1
|
Ueda T, Matsuda S, Ninomiya Y, Nakashima F, Yasuda K, Furutama D, Memida T, Yoshimoto T, Kajiya M, Ohta K, Ouhara K, Mizuno N. Nuclear receptor 4A1 (NR4A1) upregulated by n-butylidenephthalide via the mitogen-activated protein kinase (MAPK) pathway ameliorates drug-induced gingival enlargement. Biofactors 2024; 50:1192-1207. [PMID: 38777369 PMCID: PMC11627475 DOI: 10.1002/biof.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Drug-induced gingival enlargement (DIGE) is a side effect of ciclosporin, calcium channel blockers, and phenytoin. DIGE is a serious disease that leads to masticatory and esthetic disorders, severe caries, and periodontitis but currently has no standard treatment. We recently reported that nuclear receptor 4A1 (NR4A1) is a potential therapeutic target for DIGE. This study aimed to evaluate the therapeutic effects of n-butylidenephthalide (BP), which increases the expression of NR4A1, on DIGE. In this study, NR4A1 mRNA expression was analyzed in the patients with periodontal disease (PD) and DIGE. We evaluated the effect of BP on NR4A1 expression in gingival fibroblasts and in a DIGE mouse model. RNA sequencing (RNA-seq) was conducted to identify the mechanisms by which BP increases NR4A1 expression. The results showed that NR4A1 mRNA expression in the patients with DIGE was significantly lower than the patients with PD. BP suppressed the upregulation of COL1A1 expression, which was upregulated by TGF-β. BP also ameliorated gingival overgrowth in DIGE mice and reduced Col1a1 and Pai1 expression. BP also decreased Il1β mRNA expression in gingival tissue in DIGE. RNA-seq results showed an increase in the expression of several genes related to mitogen-activated protein kinase including DUSP genes in gingival fibroblasts stimulated by BP. Treatment with ERK and JNK inhibitors suppressed the BP-induced increase in NR4A1 expression. In addition, BP promoted the phosphorylation of ERK in gingival fibroblasts. In conclusion, BP increases NR4A1 expression in gingival fibroblasts through ERK and JNK signaling, demonstrating its potential as a preventive and therapeutic agent against DIGE.
Collapse
Affiliation(s)
- Tomoya Ueda
- Department of Periodontal MedicineGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Shinji Matsuda
- Department of Periodontal MedicineGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Yurika Ninomiya
- Department of Periodontal MedicineGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Fuminori Nakashima
- Department of Periodontal MedicineGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Keisuke Yasuda
- Department of Periodontal MedicineGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Daisuke Furutama
- Department of Biological EndodonticsGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Takumi Memida
- Department of Oral Science and Translation ResearchCollege of Dental Medicine, Nova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Tetsuya Yoshimoto
- Center of Oral Clinical ExaminationHiroshima University HospitalHiroshimaJapan
| | - Mikihito Kajiya
- Center of Oral Clinical ExaminationHiroshima University HospitalHiroshimaJapan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health SciencesGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Kazuhisa Ouhara
- Department of Periodontal MedicineGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Noriyoshi Mizuno
- Department of Periodontal MedicineGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| |
Collapse
|
2
|
Zhang H, Deng Z, Wang Y, Zheng X, Zhou L, Yan S, Wang Y, Dai Y, Kanwar YS, Chen F, Deng F. CHIP drives proteasomal degradation of NUR77 to alleviate oxidative stress and intrinsic apoptosis in cisplatin-induced nephropathy. Commun Biol 2024; 7:1403. [PMID: 39462094 PMCID: PMC11513124 DOI: 10.1038/s42003-024-07118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Carboxy-terminus of Hsc70-interacting protein (CHIP), an E3 ligase, modulates the stability of its targeted proteins to alleviate various pathological perturbations in various organ systems. Cisplatin is a widely used chemotherapeutic agent, but it is also known for its alarming renal toxicity. The role of CHIP in the pathogenesis of cisplatin-induced acute kidney injury (AKI) has not been adequately investigated. Herein, we demonstrated that CHIP was abundantly expressed in the renal proximal tubular epithelia, and its expression was downregulated in cisplatin-induced AKI. Further investigation revealed that CHIP overexpression or activation alleviated, while its gene disruption promoted, oxidative stress and apoptosis in renal proximal tubular epithelia induced by cisplatin. In terms of mechanism, CHIP interacted with and ubiquitinated NUR77 to promote its degradation, which consequently shielded BCL2 to maintain mitochondrial permeability of renal proximal tubular cells in the presence of cisplatin. Also, we demonstrated that CHIP interacted with NUR77 via its central coiled-coil (CC) domain, a non-canonical interactive pattern. In conclusion, these findings indicated that CHIP ubiquitinated and degraded its substrate NUR77 to attenuate intrinsic apoptosis in cisplatin-treated renal proximal tubular epithelia, thus providing a novel insight for the pathogenesis of cisplatin-induced AKI.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Lizhi Zhou
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yashpal S Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, IL, USA
| | - Fangzhi Chen
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China.
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China.
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Wang H, Wei Z, Xu C, Fang F, Wang Z, Zhong Y, Wang X. Nuclear receptor 4A1 ameliorates UUO-induced renal fibrosis by inhibiting the PI3K/AKT pathway. Sci Rep 2024; 14:24787. [PMID: 39433882 PMCID: PMC11494048 DOI: 10.1038/s41598-024-76219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
As an ultra-early response gene, Nuclear receptor 4A1 (NR4A1) has been reported to be involved in the development of various diseases through various pathological pathways, but its specific mechanism in chronic kidney disease (CKD) is unknown currently. Our study showed that the expression of NR4A1 was reduced in unilateral ureteral obstruction (UUO) mice and it could exacerbate UUO-induced renal pathological injury when knocked down NR4A1 in UUO mice. We found that the knockdown of NR4A1 could promote angiogenesis, renal inflammation, and cell apoptosis to aggravate renal fibrosis induced by UUO. As an agonist of NR4A1, Cytosporone B (Csn-B) could inhibit the renal fibrosis by attenuating angiogenesis, renal inflammation and cell apoptosis. In addition, the PI3K/AKT pathway was activated with NR4A1 knockdown in vivo and in vitro experiments. In conclusion, our study demonstrates that NR4A1 can ameliorate renal fibrosis. Furthermore, we speculate that its underlying mechanism may be related to the activation of PI3K/AKT pathway according to our present results.
Collapse
Affiliation(s)
- Hongshuang Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Ziheng Wei
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Chang Xu
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Zheng Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yan Zhong
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China.
| |
Collapse
|
4
|
Wang H, Fang F, Zhang M, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. Nuclear receptor 4A1 ameliorates renal fibrosis by inhibiting vascular endothelial growth factor A induced angiogenesis in UUO rats. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119813. [PMID: 39142522 DOI: 10.1016/j.bbamcr.2024.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Angiogenesis is closely related to renal fibrosis; however, its basic mechanism remains unclear. In our study, we found that nuclear receptor 4A1 (NR4A1) inhibits vascular endothelial growth factor A (VEGFA)-induced angiogenesis, ameliorating renal fibrosis. METHODS We prepared a renal fibrosis animal model with unilateral ureteral obstruction (UUO) and NR4A1 knockdown UUO mice model, Using Human umbilical vein endothelial cells (HUVECs) to conduct all in vitro experiments. We then detected and analyzed the expression levels of NR4A1 and other genes related to angiogenesis and fibrosis. RESULTS The angiogenesis related genes, such as VEGFA, vascular endothelial growth factor receptor-2 (VEGFR-2), endoglin (CD105), as well as the expression of fibrosis related genes that included, α-smooth muscle actin (α-SMA), Vimentin, and Collagen I are all significantly increased in the UUO rat model. In addition, the expression of NR4A1 of the kidney tissue of UUO rats was significantly reduced. Therefore, according to the above results, we speculated that angiogenesis may exacerbate renal fibrosis and NR4A1 may repress renal fibrosis by inhibiting angiogenesis. To further verify the above results, we used VEGFA to stimulate HUVECs with (or without) overexpression or knockdown of NR4A1. The results showed that with prolonged stimulation using VEGFA, the expression of NR4A1 decreases. Overexpression of NR4A1 significantly inhibits the expression of related indicators of angiogenesis and renal fibrosis. Furthermore, knockdown of NR4A1 induces endothelial cell proliferation and migration; therefore, exacerbating angiogenesis and fibrosis. Finally, the results of NR4A1 knockdown UUO mice showed that knockdown of NR4A1 can aggravating kidney damage and induce the expression of angiogenesis and renal fibrosis related indicators, while UUO can significantly induce kidney damage, angiogenesis and renal fibrosis. When knockdown of NR4A1, renal kidney damage, angiogenesis and fibrosis becomes more severe than UUO. Thus, all of these results indicate that NR4A1 can ameliorate renal fibrosis by inhibiting angiogenesis. CONCLUSIONS NR4A1 can inhibit angiogenesis to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Hongshuang Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China.
| |
Collapse
|
5
|
Gao L, Wang H, Fang F, Liu J, Zhao C, Niu J, Wang Z, Zhong Y, Wang X. The roles of orphan nuclear receptor 4 group A1 and A2 in fibrosis. Int Immunopharmacol 2024; 139:112705. [PMID: 39029235 DOI: 10.1016/j.intimp.2024.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Fibrosis is not a disease but rather an outcome of the pathological tissue repair response. Many myofibroblasts are activated which lead to the excessive accumulation of extracellular matrix components such as collagen and fibronectin with fibrosis. A variety of organs, including kidney, liver, lung, heart and skin, can undergo fibrosis under the stimulation of exogenous or endogenous pathogenic factors. The orphan nuclear receptor 4 group A1 (NR4A1) and nuclear receptor 4 group A2(NR4A2)are belong to the nuclear receptor subfamily and inhibit the occurrence and development of fibrosis. NR4A1 is an inhibitory factor of TGF-β signaling transduction. Overexpression of NR4A1 in fibroblasts can reduce TGF-β induced collagen deposition and fibrosis related gene expression. Here, we summarize the current research progress on the NR4A1/2 and fibrosis, providing reference for the treatment of fibrosis.
Collapse
Affiliation(s)
- Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jieqi Niu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.
| |
Collapse
|
6
|
Zhong D, Chen J, Qiao R, Song C, Hao C, Zou Y, Bai M, Su W, Yang B, Sun D, Jia Z, Sun Y. Genetic or pharmacologic blockade of mPGES-2 attenuates renal lipotoxicity and diabetic kidney disease by targeting Rev-Erbα/FABP5 signaling. Cell Rep 2024; 43:114075. [PMID: 38583151 DOI: 10.1016/j.celrep.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing β cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Ranran Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chang Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yingying Zou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mi Bai
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wen Su
- Department of Pathophysiology, Shenzhen University, Shenzhen 518060, China; Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, China.
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.
| |
Collapse
|
7
|
Zhang T, Ma R, Li Z, Liu T, Yang S, Li N, Wang D. Nur77 alleviates cardiac fibrosis by upregulating GSK-3β transcription during aging. Eur J Pharmacol 2024; 965:176290. [PMID: 38158109 DOI: 10.1016/j.ejphar.2023.176290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Cardiac fibrosis is associated with aging, for which no targeted therapies are available. With aging, the levels of nerve growth factor-induced gene B (Nur77) are reduced during cardiac remodelling; however, its role in cardiac fibrosis in aging remains unclear. Here, we found that Nur77 knockout increased cardiac structure abnormalities, systolic and diastolic dysfunction, cardiac hypertrophy, and fibrotic marker expression in 15-month-old mice. Furthermore, Nur77 deficiency induced collagen type I (Col-1) and α-smooth muscle actin overproduction in transforming growth factor beta (TGF-β) treated H9c2 cells, whereas Nur77 overexpression attenuated this effect. Nur77 deficiency in vivo and in vitro downregulated glycogen synthase kinase (GSK)-3β expression and increased β-catenin activity, while its overexpression increased GSK-3β expression. GSK-3β knockdown counteracted the anti-fibrotic effect of Nur77 on TGF-β-treated H9c2 cells. Chromatin immunoprecipitation and luciferase reporter assay results suggested GSK-3β as the direct target of Nur77. Our findings suggest that Nur77 directly initiates GSK-3β transcription and age-related cardiac fibrosis partly through the GSK-3β/β-catenin pathway. This study proposes a novel mechanism for Nur77 regulating cardiac fibrosis and suggests Nur77 as a target for the prevention and treatment of aging-associated cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Ruzhe Ma
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Zhichi Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Tingting Liu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Sijia Yang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
8
|
Trivedi A, Bose D, Saha P, Roy S, More M, Skupsky J, Klimas NG, Chatterjee S. Prolonged Antibiotic Use in a Preclinical Model of Gulf War Chronic Multisymptom-Illness Causes Renal Fibrosis-like Pathology via Increased micro-RNA 21-Induced PTEN Inhibition That Is Correlated with Low Host Lachnospiraceae Abundance. Cells 2023; 13:56. [PMID: 38201260 PMCID: PMC10777912 DOI: 10.3390/cells13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Gulf War (GW) veterans show gastrointestinal disturbances and gut dysbiosis. Prolonged antibiotic treatments commonly employed in veterans, especially the use of fluoroquinolones and aminoglycosides, have also been associated with dysbiosis. This study investigates the effect of prolonged antibiotic exposure on risks of adverse renal pathology and its association with gut bacterial species abundance in underlying GWI and aims to uncover the molecular mechanisms leading to possible renal dysfunction with aging. Using a GWI mouse model, administration of a prolonged antibiotic regimen involving neomycin and enrofloxacin treatment for 5 months showed an exacerbated renal inflammation with increased NF-κB activation and pro-inflammatory cytokines levels. Involvement of the high mobility group 1 (HMGB1)-mediated receptor for advanced glycation end products (RAGE) activation triggered an inflammatory phenotype and increased transforming growth factor-β (TGF-β) production. Mechanistically, TGF-β- induced microRNA-21 upregulation in the renal tissue leads to decreased phosphatase and tensin homolog (PTEN) expression. The above event led to the activation of protein kinase-B (AKT) signaling, resulting in increased fibronectin production and fibrosis-like pathology. Importantly, the increased miR-21 was associated with low levels of Lachnospiraceae in the host gut which is also a key to heightened HMGB1-mediated inflammation. Overall, though correlative, the study highlights the complex interplay between GWI, host gut dysbiosis, prolonged antibiotics usage, and renal pathology via miR-21/PTEN/AKT signaling.
Collapse
Affiliation(s)
- Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | | | - Nancy G. Klimas
- Institute for Neuro-Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
- Long Beach VA Medical Center, Long Beach, CA 90822, USA;
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Ren LL, Miao H, Wang YN, Liu F, Li P, Zhao YY. TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. Aging Dis 2023; 14:1633-1650. [PMID: 37196129 PMCID: PMC10529747 DOI: 10.14336/ad.2023.0222] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Fibrosis is the abnormal accumulation of extracellular matrix proteins such as collagen and fibronectin. Aging, injury, infections, and inflammation can cause different types of tissue fibrosis. Numerous clinical investigations have shown a correlation between the degree of liver and pulmonary fibrosis in patients and telomere length and mitochondrial DNA content, both of which are signs of aging. Aging involves the gradual loss of tissue function over time, which results in the loss of homeostasis and, ultimately, an organism's fitness. A major feature of aging is the accumulation of senescent cells. Senescent cells abnormally and continuously accumulate in the late stages of life, contributing to age-related fibrosis and tissue deterioration, among other aging characteristics. Furthermore, aging generates chronic inflammation, which results in fibrosis and decreases organ function. This finding suggests that fibrosis and aging are closely related. The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in the physiological and pathological processes of aging, immune regulation, atherosclerosis, and tissue fibrosis. In this review, the functions of TGF-β in normal organs, aging, and fibrotic tissues is discussed: TGF-β signalling is altered with age and is an indicator of pathology associated with tissue fibrosis. In addition, this review discusses the potential targeting of noncoding.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Alghamdi A, Alyami AH, Althaqafi RMM, Alzeyadi A, Alrubaei FS, Alyami AA, Singer MS, Saati AA, Alotaibi WT, Alsharif MO. Cytokines' Role in the Pathogenesis and Their Targeting for the Prevention of Frozen Shoulder: A Narrative Review. Cureus 2023; 15:e36070. [PMID: 37056530 PMCID: PMC10092900 DOI: 10.7759/cureus.36070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 03/14/2023] Open
Abstract
Frozen shoulder (FS) is a common name for shoulder movement limitation with different degrees of shoulder rigidity and pain. It is characterized by varying developmental courses, different levels of shoulder movement limitation, and background ambiguity due to the multiplicity of its causative factors. Systemic inflammatory cytokines monitoring and restraining is easy to apply, fast to conduct, and needs lower costs compared to invasive methods for frozen shoulder stage evaluation and early controlling of its progress to the stage that necessitates surgical intervention. The aim of this review was to assess the recent findings concerning the role of cytokines in FS pathogenesis and the possibility of preventing or controlling their progress through targeting these cytokines by the new drugs candidates, such as hyaluronan (HA), botulinum toxin type A (BoNT A), Tetrandrine, tumor necrosis factor-stimulated gene-6 (TSG-6), and cannabidiol. Searching the PubMed site, we encountered out of 1608 records, from which 16 original studies were included for the quantitative construction of this systematic review screening of the recent studies to investigate the different FS pathogenic pathways. Most of the scenarios are centered around the inflammatory and fibrotic process triggered by synovial and capsular fibroblast stimulation. This mechanism depends mainly on alarmins cytokines, including thymic stromal lymphopoietin (TSLP), interleukin-33 (IL-33), and interleukin-25 (IL-25), with the stimulation of interleukin-1 α (IL-1α), interleukin-1 β (IL-1β), tumor necrosis alpha (TNF-α), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) in a joint capsule. Different pathways of transforming growth factor- β (TGF-β) stimulation, resulting in overexpression of the fibrotic factors as tenascin C (TNC), fibronectin 1, collagen I (COL 1) and collagen III (COL III), and matrix metalloproteinases (MMPs) in the capsular or synovial/capsular fibroblasts. The overall investigation of these studies led us to conclude that the new drug candidates proved their efficiency in controlling the common pathogenesis of the inflammatory and fibrotic pathways of frozen shoulder and therefore represent a prospect for easy and early controlling and efficiently treating this serious disease.
Collapse
|
11
|
Wang H, Zhang M, Fang F, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. The nuclear receptor subfamily 4 group A1 in human disease. Biochem Cell Biol 2023; 101:148-159. [PMID: 36861809 DOI: 10.1139/bcb-2022-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China
| |
Collapse
|
12
|
Safe S, Kothari J, Hailemariam A, Upadhyay S, Davidson LA, Chapkin RS. Health Benefits of Coffee Consumption for Cancer and Other Diseases and Mechanisms of Action. Int J Mol Sci 2023; 24:2706. [PMID: 36769029 PMCID: PMC9916720 DOI: 10.3390/ijms24032706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide, and epidemiology studies associate higher coffee consumption with decreased rates of mortality and decreased rates of neurological and metabolic diseases, including Parkinson's disease and type 2 diabetes. In addition, there is also evidence that higher coffee consumption is associated with lower rates of colon and rectal cancer, as well as breast, endometrial, and other cancers, although for some of these cancers, the results are conflicting. These studies reflect the chemopreventive effects of coffee; there is also evidence that coffee consumption may be therapeutic for some forms of breast and colon cancer, and this needs to be further investigated. The mechanisms associated with the chemopreventive or chemotherapeutic effects of over 1000 individual compounds in roasted coffee are complex and may vary with different diseases. Some of these mechanisms may be related to nuclear factor erythroid 2 (Nrf2)-regulated pathways that target oxidative stress or pathways that induce reactive oxygen species to kill diseased cells (primarily therapeutic). There is evidence for the involvement of receptors which include the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A1 (NR4A1), as well as contributions from epigenetic pathways and the gut microbiome. Further elucidation of the mechanisms will facilitate the potential future clinical applications of coffee extracts for treating cancer and other inflammatory diseases.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Jainish Kothari
- Master of Biotechnology Program, Texas A&M University, College Station, TX 77843, USA
| | - Amanuel Hailemariam
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Srijana Upadhyay
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Laurie A. Davidson
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Cao Y, Du Y, Jia W, Ding J, Yuan J, Zhang H, Zhang X, Tao K, Yang Z. Identification of biomarkers for the diagnosis of chronic kidney disease (CKD) with non-alcoholic fatty liver disease (NAFLD) by bioinformatics analysis and machine learning. Front Endocrinol (Lausanne) 2023; 14:1125829. [PMID: 36923221 PMCID: PMC10009268 DOI: 10.3389/fendo.2023.1125829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) and non-alcoholic fatty liver disease (NAFLD) are closely related to immune and inflammatory pathways. This study aimed to explore the diagnostic markers for CKD patients with NAFLD. METHODS CKD and NAFLD microarray data sets were screened from the GEO database and analyzed the differentially expressed genes (DEGs) in GSE10495 of CKD date set. Weighted Gene Co-Expression Network Analysis (WGCNA) method was used to construct gene coexpression networks and identify functional modules of NAFLD in GSE89632 date set. Then obtaining NAFLD-related share genes by intersecting DEGs of CKD and modular genes of NAFLD. Then functional enrichment analysis of NAFLD-related share genes was performed. The NAFLD-related hub genes come from intersection of cytoscape software and machine learning. ROC curves were used to examine the diagnostic value of NAFLD related hub genes in the CKD data sets and GSE89632 date set of NAFLD. CIBERSORTx was also used to explore the immune landscape in GSE104954, and the correlation between immune infiltration and hub genes expression was investigated. RESULTS A total of 45 NAFLD-related share genes were obtained, and 4 were NAFLD-related hub genes. Enrichment analysis showed that the NAFLD-related share genes were significantly enriched in immune-related pathways, programmed cell death, and inflammatory response. ROC curve confirmed 4 NAFLD-related hub genes in CKD training set GSE104954 and other validation sets. Then they were used as diagnostic markers for CKD. Interestingly, these 4 diagnostic markers of CKD also showed good diagnostic value in the NAFLD date set GSE89632, so these genes may be important targets of NAFLD in the development of CKD. The expression levels of the 4 diagnostic markers for CKD were significantly correlated with the infiltration of immune cells. CONCLUSION 4 NAFLD-related genes (DUSP1, NR4A1, FOSB, ZFP36) were identified as diagnostic markers in CKD patients with NAFLD. Our study may provide diagnostic markers and therapeutic targets for CKD patients with NAFLD.
Collapse
Affiliation(s)
- Yang Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Weili Jia
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Juzheng Yuan
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| |
Collapse
|
14
|
Bai J, Pu X, Zhang Y, Dai E. Renal tubular gen e biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis. Ren Fail 2022; 44:966-986. [PMID: 35713363 PMCID: PMC9225740 DOI: 10.1080/0886022x.2022.2081579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE The present study identified novel renal tubular biomarkers that may influence the diagnosis and treatment of focal segmental glomerulosclerosis (FSGS) based on immune infiltration. METHODS Three FSGS microarray datasets, GSE108112, GSE133288 and GSE121211, were downloaded from the Gene Expression Omnibus (GEO) database. The R statistical software limma package and the combat function of the sva package were applied for preprocessing and to remove the batch effects. Differentially expressed genes (DEGs) between 120 FSGS and 15 control samples were identified with the limma package. Disease Ontology (DO) pathway enrichment analysis was conducted with statistical R software to search for related diseases. Gene set enrichment analysis (GSEA) was used to interpret the gene expression data and it revealed many common biological pathways. A protein-protein interaction (PPI) network was built using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes were identified by the Cytoscape (version 3.7.2) plug-in CytoHubba. The plug-in Molecular Complex Detection (MCODE) was used to screen hub modules of the PPI network in Cytoscape, while functional analysis of the hub genes and hub nodes involved in the submodule was performed by ClusterProfiler. The least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) analysis were used to screen characteristic genes and build a logistic regression model. Receiver operating characteristic (ROC) curve analyses were used to investigate the logistic regression model and it was then validated by an external dataset GSE125779, which contained 8 FSGS samples and 8 healthy subjects. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to calculate the immune infiltration of FSGS samples. RESULTS We acquired 179 DEGs, 79 genes with downregulated expression (44.1%) and 100 genes with upregulated expression (55.9%), in the FSGS samples. The DEGs were significantly associated with arteriosclerosis, kidney disease and arteriosclerotic cardiovascular disease. GSEA revealed that these gene sets were significantly enriched in allograft rejection signaling pathways and activation of immune response in biological processes. Fifteen genes were demonstrated to be hub genes by PPI, and three submodules were screened by MCODE linked with FSGS. Analysis by machine learning methodologies identified nuclear receptor subfamily 4 group A member 1 (NR4A1) and dual specificity phosphatase 1 (DUSP1) as sensitive tubular renal biomarkers in the diagnosis of FSGS, and they were selected as hub genes, as well as hub nodes which were enriched in the MAPK signaling pathway. Immune cell infiltration analysis revealed that the genetic biomarkers were both correlated with activated mast cells, which may amplify FSGS biological processes. CONCLUSION DUSP1 and NR4A1 were identified as sensitive potential biomarkers in the diagnosis of FSGS. Activated mast cells have a decisive effect on the occurrence and development of FSGS through tubular lesions and tubulointerstitial inflammation, and they are expected to become therapeutic targets in FSGS.
Collapse
Affiliation(s)
- JunYuan Bai
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - XiaoWei Pu
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - YunXia Zhang
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - Enlai Dai
- Department of Anesthesiology and Surgery, GanSu University of Traditional Chinese Medicine, Gansu, China
| |
Collapse
|
15
|
He Z, Zhang M, Xu H, Zhou W, Xu C, Wang Z, He M, Wang X. Yiqi Huoxue Tongluo recipe regulates NR4A1 to improve renal mitochondrial function in unilateral ureteral obstruction (UUO) rats. PHARMACEUTICAL BIOLOGY 2022; 60:2308-2318. [PMID: 36428248 PMCID: PMC9704077 DOI: 10.1080/13880209.2022.2148168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/27/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Yiqi Huoxue Tongluo recipe (YHTR) is a traditional Chinese medicine for the treatment of chronic kidney disease, but its exact mechanism is not clear. OBJECTIVES To monitor the potential improvement of renal mitochondrial function in unilateral ureteral obstruction (UUO) rats by regulating NR4A1 using the YHTR. MATERIALS AND METHODS Wistar rats were randomly divided into four groups: sham, UUO (left ureteral ligation for 14 days), eplerenone (EPL) (UUO + EPL), and YHTR (UUO + YHTR). UUO rats were established and intragastrically administered EPL (100 mg/day/kg) or YHTR (11.7 g/day/kg) for 14 days. The expression of related proteins in kidneys was detected by immunohistochemistry, western blot, RT-PCR, and chemical colorimetric assay, respectively. RESULTS In vivo, YHTR treatment reduced the levels of BUN and Scr (by 17.9% and 23.5%) in UUO rats. Moreover, YHTR improved the renal mitochondrial function via increasing key enzymes of the tricarboxylic acid (TCA) cycle (p < 0.05) and activity of the mitochondrial complex (I-V) (by 30.8%, 29.1%, 19.7%, 35.9%, and 22.4%) in UUO rats. Compared with the UUO group, the expression of NR4A1 and Bcl-2 were significantly increased (p < 0.05), the expression of caspase-3 and caspase-9 were significantly decreased (p < 0.05) in the YHTR group. YHTR could upregulate key enzymes of the TCA cycle via promoting NR4A1 expression in HK2 cells, leading to inhibition of TGF-β1 induced cell apoptosis. CONCLUSIONS YHTR significantly improved the development of CKD; this study may provide new ideas for the pathogenesis of CKD and new strategies for the development of new drugs against CKD.
Collapse
Affiliation(s)
- Zhen He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Mengjuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Hepeng Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Wenping Zhou
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Chang Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| |
Collapse
|
16
|
Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad Signaling Pathway in Tubulointerstitial Fibrosis. Front Pharmacol 2022; 13:860588. [PMID: 35401211 PMCID: PMC8987592 DOI: 10.3389/fphar.2022.860588] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) was a major public health problem worldwide. Renal fibrosis, especially tubulointerstitial fibrosis, is final manifestation of CKD. Many studies have demonstrated that TGF-β/Smad signaling pathway plays a crucial role in renal fibrosis. Therefore, targeted inhibition of TGF-β/Smad signaling pathway can be used as a potential therapeutic measure for tubulointerstitial fibrosis. At present, a variety of targeting TGF-β1 and its downstream Smad proteins have attracted attention. Natural products used as potential therapeutic strategies for tubulointerstitial fibrosis have the characteristics of acting on multiple targets by multiple components and few side effects. With the continuous research and technique development, more and more molecular mechanisms of natural products have been revealed, and there are many natural products that inhibited tubulointerstitial fibrosis via TGF-β/Smad signaling pathway. This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubulointerstitial fibrosis by targeting TGF-β/Smad signaling pathway. Additionally, many challenges and opportunities are presented for inhibiting renal fibrosis in the future.
Collapse
Affiliation(s)
- Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Ying-Yong Zhao
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| |
Collapse
|