1
|
Karabowicz J, Długosz E, Bąska P, Pękacz M, Wysmołek ME, Klockiewicz M, Wiśniewski M. Analysis of the role of Dirofilaria repens macrophage migration inhibitory factors in host-parasite interactions. J Vet Res 2024; 68:381-388. [PMID: 39318519 PMCID: PMC11418385 DOI: 10.2478/jvetres-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Dirofilaria repens is a zoonotic parasitic filarial nematode that infects carnivores and occasionally humans. Knowledge of the host-parasite molecular interactions enabling the parasite's avoidance of the host immune response in subcutaneous dirofilariasis remains limited. Parasitic orthologues of host macrophage migration inhibitory factor (MIF) are molecules potentially involved in this process. Material and Methods Complementary DNA encoding two D. repens MIF orthologues (rDre-MIF-1 and rDre-MIF-2) was cloned into a pET-28a expression vector. The recombinant proteins were produced in Escherichia coli and purified using affinity nickel chromatography. The reactivity of both recombinant proteins was analysed with infected dog and immunised mouse sera. Results Stronger antibody production was induced by rDre-MIF-1 in mice, as evidenced by significantly higher levels of anti-rDre-MIF-1 total IgG, IgG2 and IgE antibodies than of anti-rDre-MIF-2 immunoglobulins. Additionally, a significantly different level of antibodies specific to both proteins was noted between the sera of infected dogs and those of uninfected dogs. Conclusion This study is the first attempt to characterise MIF orthologues from the filarial parasite D. repens, which may affect the immune response during infection.
Collapse
Affiliation(s)
- Justyna Karabowicz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Piotr Bąska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Mateusz Pękacz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Magdalena Elżbieta Wysmołek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Maciej Klockiewicz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Marcin Wiśniewski
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| |
Collapse
|
2
|
Luo B, Gou YT, Cui HL, Yin CZ, Sun D, Li D, Wang LJ, Yan R, Liu H. The C/EBPβ-SESN2 Axis Promotes M2b Macrophage Polarization Induced by T.cp-MIF to Suppress Inflammation in Thelazia Callipaeda Infection. Inflammation 2024:10.1007/s10753-024-02114-2. [PMID: 39215929 DOI: 10.1007/s10753-024-02114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Infection by the conjunctival sucking nematode Thelazia callipaeda results in ocular inflammation and immune impairment. T.cp-MIF, a macrophage migration inhibitor factor of T. callipaeda, can induce macrophage polarization and is involved in the host innate immune response, but little is known about the regulatory mechanisms and the actual immune effect. Understanding the immunoregulatory mechanisms carries significant clinical relevance for the development of novel preventative and therapeutic strategies. The macrophages were induced by T.cp-MIF in vitro, and the polarization direction at different times and the expression of inflammatory factors were detected by flow cytometry analysis, qPCR and western blotting. The key transcription factors and target genes were screened through transcriptome data, and the functions of transcription factors were verified by inhibition experiments in vitro. T.cp-MIF and T. callipaeda adult worms can cause inflammation of the ocular conjunctiva and macrophage infiltration. T.cp-MIF activated macrophages presenting M2b polarization after 48 h and played a role in inhibiting inflammation. Furthermore, based on the results of transcriptome data analysis and inhibition experiments, we demonstrate that this polarization is dependent on the involvement of the transcription factor C/EBPβ and its target gene SESN2. Our results demonstrated that the C/EBPβ-SESN2 axis plays an important regulatory role in T.cp-MIF-induced macrophage M2b polarization and it provides a new perspective for understanding the immune escape of ocular parasite infection.
Collapse
Affiliation(s)
- Bo Luo
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Yan-Ting Gou
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Hong-Le Cui
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Chang-Zhu Yin
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Da Sun
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Di Li
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Ling-Jun Wang
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China.
| |
Collapse
|
3
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
5
|
Han X, Guo B, Zhao S, Li Y, Zhu J, He Y, Wang J, Yao Q, Shao S, Zheng L, Shi Z, Han T, Hong W, Zhang K. lncRNA Helf promotes hepatic inflammation and fibrosis by interacting with PTBP1 to facilitate PIK3R5 mRNA stabilization. Cell Mol Biol Lett 2023; 28:77. [PMID: 37805473 PMCID: PMC10560431 DOI: 10.1186/s11658-023-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is a common consequence of chronic liver diseases without approved antifibrotic therapies. Long noncoding RNAs (lncRNAs) play an important role in various pathophysiological processes. However, the functions of certain lncRNAs involved in mediating the antifibrotic role remain largely unclear. METHODS The RNA level of lnc-High Expressed in Liver Fibrosis (Helf) was detected in both mouse and human fibrotic livers. Furthermore, lnc-Helf-silenced mice were treated with carbon tetrachloride (CCl4) or bile duct ligation (BDL) to investigate the function of lnc-Helf in liver fibrosis. RESULTS We found that lnc-Helf has significantly higher expression in human and mouse fibrotic livers as well as M1 polarized hepatic macrophages (HMs) and activated hepatic stellate cells (HSCs). In vivo studies showed that silencing lnc-Helf by AAV8 vector alleviates CCl4- and BDL-induced hepatic inflammation and fibrosis. Furthermore, in vitro experiments revealed that lnc-Helf promotes HSCs activation and proliferation, as well as HMs M1 polarization and proliferation in the absence or presence of cytokine stimulation. Mechanistically, our data illustrated that lnc-Helf interacts with RNA binding protein PTBP1 to promote its interaction with PIK3R5 mRNA, resulting in increased stability and activating the AKT pathway, thus promoting HSCs and HMs activation and proliferation, which augments hepatic inflammation and fibrosis. CONCLUSION Our results unveil a lnc-Helf/PTBP1/PIK3R5/AKT feedforward, amplifying signaling that exacerbates the process of hepatic inflammation and fibrosis, thus providing a possible therapeutic strategy for hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Beichen Guo
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center Affiliated to Nankai University, Tianjin, China
| | - Sicong Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yehua Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Jing Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yifan He
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Jiajun Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Shuai Shao
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center Affiliated to Nankai University, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center Affiliated to Nankai University, Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
6
|
Sun Y, Yao Z, Long M, Zhang Y, Huang K, Li L. Alveolar Macrophages Participate in the Promotion of Influenza Virus Infection by Aflatoxin B1 at an Early Stage. Toxins (Basel) 2023; 15:67. [PMID: 36668886 PMCID: PMC9863124 DOI: 10.3390/toxins15010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Aflatoxin B1 (AFB1), one of the most common environmental mycotoxin contaminations in food and feed, poses significant threats to human and animal health. Our previous study indicated that even non-toxic AFB1 concentrations could promote influenza virus replication and induce influenza virus-infected alveolar macrophages polarizing from M1 (immunostimulatory phenotype) to M2 (immunosuppressive phenotype) over time. However, whether AFB1 promotes influenza replication via modulating the polarization of alveolar macrophages is unknown. Here, we specifically depleted alveolar macrophages using clodronate-containing liposomes in swine influenza virus (SIV)-infected mice to explore the mechanism the promotion of SIV replication by AFB1. The results show that the depletion of alveolar macrophages significantly alleviated the AFB1-induced weight loss, inflammatory responses, and lung and immune organ damage of the SIV-infected mice after 14 days and greatly diminished the AFB1-promoted SIV replication. In contrast, the depletion of alveolar macrophages did not alleviate the AFB1-induced weight loss, and lung and immune organ damage of the SIV-infected mice after 28 days and slightly diminished the AFB1-promoted SIV replication. Collectively, the data indicate that alveolar macrophages play a crucial role the promotion of SIV infection by AFB1 in the early rather than late stage, and AFB1 can promote SIV replication by inducing alveolar macrophages to polarize towards M1 macrophages. This research provides novel targets for reducing the risk of AFB1-promoted influenza virus infection.
Collapse
Affiliation(s)
- Yuhang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaoran Yao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Kehe Huang
- Department of Animal Nutrition and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Yin C, Cai J, Gou Y, Li D, Tang H, Wang L, Liu H, Luo B. Dynamic changes in human THP-1-derived M1-to-M2 macrophage polarization during Thelazia callipaeda MIF induction. Front Immunol 2023; 13:1078880. [PMID: 36713445 PMCID: PMC9876561 DOI: 10.3389/fimmu.2022.1078880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Macrophages are innate immune cells with essential roles in the immune response during helminth infection. Particularly, the direction of macrophage polarization could contribute to pathogen trapping and killing as well as tissue repair and the resolution of type 2 inflammation. This study establishes that the recombinant protein of Thelazia callipaeda macrophage migration inhibitory factor (T.cp-MIF) induces THP-1-derived macrophages to undergo M1 to M2 type dynamic polarization, using the methods of flow cytometry, real-time quantitative PCR, differential transcriptomic analysis and western blot. Interestingly, there was an increase in protein and mRNA expression of M1-type proteins and cytokines after the use of PI3K inhibitors, suggesting that the polarization state tends to favor the M1 type after M2 type inhibition. In conclusion, the dynamic polarization mechanism of T.cp-MIF-induced human THP-1-derived macrophages from M1 to M2 type is related to the binding of TLR4. It can first affect the M1 type polarization of macrophages by activating its downstream NF-κB pathway. Activation of the PI3K/Akt pathway and inhibition of NF-κB phosphorylation affects the M2 type polarization of macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Liu
- *Correspondence: Hui Liu, ; Bo Luo,
| | - Bo Luo
- *Correspondence: Hui Liu, ; Bo Luo,
| |
Collapse
|
8
|
Wang X, Hu Z. tRNA derived fragment tsRNA-14783 promotes M2 polarization of macrophages in keloid. Biochem Biophys Res Commun 2022; 636:119-127. [DOI: 10.1016/j.bbrc.2022.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/02/2022]
|
9
|
Wen Z, Zhang Y, Feng J, Aimulajiang K, Aleem MT, Lu M, Xu L, Song X, Li X, Yan R. Excretory/secretory proteins inhibit host immune responses by downregulating the TLR4/NF-κB/MAPKs signaling pathway: A possible mechanism of immune evasion in parasitic nematode Haemonchus contortus. Front Immunol 2022; 13:1013159. [PMID: 36238295 PMCID: PMC9551057 DOI: 10.3389/fimmu.2022.1013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Haemonchus contortus is an important parasitic nematode of ruminants. Previous studies showed that H. contortus escape the immunity through complex mechanisms, including releasing excretory/secretory proteins (ESPs) to modulate the host immune response. However, the detailed mechanism through which H. contortus excretory/secretory proteins (HcESPs) promote immune evasion remains unknown. In the present study, we demonstrated that HcESPs inhibit the adaptive immune response of goats including downregulation of immune cell antigen presentation, upregulation of immune checkpoint molecules, activation of the STAT3/PD-L1 pathway, and activation of immunosuppressive regulatory T (Treg) cells. Furthermore, HcESPs reversed the LPS-induced upregulation of pro-inflammatory mediators in PBMCs by inhibiting the TLR4/NF-κB/MAPKs/NLRP3 signaling pathway. Our study provides a better understanding of the evasion mechanisms for H. contortus, which could be helpful in providing an alternative way to prevent the infection of this parasite.
Collapse
Affiliation(s)
- Zhaohai Wen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiajun Feng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kalibixiati Aimulajiang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Muhammad Tahir Aleem
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingmin Lu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ruofeng Yan,
| |
Collapse
|
10
|
Laboratory Culture and Life Cycle of Thelazia callipaeda in Intermediate and Definitive Hosts. Pathogens 2022; 11:pathogens11091066. [PMID: 36145498 PMCID: PMC9504212 DOI: 10.3390/pathogens11091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Human thelaziasis caused by Thelazia callipaeda is being increasingly reported worldwide. Notably, an epidemic trend is observed in Southwest China. Whether Phortica okadai found in Southwest China can act as a vector of T. callipaeda and human-derived T. callipaeda animal infections has not been widely reported. Here, P. okadai was maintained in a laboratory and experimentally infected with first-stage larvae collected from adult T. callipaeda that were isolated from infected human subjects. Dead P. okadai were subjected to PCR assay and dissected every two days to detect T. callipaeda. Subsequently, live flies were used to infect a rabbit. The infection procedures were performed once a day (20 min) for two weeks. The results show that L1 collected from the adult T. callipaeda could successfully parasitize P. okadai captured in Zunyi, a city in Southwest China, and developed into L3, and a rabbit was successfully infected with T. callipaeda using P. okadai as the intermediate host. The present study demonstrates a human-derived T. callipaeda infection in rabbits, through P. okadai, under laboratory conditions for the first time. These results provide insights into the transmission cycle of T. callipaeda and constitute a foundation to develop an effective treatment protocol for T. callipaeda infection.
Collapse
|
11
|
Nematode Orthologs of Macrophage Migration Inhibitory Factor (MIF) as Modulators of the Host Immune Response and Potential Therapeutic Targets. Pathogens 2022; 11:pathogens11020258. [PMID: 35215200 PMCID: PMC8877345 DOI: 10.3390/pathogens11020258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
One of the adaptations of nematodes, which allows long-term survival in the host, is the production of proteins with immunomodulatory properties. The parasites secrete numerous homologs of human immune mediators, such as macrophage migration inhibitory factor (MIF), which is a substantial regulator of the inflammatory immune response. Homologs of mammalian MIF have been recognized in many species of nematode parasites, but their role has not been fully understood. The application of molecular biology and genetic engineering methods, including the production of recombinant proteins, has enabled better characterization of their structure and properties. This review provides insight into the current state of knowledge on MIF homologs produced by nematodes, as well as their structure, enzymatic activity, tissue expression pattern, impact on the host immune system, and potential use in the treatment of parasitic, inflammatory, and autoimmune diseases.
Collapse
|
12
|
Zhang YZ, Zeb A, Cheng LF. Exploring the molecular mechanism of hepatitis virus inducing hepatocellular carcinoma by microarray data and immune infiltrates analysis. Front Immunol 2022; 13:1032819. [PMID: 36439183 PMCID: PMC9697180 DOI: 10.3389/fimmu.2022.1032819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
The number of new cases of hepatocellular carcinoma (HCC) worldwide reached 910,000, ranking the sixth, 80% HCC is associated with viruses, so exploring the molecular mechanism of viral carcinogenicity is imperative. The study showed that both HBV and HCV associated HCC and non-viral HCC have the same molecular phenotype (low gene expression and inhibition of immune pathways), but in the tumor immune micro-environment, there is excessive M2-type macrophage polarization in virus-associated hepatocellular carcinoma. To address this phenomenon, the data sets were analyzed and identified five hub genes (POLR2A, POLR2B, RPL5, RPS6, RPL23A) involved in viral gene expression and associated with PI3K-Akt-mTOR pathway activation by six algorithms. In addition, numerous studies have reported that M2-type macrophages participate in the hepatic fibro-pathological process of the development of HCC and are regulated by the PI3K-Akt-mTOR pathway. On this basis, the study showed that hepatitis virus causes abnormal expression of hub genes, leading to the activation of the pathway, which in turn promote the differentiation of M2-type macrophages and eventually promote the formation of liver fibrosis, leading to the occurrence of HCC. In addition, these hub genes are regulated by transcription factors and m6A enzyme, and have good prognosis and diagnostic value. With regard to drug reuse, the results suggest that patients with virus-related HCC for whom Cytidine triphosphate disodium salt and Guanosine-5'-Triphosphate are used as supplementary therapy, and may have a better prognosis. In conclusion, the study has identified novel molecules that are carcinogenic to hepatitis viruses and are expected to serve as molecular markers and targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Amir Zeb
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Lu-Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|