2O2, thereby protecting cells from H2O2-induced oxidative damage. After FA modification, the resulting PSB@NP-FA could be internalized by RAW 264.7 and Colon-26 cells efficiently and preferentially localized to the inflamed colon. In dextran sulfate sodium (DSS)-induced colitis models, PSB@NP-FA showed a prominent ROS-scavenging capacity and anti-inflammatory activity, therefore relieving murine colitis effectively. Mechanism results suggested that PSB@NP-FA ameliorated colitis by regulating dendritic cells (DCs), promoting macrophage polarization, and regulating T cell infiltration. Both innate and adaptive immunity were involved. More importantly, the combination of the PSB and dexamethasone (DEX) enhanced the therapeutic efficacy of colitis. This ROS-responsive and ROS-scavenging nanocarrier represents an alternative therapeutic approach to UC. It can also be used as an enhancer for classic anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiangji Yan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Lingzhang Meng
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China; Center for Systemic Inflammation Research (CSIR), Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xingzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi 710061, China
| | - Zhichao Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Bowen Gao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yujie Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Mei Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yana Ma
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Mingzhen Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
10
|
Pterostilbene Attenuates Subarachnoid Hemorrhage-Induced Brain Injury through the SIRT1-Dependent Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3550204. [PMID: 36506933 PMCID: PMC9729048 DOI: 10.1155/2022/3550204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Neuroinflammatory injury, oxidative insults, and neuronal apoptosis are major causes of poor outcomes after subarachnoid hemorrhage (SAH). Pterostilbene (PTE), an analog of resveratrol, has been verified as a potent sirtuin 1 (SIRT1) activator. However, the beneficial actions of PTE on SAH-induced brain injury and whether PTE regulates SIRT1 signaling after SAH remain unknown. We first evaluated the dose-response influence of PTE on early brain impairment after SAH. In addition, EX527 was administered to suppress SIRT1 signaling. The results revealed that PTE significantly attenuated microglia activation, oxidative insults, neuronal damage, and early neurological deterioration. Mechanistically, PTE effectively enhanced SIRT1 expression and promoted nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation in nuclei. Furthermore, EX527 pretreatment distinctly repressed PTE-induced SIRT1 and Nrf2 activation and deteriorated these beneficial outcomes. In all, our study provides the evidence that PTE protects against SAH insults by activating SIRT1-dependent Nrf2 signaling pathway. PTE might be a therapeutic alternative for SAH.
Collapse
|
11
|
Chen Y, Zhang H, Li Y, Ji S, Jia P, Wang T. Pterostilbene attenuates intrauterine growth retardation-induced colon inflammation in piglets by modulating endoplasmic reticulum stress and autophagy. J Anim Sci Biotechnol 2022; 13:125. [PMID: 36329539 PMCID: PMC9635184 DOI: 10.1186/s40104-022-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress and autophagy are implicated in the pathophysiology of intestinal inflammation; however, their roles in intrauterine growth retardation (IUGR)-induced colon inflammation are unclear. This study explored the protective effects of natural stilbene pterostilbene on colon inflammation using the IUGR piglets and the tumor necrosis factor alpha (TNF-α)-treated human colonic epithelial cells (Caco-2) by targeting ER stress and autophagy. Results Both the IUGR colon and the TNF-α-treated Caco-2 cells exhibited inflammatory responses, ER stress, and impaired autophagic flux (P < 0.05). The ER stress inducer tunicamycin and the autophagy inhibitor 3-methyladenine further augmented inflammatory responses and apoptosis in the TNF-α-treated Caco-2 cells (P < 0.05). Conversely, pterostilbene inhibited ER stress and restored autophagic flux in the IUGR colon and the TNF-α-treated cells (P < 0.05). Pterostilbene also prevented the release of inflammatory cytokines and nuclear translocation of nuclear factor kappa B p65, reduced intestinal permeability and cell apoptosis, and facilitated the expression of intestinal tight junction proteins in the IUGR colon and the TNF-α-treated cells (P < 0.05). Importantly, treatment with tunicamycin or autophagosome-lysosome binding inhibitor chloroquine blocked the positive effects of pterostilbene on inflammatory response, cell apoptosis, and intestinal barrier function in the TNF-α-exposed Caco-2 cells (P < 0.05). Conclusion Pterostilbene mitigates ER stress and promotes autophagic flux, thereby improving colon inflammation and barrier dysfunction in the IUGR piglets and the TNF-α-treated Caco-2 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00780-6.
Collapse
|
12
|
Caban M, Lewandowska U. Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
Koh YC, Lin SJ, Nagabhushanam K, Ho CT, Pan MH. The Anti-Obesity and Anti-Inflammatory Capabilities of Pterostilbene and its Colonic Metabolite Pinostilbene Protect against Tight Junction Disruption from Western Diet Feeding. Mol Nutr Food Res 2022; 66:e2200146. [PMID: 35751615 DOI: 10.1002/mnfr.202200146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Tight junctions (TJs) are a member of the intestinal epithelium barrier that provides the first line of protection against external factors. Anti-obesity and protective effects of pterostilbene (PSB) on TJs have previously been reported, but the effect of its colonic metabolite, pinostilbene (PIN), is less understood. METHODS AND RESULTS A 16-week animal model fed with western-diet to induced colonic TJs disruption was designed, supplemented with PSB and PIN to evaluate their potent in colonic TJ protection. The results showed that both PSB and PIN exerted suppressive effects on obesity, hepatic steatosis, and chronic inflammation in western-diet-fed mice. Western-diet feeding significantly reduced expression of TJ proteins, including ZO-1, occludin, and claudin-1, while PSB and PIN supplementation effectively protected TJ proteins against disruption. Increment in serum, hepatic, and mesenteric pro-inflammatory cytokines suggest their probable involvement in TJ disruption supported with the findings in macrophage polarization. The adverse were revered by PSB and PIN. The protective effect of PSB and PIN on TJ proteins may stem from their anti-inflammation capabilities. CONCLUSION This is the first study suggesting that PIN, the metabolite of PSB, demonstrates a similar protective effect on colonic TJ proteins via its anti-obesity, hepatic protection and anti-inflammatory capabilities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | - Shin-Jhih Lin
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Wei W, Zhang Y, Li R, Cao Y, Yan X, Ma Y, Zhang Y, Yang M, Zhang M. Oral Delivery of Pterostilbene by L-Arginine-Mediated “Nano-Bomb” Carrier for the Treatment of Ulcerative Colitis. Int J Nanomedicine 2022; 17:603-616. [PMID: 35177902 PMCID: PMC8843770 DOI: 10.2147/ijn.s347506] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Wei Wei
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Xi’an No.1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, First Affiliated Hospital of Northwestern University, Xi’an, Shaanxi, People’s Republic of China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Runqing Li
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yameng Cao
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiangji Yan
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yana Ma
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Mei Yang
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Correspondence: Mei Yang; Mingzhen Zhang, Email ;
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
15
|
Guo J, Wang J, Guo R, Shao H, Guo L. Pterostilbene protects the optic nerves and retina in a murine model of experimental autoimmune encephalomyelitis via activation of SIRT1 signaling. Neuroscience 2022; 487:35-46. [DOI: 10.1016/j.neuroscience.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
16
|
Liu Q, Qin Y, Chen J, Jiang B, Zhang T. Fabrication, characterization, physicochemical stability and simulated gastrointestinal digestion of pterostilbene loaded zein-sodium caseinate-fucoidan nanoparticles using pH-driven method. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106851] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Shao Y, Wang X, Zhou Y, Jiang Y, Wu R, Lu C. Pterostilbene attenuates RIPK3-dependent hepatocyte necroptosis in alcoholic liver disease via SIRT2-mediated NFATc4 deacetylation. Toxicology 2021; 461:152923. [PMID: 34474091 DOI: 10.1016/j.tox.2021.152923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Receptor-interacting protein kinase (RIPK) 3-dependent necroptosis plays a critical role in alcoholic liver disease. RIPK3 also facilitates steatosis, oxidative stress, and inflammation. Pterostilbene (PTS) has favorable hepatoprotective activities. The present study was aimed to reveal the therapeutic effects of PTS on ethanol-induced hepatocyte necroptosis and further illustrate possible molecular mechanisms. Human hepatocytes LO2 were incubated with 100 mM ethanol for 24 h to mimic alcoholic hepatocyte injury. Results showed that PTS at 20 μM reduced damage-associated molecular patterns (DAMPs) release, including IL-1α and high-mobility group box 1 (HMGB1), and blocked necroptotic signaling, evidenced by decreased RIPK1 and RIPK3 expression. Trypan blue staining visually showed that PTS reduced nonviable hepatocytes after ethanol exposure, which was counteracted by adenovirus-mediated ectopic overexpression of RIPK3 but not RIPK1. Besides, PTS inhibited ethanol-induced hepatocyte steatosis via restricting lipogenesis and enhancing lipolysis, decreased oxidative stress via rescuing mitochondrial membrane potential, reducing oxidative system, and enhancing antioxidant system, and relieved inflammation evidenced by decreased expression of proinflammatory factors. Notably, RIPK3 overexpression diminished these protective effects of PTS. Subsequent work indicated that PTS suppressed the expression and nuclear translocation of nuclear factor of activated T-cells 4 (NFATc4), an acetylated protein, in ethanol-exposed hepatocytes, while NFATc4 overexpression impaired the negative regulation of PTS on RIPK3 and DAMPs release. Further, PTS rescued sirtuin 2 (SIRT2) expression, and SIRT2 knockdown abrogated the inhibitory effects of PTS on nuclear translocation and acetylation status of NFATc4 in ethanol-incubated hepatocytes. In conclusion, PTS attenuated RIPK3-dependent hepatocyte necroptosis after ethanol exposure via SIRT2-mediated NFATc4 deacetylation.
Collapse
Affiliation(s)
- Yunyun Shao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ruoman Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
18
|
Hu J, Zhang JJ, Li L, Wang SL, Yang HT, Fan XW, Zhang LM, Hu GL, Fu HX, Song WF, Yan LJ, Liu JJ, Wu JT, Kong B. PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-II by reducing TGF-β1/Smads pathway activation. J Cell Mol Med 2021; 25:6746-6759. [PMID: 34132026 PMCID: PMC8278085 DOI: 10.1111/jcmm.16678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrosis serves a critical role in driving atrial remodelling‐mediated atrial fibrillation (AF). Abnormal levels of the transcription factor PU.1, a key regulator of fibrosis, are associated with cardiac injury and dysfunction following acute viral myocarditis. However, the role of PU.1 in atrial fibrosis and vulnerability to AF remain unclear. Here, an in vivo atrial fibrosis model was developed by the continuous infusion of C57 mice with subcutaneous Ang‐II, while the in vitro model comprised atrial fibroblasts that were isolated and cultured. The expression of PU.1 was significantly up‐regulated in the Ang‐II‐induced group compared with the sham/control group in vivo and in vitro. Moreover, protein expression along the TGF‐β1/Smads pathway and the proliferation and differentiation of atrial fibroblasts induced by Ang‐II were significantly higher in the Ang‐II‐induced group than in the sham/control group. These effects were attenuated by exposure to DB1976, a PU.1 inhibitor, both in vivo and in vitro. Importantly, in vitro treatment with small interfering RNA against Smad3 (key protein of TGF‐β1/Smads signalling pathway) diminished these Ang‐II‐mediated effects, and the si‐Smad3‐mediated effects were, in turn, antagonized by the addition of a PU.1‐overexpression adenoviral vector. Finally, PU.1 inhibition reduced the atrial fibrosis induced by Ang‐II and attenuated vulnerability to AF, at least in part through the TGF‐β1/Smads pathway. Overall, the study implicates PU.1 as a potential therapeutic target to inhibit Ang‐II‐induced atrial fibrosis and vulnerability to AF.
Collapse
Affiliation(s)
- Juan Hu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China
| | - Li Li
- Department of Cardiology, Qitai Farm Hospital, Xinjiang, China
| | - Shan-Ling Wang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Tao Yang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Wei Fan
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei-Ming Zhang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang-Ling Hu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Xia Fu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Feng Song
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Jie Yan
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Liu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-Tao Wu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China
| |
Collapse
|
19
|
Mo C, Xie S, Zeng T, Lai Y, Huang S, Zhou C, Yan W, Huang S, Gao L, Lv Z. Ginsenoside-Rg1 acts as an IDO1 inhibitor, protects against liver fibrosis via alleviating IDO1-mediated the inhibition of DCs maturation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153524. [PMID: 33667840 DOI: 10.1016/j.phymed.2021.153524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO1) has been reported as a hallmark of hepatic fibrosis. Ginseng Rg1(G-Rg1) is a characterized bioactive component isolated from a traditional Chinese medicinal herb Panax ginseng C. A. Meyer (Ginseng) that used in China widely. However, the anti-hepatic fibrosis property of G-Rg1 and the underlying mechanisms of action are poorly reported. PURPOSE Here, we researched the effect of G-Rg1 on experimental liver fibrosis in vivo and in vitro. STUDY DESIGN AND METHODS We applied a CCL4-induced liver fibrosis in mice (wild-type and those overexpressing IDO1 by in vivo AAV9 vector) and HSC-T6 cells to detect the anti-hepatic fibrosis effect of G-Rg1 in vivo and in vitro. RESULTS We found that G-Rg1 reduced serum levels of AST and ALT markedly. Histologic examination indicated that G-Rg1 dramatically improved the extent of liver fibrosis and suppressed the hepatic levels of fibrotic marker α-SMA in vivo and in vitro. The proliferation of HSC-T6 was significantly inhibited by G-Rg1 in vitro. Both TUNEL staining and flow cytometry demonstrated that G-Rg1 attenuated the levels of hepatocyte apoptosis in fibrotic mice. Additionally, G-Rg1 up-regulated the maturation of hepatic DCs via reducing the expression level of hepatic IDO1, which played an inverse role in the maturation of DCs. Furthermore, oral administration of G-Rg1 ameliorated IDO1 overexpression-induced worsen liver fibrosis as well as IDO1 overexpression-mediated more apparent inhibition of maturation of DCs. CONCLUSION These results suggest that G-Rg1, which exerts its antifibrotic properties via alleviating IDO1-mediated the inhibition of DCs maturation, may be a potential therapeutic drug in treating liver fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou510515, PR China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|