1
|
Kunze R, Wacker P, Breuer P, Nasyrov E, Kur IM, Weigert A, Wagner AH, Marti HH, Korff T. Adequate post-ischemic reperfusion of the mouse brain requires endothelial NFAT5. Acta Neuropathol Commun 2024; 12:200. [PMID: 39710754 DOI: 10.1186/s40478-024-01918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Severity and outcome of strokes following cerebral hypoperfusion are significantly influenced by stress responses of the blood vessels. In this context, brain endothelial cells (BEC) regulate inflammation, angiogenesis and the vascular resistance to rapidly restore perfusion. Despite the relevance of these responses for infarct volume and tissue recovery, their transcriptional control in BEC is not well characterized. We revealed that oxygen and nutrient-deprived BEC activate nuclear factor of activated T-cells 5 (NFAT5)-a transcription factor that adjusts the cellular transcriptome to cope with environmental stressors. We hypothesized that NFAT5 controls the expression of genes regulating the response of BEC in the ischemic brain. The functional relevance of NFAT5 was assessed in mice, allowing the conditional EC-specific knock-out of Nfat5 (Nfat5(EC)-/-). Cerebral ischemia was induced by transient middle cerebral artery occlusion (MCAO) followed reperfusion up to 28 days. While loss of endothelial Nfat5 did not evoke any phenotypic abnormalities in mice under control conditions, infarct volumes, neurological deficits and the degree of brain atrophy were significantly pronounced following MCAO as compared to control animals (Nfat5fl/fl). In contrast, MCAO-induced edema formation, inflammatory processes and angiogenesis were not altered in Nfat5(EC)-/- mice. RNAseq analyses of cultured BEC suggested that loss of NFAT5 impairs the expression of Kcnj2 encoding a potassium channel that may affect reperfusion. In fact, lower levels of KCNJ2 were detected in arterial endothelial cells of Nfat5(EC)-/- versus Nfat5fl/fl mice. Laser speckle contrast imaging of the brain revealed an impaired perfusion recovery in Nfat5(EC)-/- versus Nfat5fl/fl mice after MCAO.Collectively, NFAT5 in arterial BEC is required for an adequate reperfusion response after brain ischemia that is presumably dependent on the maintenance of Kcnj2 expression. Consequently, impairment of the protective role of endothelial NFAT5 results in enlarged infarct sizes and more severe functional deficits of brain functions.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Paul Wacker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Paula Breuer
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Emil Nasyrov
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- Centre for Ophthalmology, University Eye Hospital Tuebingen, Tuebingen, Germany
| | - Ivan M Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Laban H, Siegmund S, Schlereth K, Trogisch FA, Ablieh A, Brandenburg L, Weigert A, De La Torre C, Mogler C, Hecker M, Kuebler WM, Korff T. Nuclear factor of activated T-cells 5 is indispensable for a balanced adaptive transcriptional response of lung endothelial cells to hypoxia. Cardiovasc Res 2024; 120:1590-1606. [PMID: 39107245 DOI: 10.1093/cvr/cvae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 08/09/2024] Open
Abstract
AIMS Chronic hypoxia causes detrimental structural alterations in the lung, which may cause pulmonary hypertension and are partially mediated by the endothelium. While its relevance for the development of hypoxia-associated lung diseases is well known, determinants controlling the initial adaptation of the lung endothelium to hypoxia remain largely unexplored. METHODS AND RESULTS We revealed that hypoxia activates the transcription factor nuclear factor of activated T-cells 5 (NFAT5) and studied its regulatory function in murine lung endothelial cells (MLECs). EC-specific knockout of Nfat5 (Nfat5(EC)-/-) in mice exposed to normobaric hypoxia (10% O2) for 21 days promoted vascular fibrosis and aggravated the increase in pulmonary right ventricular systolic pressure as well as right ventricular dysfunction as compared with control mice. Microarray- and single-cell RNA-sequencing-based analyses revealed an impaired growth factor-, energy-, and protein-metabolism-associated gene expression in Nfat5-deficient MLEC after exposure to hypoxia for 7 days. Specifically, loss of NFAT5 boosted the expression and release of platelet-derived growth factor B (Pdgfb)-a hypoxia-inducible factor 1 alpha (HIF1α)-regulated driver of vascular smooth muscle cell (VSMC) growth-in capillary MLEC of hypoxia-exposed Nfat5(EC)-/- mice, which was accompanied by intensified VSMC coverage of distal pulmonary arteries. CONCLUSION Collectively, our study shows that early and transient subpopulation-specific responses of MLEC to hypoxia may determine the degree of organ dysfunction in later stages. In this context, NFAT5 acts as a protective transcription factor required to rapidly adjust the endothelial transcriptome to cope with hypoxia. Specifically, NFAT5 restricts HIF1α-mediated Pdgfb expression and consequently limits muscularization and resistance of the pulmonary vasculature.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adaptation, Physiological
- Cell Hypoxia
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/metabolism
- Hypoxia/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Lung/metabolism
- Lung/blood supply
- Lung/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Signal Transduction
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Transcription, Genetic
- Vascular Remodeling
- Ventricular Function, Right
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sophia Siegmund
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Felix A Trogisch
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- Department of Cardiovascular Physiology and Cardiac Imaging Center, Core Facility Platform Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alia Ablieh
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Lennart Brandenburg
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Guo J, Du L. An update on ox-LDL-inducing vascular smooth muscle cell-derived foam cells in atherosclerosis. Front Cell Dev Biol 2024; 12:1481505. [PMID: 39524227 PMCID: PMC11543427 DOI: 10.3389/fcell.2024.1481505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Excess cholesterol accumulation induces the accumulation of foam cells, eventually accelerating atherosclerosis progress. Historically, the mechanisms of macrophage-derived foam cells have attracted attention because of their central role in plaque development, which was challenged by lineage tracing in union with single-cell sequencing (sc-seq). Accumulated studies have uncovered how vascular smooth muscle cells (VSMCs) proliferate and migrate to the vascular intima and accumulate, then transform into foam cells induced by surplus lipids, finally accounting for 30% to 70% of the total foam cells within the plaque of both mice and humans. Therefore, the mechanisms of VSMC-derived foam cells have received increasing attention. The review intends to summarize the transformation mechanism of VSMCs into foam cells induced by oxidized low-density lipoproteins (ox-LDL) in atherosclerosis.
Collapse
Affiliation(s)
- Jingjing Guo
- Luoyang Key Laboratory of Cardiovascular Science, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Laijing Du
- Department of Cardiology, Henan Key Laboratory of Cardiovascular Science, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
The role of the osmosensitive transcription factor NFAT5 in corneal edema resorption after injury. Exp Mol Med 2023; 55:565-573. [PMID: 36869067 PMCID: PMC10073147 DOI: 10.1038/s12276-023-00954-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 03/05/2023] Open
Abstract
The osmosensitive transcription factor nuclear factor of activated T cells 5 (NFAT5; or tonicity-responsive enhancer binding protein; TonEBP) plays a key role in macrophage-driven regulation of cutaneous salt and water balance. In the immune-privileged and transparent cornea, disturbances in fluid balance and pathological edema result in corneal transparency loss, which is one of the main causes of blindness worldwide. The role of NFAT5 in the cornea has not yet been investigated. We analyzed the expression and function of NFAT5 in naive corneas and in an established mouse model of perforating corneal injury (PCI), which causes acute corneal edema and transparency loss. In uninjured corneas, NFAT5 was mainly expressed in corneal fibroblasts. In contrast, after PCI, NFAT5 expression was highly upregulated in recruited corneal macrophages. NFAT5 deficiency did not alter corneal thickness in steady state; however, loss of NFAT5 led to accelerated resorption of corneal edema after PCI. Mechanistically, we found that myeloid cell-derived NFAT5 is crucial for controlling corneal edema, as edema resorption after PCI was significantly enhanced in mice with conditional loss of NFAT5 in the myeloid cell lineage, presumably due to increased pinocytosis of corneal macrophages. Collectively, we uncovered a suppressive role for NFAT5 in corneal edema resorption, thereby identifying a novel therapeutic target to combat edema-induced corneal blindness.
Collapse
|
5
|
Jiang Y, Qian HY. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 2023; 29:2. [PMID: 36604627 PMCID: PMC9817296 DOI: 10.1186/s10020-022-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.
Collapse
Affiliation(s)
- Yu Jiang
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| | - Hai-Yan Qian
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| |
Collapse
|
6
|
Role of CD40 ligand-mediated endothelial cell-monocyte interaction at atherosclerosis predilection sites. Biochem Pharmacol 2022; 206:115298. [PMID: 36243097 DOI: 10.1016/j.bcp.2022.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Monocyte recruitment into the vessel wall at atherosclerosis predilection sites is essential for lesion development in the early phase of atherosclerosis. Platelets interacting with ultra-large von Willebrand Factor (ULVWF) multimers deposited after CD40 receptor ligation on the endothelial surface form adhesive bridges and facilitate monocyte diapedesis. We hypothesise that enhanced endothelial CD40 expression at arterial bifurcations is responsible for monocyte recruitment and that its absence reduces susceptibility to atherosclerosis. METHODS Y-shaped channel slides covered with endothelial cells (HUVEC) and isolated perfused carotid artery bifurcations from different mouse lines were used for adhesion studies with isolated fluorescent dye-labelled platelets and monocytes. Monocyte adherence was quantified via fluorescence imaging. Oil Red O staining visualised aortic atherosclerotic plaques, and mRNA expression was determined by qRT-PCR. RESULTS In response to soluble CD40 ligand (sCD40L) stimulated ULVWF release, the number of monocytes bound distal to the bifurcation of the Y-slide was 1.8-fold greater than without stimulation. The number of adherent monocytes in sCD40L-treated carotid artery bifurcations was 6 to 12.3-fold greater in ApoE knockout mice as compared to bifurcations derived from CD40/ApoE-deficient or control mice. CD40 mRNA expression was 2-fold higher in carotid artery bifurcations of ApoE knockout mice as compared to the proximal unbranched segment. Introduction of the CD40 knockout into the ApoE-/- background reduced the atherosclerosis burden along the entire aorta of these mice by 60 %. CONCLUSIONS Our data demonstrate the importance of endothelial CD40 expression at atherosclerosis predilection sites for endothelial cell-platelet-monocyte interaction in the early phase of atherosclerosis.
Collapse
|
7
|
Laban H, Siegmund S, Zappe M, Trogisch FA, Heineke J, Torre CDL, Fisslthaler B, Arnold C, Lauryn J, Büttner M, Mogler C, Kato K, Adams RH, Kuk H, Fischer A, Hecker M, Kuebler WM, Korff T. NFAT5/TonEBP Limits Pulmonary Vascular Resistance in the Hypoxic Lung by Controlling Mitochondrial Reactive Oxygen Species Generation in Arterial Smooth Muscle Cells. Cells 2021; 10:cells10123293. [PMID: 34943801 PMCID: PMC8699676 DOI: 10.3390/cells10123293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic hypoxia increases the resistance of pulmonary arteries by stimulating their contraction and augmenting their coverage by smooth muscle cells (SMCs). While these responses require adjustment of the vascular SMC transcriptome, regulatory elements are not well defined in this context. Here, we explored the functional role of the transcription factor nuclear factor of activated T-cells 5 (NFAT5/TonEBP) in the hypoxic lung. Regulatory functions of NFAT5 were investigated in cultured artery SMCs and lungs from control (Nfat5fl/fl) and SMC-specific Nfat5-deficient (Nfat5(SMC)−/−) mice. Exposure to hypoxia promoted the expression of genes associated with metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in Nfat5(SMC)−/− versus Nfat5fl/fl lungs. In vitro, hypoxia-exposed Nfat5-deficient pulmonary artery SMCs elevated the level of OXPHOS-related transcripts, mitochondrial respiration, and production of reactive oxygen species (ROS). Right ventricular functions were impaired while pulmonary right ventricular systolic pressure (RVSP) was amplified in hypoxia-exposed Nfat5(SMC)−/− versus Nfat5fl/fl mice. Scavenging of mitochondrial ROS normalized the raise in RVSP. Our findings suggest a critical role for NFAT5 as a suppressor of OXPHOS-associated gene expression, mitochondrial respiration, and ROS production in pulmonary artery SMCs that is vital to limit ROS-dependent arterial resistance in a hypoxic environment.
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sophia Siegmund
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Maren Zappe
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Felix A. Trogisch
- Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; (F.A.T.); (J.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Jörg Heineke
- Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; (F.A.T.); (J.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Beate Fisslthaler
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, 60323 Frankfurt, Germany;
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, 60323 Frankfurt, Germany
| | - Caroline Arnold
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Jonathan Lauryn
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; (J.L.); (W.M.K.)
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany;
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University Munich, 80333 Munich, Germany;
| | - Katsuhiro Kato
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; (K.K.); (R.H.A.)
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; (K.K.); (R.H.A.)
| | - Hanna Kuk
- The Ottawa Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Andreas Fischer
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Internal Medicine I, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; (J.L.); (W.M.K.)
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-544131; Fax: +49-6221-544038
| |
Collapse
|