1
|
Zong Y, Zhao M, Tang Z, Tie Y, Peng K, Tan H. SALL4 mediates SHP2 inhibition in myocardial fibroblasts through the DOT1L/H3K79me2 signaling pathway to promote the progression of myocardial infarction. Sci Rep 2024; 14:30938. [PMID: 39730739 DOI: 10.1038/s41598-024-81815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
OBJECTIVE To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction. METHODS Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis. RESULTS SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts. CONCLUSION In cardiac fibroblasts, SALL4 mediates the DOT1L/H3K79me2 signaling pathway to inhibit SHP2, which then promotes the YAP/TAZ signaling pathway, thereby facilitating the progression of myocardial infarction.
Collapse
Affiliation(s)
- Yanhong Zong
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang, Hebei, China.
- "14th Five-Year Plan" Hebei Province Medical Key Disciplines, Shijiazhuang, Hebei, China.
| | - Ming Zhao
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang, Hebei, China
- "14th Five-Year Plan" Hebei Province Medical Key Disciplines, Shijiazhuang, Hebei, China
| | - Zhipeng Tang
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang, Hebei, China
- "14th Five-Year Plan" Hebei Province Medical Key Disciplines, Shijiazhuang, Hebei, China
| | - Yanqing Tie
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang, Hebei, China
- "14th Five-Year Plan" Hebei Province Medical Key Disciplines, Shijiazhuang, Hebei, China
| | - Kenan Peng
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang, Hebei, China
- "14th Five-Year Plan" Hebei Province Medical Key Disciplines, Shijiazhuang, Hebei, China
| | - He Tan
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Shijiazhuang, Hebei, China
- "14th Five-Year Plan" Hebei Province Medical Key Disciplines, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Wu H, Che YN, Lan Q, He YX, Liu P, Chen MT, Dong L, Liu MN. The Multifaceted Roles of Hippo-YAP in Cardiovascular Diseases. Cardiovasc Toxicol 2024; 24:1410-1427. [PMID: 39365552 DOI: 10.1007/s12012-024-09926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The Hippo-yes-associated protein (YAP) signaling pathway plays a crucial role in cell proliferation, differentiation, and death. It is known to have impact on the progression and development of cardiovascular diseases (CVDs) as well as in the regeneration of cardiomyocytes (CMs). However, further research is needed to understand the molecular mechanisms by which the Hippo-YAP pathway affects the pathological processes of CVDs in order to evaluate its potential clinical applications. In this review, we have summarized the recent findings on the role of the Hippo-YAP pathway in CVDs such as myocardial infarction, heart failure, and cardiomyopathy, as well as its in CM development. This review calls attention to the potential roles of the Hippo-YAP pathway as a relevant target for the future treatment of CVDs.
Collapse
Affiliation(s)
- Hao Wu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yan-Nan Che
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Lan
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yi-Xiang He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ming-Tai Chen
- Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| | - Li Dong
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Meng-Nan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Guo Q, Liu Q, Zhou S, Lin Y, Lv A, Zhang L, Li L, Huang F. Apelin regulates mitochondrial dynamics by inhibiting Mst1-JNK-Drp1 signaling pathway to reduce neuronal apoptosis after spinal cord injury. Neurochem Int 2024; 180:105885. [PMID: 39433147 DOI: 10.1016/j.neuint.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
In the secondary injury stage of spinal cord injury, mitochondrial dysfunction leads to decreased ATP production, increased ROS production, and activation of the mitochondria-mediated apoptosis signaling pathway. This ultimately intensifies neuronal death and promotes the progression of the injury. Apelin, a peptide produced by the APLN gene, has demonstrated promise in the treatment of spinal cord injury. The aim of this study was to investigate how Apelin protects neurons after spinal cord injury by influencing the mitochondrial dynamics. The results showed that Apelin has the ability to reduce mitochondrial fission, enhance the mitochondrial membrane potential, improve antioxidant capacity, facilitate the clearance of excess ROS, and ultimately decrease apoptosis in PC12 cells. Moreover, Apelin is overexpressed in neurons in the damaged part of the spinal cord, contributing to reduce mitochondrial fission, improve antioxidant capacity, increase ATP production, decrease apoptosis, promote spinal cord morphological repair, maintain the number of nissl bodies, and enhance signal transduction in the descending spinal cord pathway. Apelin exerts its protective effect by inhibiting the Mst1-JNK-Drp1 signaling pathway. In summary, our study further improved the effect of Apelin in the treatment of spinal cord injury, revealed the mechanism of Apelin in protecting damaged neurons after spinal cord injury by maintaining mitochondrial homeostasis, and provided a new therapeutic mechanism for Apelin in spinal cord injury.
Collapse
Affiliation(s)
- Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Qing Liu
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250021, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Yabin Lin
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Ang Lv
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
| |
Collapse
|
4
|
Guo C, Ye J, Liu J, Li Z, Deng M, Guo Y, Liu G, Sun B, Li Y, Liu D. Whole-genome sequencing identified candidate genes associated with high and low litter size in Chuanzhong black goats. Front Vet Sci 2024; 11:1420164. [PMID: 39372899 PMCID: PMC11449896 DOI: 10.3389/fvets.2024.1420164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The reproductive performance of goats significantly influences breeding efficiency and economic returns, with litter size serving as a comprehensive indicator. Despite this, research on the genetic control of litter size remains limited. Therefore, we aimed to explore the candidate genes affecting fecundity and compared the whole-genome sequences (WGS) of 15 high-litter (HL) and 15 low-litter (LL) size in Chuanzhong black goats. Then genetic diversity and genomic variation patterns were analyzed by phylogenetic, principal component and population genetic structure analysis, it was found that HL and LL subpopulations diverged. Population evolutionary selection elimination analysis was performed by Fst and θπ resulted in 506 genes were annotated in HL and 528 genes in LL. These genes were mainly related to Hippo signaling pathway, G protein-coupled signaling pathway, G protein-coupled receptor activity, cell surface receptor signaling pathway, gonadal and reproductive structure development. According to the significantly selected genomic regions and important pathways, we found that the g.89172108T > G variant locus in the exon of the AMH gene was significantly associated with litter size (P < 0.05), which could be used as an auxiliary selection gene for the high fertility of Chuanzhong black Goat.
Collapse
Affiliation(s)
- Conghui Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Junning Ye
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zhihan Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Du XJ, She G, Wu W, Deng XL. Coupling of β-adrenergic and Hippo pathway signaling: Implications for heart failure pathophysiology and metabolic therapy. Mitochondrion 2024; 78:101941. [PMID: 39122227 DOI: 10.1016/j.mito.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Activation of the sympatho-β-adrenergic receptor (βAR) system is the hallmark of heart disease with adverse consequences that facilitate the onset and progression of heart failure (HF). Use of β-blocking drugs has become the front-line therapy for HF. Last decade has witnessed progress in research demonstrating a pivotal role of Hippo pathway in cardiomyopathy and HF. Clinical studies have revealed myocardial Hippo pathway activation/YAP-TEAD1 inactivation in several types of human cardiomyopathy. Experimental activation of cardiac Hippo signaling or inhibition of YAP-TEAD1 have been shown to leads dilated cardiomyopathy with severe mitochondrial dysfunction and metabolic reprogramming. Studies have also convincingly shown that stimulation of βAR activates cardiac Hippo pathway with inactivation of the down-stream effector molecules YAP/TAZ. There is strong evidence for the adverse consequences of the βAR-Hippo signaling leading to HF. In addition to promoting cardiomyocyte death and fibrosis, recent progress is the demonstration of mitochondrial dysfunction and metabolic reprogramming mediated by βAR-Hippo pathway signaling. Activation of cardiac βAR-Hippo signaling is potent in downregulating a range of mitochondrial and metabolic genes, whereas expression of pro-inflammatory and pro-fibrotic factors are upregulated. Coupling of βAR-Hippo pathway signaling is mediated by several kinases, mechanotransduction and/or Ca2+ signaling, and can be blocked by β-antagonists. Demonstration of the converge of βAR signaling and Hippo pathway bears implications for a better understanding on the role of enhanced sympathetic nervous activity, efficacy of β-antagonists, and metabolic therapy targeting this pathway in HF. In this review we summarize the progress and discuss future research directions in this field.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia,.
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Wei Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China; Department of Cardiology, Shaanxi Provincial Hospital and the Third Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
6
|
Tocan V, Nakamura-Utsunomiya A, Sonoda Y, Matsuoka W, Mizuguchi S, Muto Y, Hijioka T, Nogami M, Sasaoka D, Nagamatsu F, Oba U, Kawakubo N, Hamada H, Mushimoto Y, Chong PF, Kaku N, Koga Y, Sakai Y, Oda Y, Tajiri T, Ohga S. High-Titer Anti-ZSCAN1 Antibodies in a Toddler Clinically Diagnosed with Apparent Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation Syndrome. Int J Mol Sci 2024; 25:2820. [PMID: 38474067 DOI: 10.3390/ijms25052820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Severe obesity in young children prompts for a differential diagnosis that includes syndromic conditions. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) syndrome is a potentially fatal disorder characterized by rapid-onset obesity associated with hypoventilation, neural crest tumors, and endocrine and behavioral abnormalities. The etiology of ROHHAD syndrome remains to be established, but recent research has been focusing on autoimmunity. We report on a 2-year-old girl with rapid-onset obesity during the first year of life who progressed to hypoventilation and encephalitis in less than four months since the start of accelerated weight gain. The patient had a high titer of anti-ZSCAN1 antibodies (348; reference range < 40), and the increased values did not decline after acute phase treatment. Other encephalitis-related antibodies, such as the anti-NDMA antibody, were not detected. The rapid progression from obesity onset to central hypoventilation with encephalitis warns about the severe consequences of early-onset ROHHAD syndrome. These data indicate that serial measurements of anti-ZSCAN1 antibodies might be useful for the diagnosis and estimation of disease severity. Further research is needed to determine whether it can predict the clinical course of ROHHAD syndrome and whether there is any difference in antibody production between patients with and without tumors.
Collapse
Affiliation(s)
- Vlad Tocan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akari Nakamura-Utsunomiya
- Department of Genetic Medicine/Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8511, Japan
- Department of Pediatrics, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima 731-0293, Japan
- Division of Neonatal Screening, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Wakato Matsuoka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Soichi Mizuguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yuichiro Muto
- Department of Pediatrics, Japanese Red Cross Kumamoto Hospital, Kumamoto 861-8520, Japan
| | - Takaaki Hijioka
- Department of Pediatrics, Japanese Red Cross Kumamoto Hospital, Kumamoto 861-8520, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masao Nogami
- Department of Pediatrics, Japanese Red Cross Kumamoto Hospital, Kumamoto 861-8520, Japan
| | - Daiki Sasaoka
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fusa Nagamatsu
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Utako Oba
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naonori Kawakubo
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Hamada
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Noriyuki Kaku
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Xu Q, Zhuo K, Zhang X, Zhen Y, Liu L, Zhang L, Gu Y, Jia H, Chen Q, Liu M, Dong J, Zhou MS. The role of angiotensin II activation of yes-associated protein/PDZ-binding motif signaling in hypertensive cardiac and vascular remodeling. Eur J Pharmacol 2024; 962:176252. [PMID: 38061470 DOI: 10.1016/j.ejphar.2023.176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
Vascular remodeling is the pathogenic basis of hypertension and end organ injury, and the proliferation of vascular smooth muscle cells (VSMCs) is central to vascular remodeling. Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway and crucial for controlling cell proliferation, apoptosis and differentiation. The present study investigated the role of YAP/TAZ in cardiac and vascular remodeling of angiotensin II-induced hypertension. Ang II induced YAP/TAZ activation in the heart and aorta, which was prevented by YAP/TAZ inhibitor verteporfin. Treatment with verteporfin significantly reduced Ang II-induced cardiac and vascular hypertrophy with a mild reduction in systolic blood pressure (SBP), verteporfin attenuated Ang II-induced cardiac and aortic fibrosis with the inhibition of transform growth factor (TGF)β/Smad2/3 fibrotic signaling and extracellular matrix collagen I deposition. Ang II induced Rho A, extracellular signal-regulated kinase 1/2 (ERK1/2) and YAP/TAZ activation in VSMCs, either Rho kinase inhibitor fasudil or ERK inhibitor PD98059 suppressed Ang II-induced YAP/TAZ activation, cell proliferation and fibrosis of VSMCs. Verteporfin also inhibited Ang II-induced VSMC proliferation and fibrotic TGFβ1/Smad2/3 pathway. These results demonstrate that Ang II activates YAP/TAZ via Rho kinase/ERK1/2 pathway in VSMCs, which may contribute to cardiac and vascular remodeling in hypertension. Our results suggest that YAP/TAZ plays a critical role in the pathogenesis of hypertension and end organ damage, and targeting the YAP/TAZ pathway may be a new strategy for the prevention and treatment of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Kunping Zhuo
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xiaotian Zhang
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yanru Zhen
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Limin Liu
- Department of Vasculocardiology, The Second Hospital of Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yufan Gu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Hui Jia
- Department of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Qing Chen
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Meixi Liu
- Department of Clinical Medicine, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jiawei Dong
- Department of Clinical Medicine, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
8
|
Leng J, Wang C, Liang Z, Qiu F, Zhang S, Yang Y. An updated review of YAP: A promising therapeutic target against cardiac aging? Int J Biol Macromol 2024; 254:127670. [PMID: 37913886 DOI: 10.1016/j.ijbiomac.2023.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The transcriptional co-activator Yes-associated protein (YAP) functions as a downstream effector of the Hippo signaling pathway and plays a crucial role in cardiomyocyte survival. In its non-phosphorylated activated state, YAP binds to transcription factors, activating the transcription of downstream target genes. It also regulates cell proliferation and survival by selectively binding to enhancers and activating target genes. However, the upregulation of the Hippo pathway in human heart failure inhibits cardiac regeneration and disrupts astrogenesis, thus preventing the nuclear translocation of YAP. Existing literature indicates that the Hippo/YAP axis contributes to inflammation and fibrosis, potentially playing a role in the development of cardiac, vascular and renal injuries. Moreover, it is a key mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Given these insights, can we harness YAP's regenerative potential in a targeted manner? In this review, we provide a detailed discussion of the Hippo signaling pathway and consolidate concepts for the development and intervention of cardiac anti-aging drugs to leverage YAP signaling as a pivotal target.
Collapse
Affiliation(s)
- Jingzhi Leng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China
| | - Chuanzhi Wang
- College of Sports Science, South China Normal University, Guangzhou, China
| | - Zhide Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| | - Yuan Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| |
Collapse
|
9
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
10
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
11
|
Sveiven SN, Anesko K, Morgan J, Nair MG, Nordgren TM. Lipid-Sensing Receptor FFAR4 Modulates Pulmonary Epithelial Homeostasis following Immunogenic Exposures Independently of the FFAR4 Ligand Docosahexaenoic Acid (DHA). Int J Mol Sci 2023; 24:ijms24087072. [PMID: 37108233 PMCID: PMC10138935 DOI: 10.3390/ijms24087072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The role of pulmonary free fatty acid receptor 4 (FFAR4) is not fully elucidated and we aimed to clarify the impact of FFAR4 on the pulmonary immune response and return to homeostasis. We employed a known high-risk human pulmonary immunogenic exposure to extracts of dust from swine confinement facilities (DE). WT and Ffar4-null mice were repetitively exposed to DE via intranasal instillation and supplemented with docosahexaenoic acid (DHA) by oral gavage. We sought to understand if previous findings of DHA-mediated attenuation of the DE-induced inflammatory response are FFAR4-dependent. We identified that DHA mediates anti-inflammatory effects independent of FFAR4 expression, and that DE-exposed mice lacking FFAR4 had reduced immune cells in the airways, epithelial dysplasia, and impaired pulmonary barrier integrity. Analysis of transcripts using an immunology gene expression panel revealed a role for FFAR4 in lungs related to innate immune initiation of inflammation, cytoprotection, and immune cell migration. Ultimately, the presence of FFAR4 in the lung may regulate cell survival and repair following immune injury, suggestive of potential therapeutic directions for pulmonary disease.
Collapse
Affiliation(s)
- Stefanie N Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA
| | - Kyle Anesko
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA
| | - Joshua Morgan
- Department of Bioengineering, Bourns College of Engineering, University of California-Riverside, Riverside, CA 92521, USA
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA
| | - Tara M Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Liu Y, Zhang B, Zhou Y, Xing Y, Wang Y, Jia Y, Liu D. Targeting Hippo pathway: A novel strategy for Helicobacter pylori-induced gastric cancer treatment. Biomed Pharmacother 2023; 161:114549. [PMID: 36958190 DOI: 10.1016/j.biopha.2023.114549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The Hippo pathway plays an important role in cell proliferation, apoptosis, and differentiation; it is a crucial regulatory pathway in organ development and tumor growth. Infection with Helicobacter pylori (H. pylori) increases the risk of developing gastric cancer. In recent years, significant progress has been made in understanding the mechanisms by which H. pylori infection promotes the development and progression of gastric cancer via the Hippo pathway. Exploring the Hippo pathway molecules may yield new diagnostic and therapeutic targets for H. pylori-induced gastric cancer. The current article reviews the composition and regulatory mechanism of the Hippo pathway, as well as the research progress of the Hippo pathway in the occurrence and development of H. pylori-related gastric cancer, in order to provide a broader perspective for the study and prevention of gastric cancer.
Collapse
Affiliation(s)
- Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Bingkai Zhang
- Department of Anorectal Surgery, Qingzhou People's Hospital, Qingzhou, People's Republic of China
| | - Yimin Zhou
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China.
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| |
Collapse
|
13
|
Pang ZD, Sun X, Bai RY, Han MZ, Zhang YJ, Wu W, Zhang Y, Lai BC, Zhang Y, Wang Y, Du XJ, Deng XL. YAP-galectin-3 signaling mediates endothelial dysfunction in angiotensin II-induced hypertension in mice. Cell Mol Life Sci 2023; 80:38. [PMID: 36629913 PMCID: PMC11072047 DOI: 10.1007/s00018-022-04623-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Vascular endothelial dysfunction is regarded as an early event of hypertension. Galectin-3 (Gal-3) is known to participate in various pathological processes. Whilst previous studies showed that inhibition of Gal-3 effectively ameliorates angiotensin II (Ang II)-induced atherosclerosis or hypertension, it remains unclear whether Ang II regulates Gal-3 expression and actions in vascular endothelium. METHODS Using techniques of molecular biology and myograph, we investigated Ang II-mediated changes in Gal-3 expression and activity in thoracic aortas and mesenteric arteries from wild-type and Gal-3 gene deleted (Gal-3-/-) mice and cultured endothelial cells. RESULTS The serum level of Gal-3 was significantly higher in hypertensive patients or in mice with chronic Ang II-infusion. Ang II infusion to wild-type mice enhanced Gal-3 expression in the aortic and mesenteric arteries, elevated systolic blood pressure and impaired endothelium-dependent relaxation of the thoracic aortas and mesenteric arteries, changes that were abolished in Gal-3-/- mice. In human umbilical vein endothelial cells, Ang II significantly upregulated Gal-3 expression by promoting nuclear localization of Yes-associated protein (YAP) and its interaction with transcription factor Tead1 with enhanced YAP/Tead1 binding to Gal-3 gene promoter region. Furthermore, Gal-3 deletion augmented the bioavailability of nitric oxide, suppressed oxidative stress, and alleviated inflammation in the thoracic aorta of Ang II-infused mice or endothelial cells exposed to Ang II. CONCLUSIONS Our results demonstrate for the first time that Ang II upregulates Gal-3 expression via increment in YAP nuclear localization in vascular endothelium, and that Gal-3 mediates endothelial dysfunction contributing to the development of hypertension.
Collapse
Affiliation(s)
- Zheng-Da Pang
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xia Sun
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
- School of Basic and Medical Sciences, Xi'an Medical University, 1 Xinwang Road, Xi'an, 710021, Shaanxi, China
| | - Ru-Yue Bai
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Meng-Zhuan Han
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yong-Jian Zhang
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
- Department of Cardiac Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Wu
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yu Zhang
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Bao-Chang Lai
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yan Wang
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
14
|
Velagala V, Soundarrajan DK, Unger MF, Gazzo D, Kumar N, Li J, Zartman J. The multimodal action of G alpha q in coordinating growth and homeostasis in the Drosophila wing imaginal disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523049. [PMID: 36711848 PMCID: PMC9881979 DOI: 10.1101/2023.01.08.523049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background G proteins mediate cell responses to various ligands and play key roles in organ development. Dysregulation of G-proteins or Ca 2+ signaling impacts many human diseases and results in birth defects. However, the downstream effectors of specific G proteins in developmental regulatory networks are still poorly understood. Methods We employed the Gal4/UAS binary system to inhibit or overexpress Gαq in the wing disc, followed by phenotypic analysis. Immunohistochemistry and next-gen RNA sequencing identified the downstream effectors and the signaling cascades affected by the disruption of Gαq homeostasis. Results Here, we characterized how the G protein subunit Gαq tunes the size and shape of the wing in the larval and adult stages of development. Downregulation of Gαq in the wing disc reduced wing growth and delayed larval development. Gαq overexpression is sufficient to promote global Ca 2+ waves in the wing disc with a concomitant reduction in the Drosophila final wing size and a delay in pupariation. The reduced wing size phenotype is further enhanced when downregulating downstream components of the core Ca 2+ signaling toolkit, suggesting that downstream Ca 2+ signaling partially ameliorates the reduction in wing size. In contrast, Gαq -mediated pupariation delay is rescued by inhibition of IP 3 R, a key regulator of Ca 2+ signaling. This suggests that Gαq regulates developmental phenotypes through both Ca 2+ -dependent and Ca 2+ -independent mechanisms. RNA seq analysis shows that disruption of Gαq homeostasis affects nuclear hormone receptors, JAK/STAT pathway, and immune response genes. Notably, disruption of Gαq homeostasis increases expression levels of Dilp8, a key regulator of growth and pupariation timing. Conclusion Gαq activity contributes to cell size regulation and wing metamorphosis. Disruption to Gαq homeostasis in the peripheral wing disc organ delays larval development through ecdysone signaling inhibition. Overall, Gαq signaling mediates key modules of organ size regulation and epithelial homeostasis through the dual action of Ca 2+ -dependent and independent mechanisms.
Collapse
|
15
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
16
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
17
|
Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp Dermatol 2022; 31:1477-1499. [PMID: 35913427 PMCID: PMC9804452 DOI: 10.1111/exd.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
| | - Jodie Bojko
- Department of Life SciencesUniversity of BathBathUK
| | | | - Sophie Bowen
- Department of Life SciencesUniversity of BathBathUK
| | - Ute Jungwirth
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| | - Gernot Walko
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| |
Collapse
|
18
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|