1
|
Latini L, De Araujo DSM, Amato R, Canovai A, Buccarello L, De Logu F, Novelli E, Vlasiuk A, Malerba F, Arisi I, Florio R, Asari H, Capsoni S, Strettoi E, Villetti G, Imbimbo BP, Dal Monte M, Nassini R, Geppetti P, Marinelli S, Cattaneo A. A p75 neurotrophin receptor-sparing nerve growth factor protects retinal ganglion cells from neurodegeneration by targeting microglia. Br J Pharmacol 2024; 181:4890-4919. [PMID: 39252503 DOI: 10.1111/bph.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Retinal ganglion cells (RGCs) are the output stage of retinal information processing, via their axons forming the optic nerve (ON). ON damage leads to axonal degeneration and death of RGCs, and results in vision impairment. Nerve growth factor (NGF) signalling is crucial for RGC operations and visual functions. Here, we investigate a new neuroprotective mechanism of a novel therapeutic candidate, a p75-less, TrkA-biased NGF agonist (hNGFp) in rat RGC degeneration, in comparison with wild type human NGF (hNGFwt). EXPERIMENTAL APPROACH Both neonate and adult rats, whether subjected or not to ON lesion, were treated with intravitreal injections or eye drops containing either hNGFp or hNGFwt. Different doses of the drugs were administered at days 1, 4 or 7 after injury for a maximum of 10 days, when immunofluorescence, electrophysiology, cellular morphology, cytokine array and behaviour studies were carried out. Pharmacokinetic evaluation was performed on rabbits treated with hNGFp ocular drops. RESULTS hNGFp exerted a potent RGC neuroprotection by acting on microglia cells, and outperformed hNGFwt in rescuing RGC degeneration and reducing inflammatory molecules. Delayed use of hNGFp after ON lesion resulted in better outcomes compared with treatment with hNGFwt. Moreover, hNGFp-based ocular drops were less algogenic than hNGFwt. Pharmacokinetic measurements revealed that biologically relevant quantities of hNGFp were found in the rabbit retina. CONCLUSIONS AND IMPLICATIONS Our data point to microglia as a new cell target through which NGF-induced TrkA signalling exerts neuroprotection of the RGC, emphasizing hNGFp as a powerful treatment to tackle retinal degeneration.
Collapse
Affiliation(s)
- Laura Latini
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Lucia Buccarello
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Elena Novelli
- Institute of Neuroscience, Italian National Research Council-CNR, Pisa, Italy
| | - Anastasiia Vlasiuk
- Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Rita Florio
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Hiroki Asari
- Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Simona Capsoni
- BIO@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Enrica Strettoi
- Institute of Neuroscience, Italian National Research Council-CNR, Pisa, Italy
| | - Gino Villetti
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
- BIO@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
2
|
Kot EF, Goncharuk SA, Franco ML, McKenzie DM, Arseniev AS, Benito-Martínez A, Costa M, Cattaneo A, Hristova K, Vilar M, Mineev KS. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB. Nat Commun 2024; 15:9316. [PMID: 39472452 PMCID: PMC11522581 DOI: 10.1038/s41467-024-53710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Neurotrophin receptors of the Trk family are involved in the regulation of brain development and neuroplasticity, and therefore can serve as targets for anti-cancer and stroke-recovery drugs, antidepressants, and many others. The structures of Trk protein domains in various states upon activation need to be elucidated to allow rational drug design. However, little is known about the conformations of the transmembrane and juxtamembrane domains of Trk receptors. In the present study, we employ NMR spectroscopy to solve the structure of the TrkB dimeric transmembrane domain in the lipid environment. We verify the structure using mutagenesis and confirm that the conformation corresponds to the active state of the receptor. Subsequent study of TrkB interaction with the antidepressant drug fluoxetine, and the antipsychotic drug chlorpromazine, provides a clear self-consistent model, describing the mechanism by which fluoxetine activates the receptor by binding to its transmembrane domain.
Collapse
Affiliation(s)
- Erik F Kot
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - María Luisa Franco
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Daniel M McKenzie
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Andrea Benito-Martínez
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Mario Costa
- Scuola Normale Superiore Laboratory of Biology BIO@SNS, Pisa, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | | | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC, València, Spain.
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Goethe University Frankfurt, Frankfurt am Main, Germany, Germany.
| |
Collapse
|
3
|
Comaposada-Baró R, Benito-Martínez A, Escribano-Saiz JJ, Franco ML, Ceccarelli L, Calatayud-Baselga I, Mira H, Vilar M. Cholinergic neurodegeneration and cholesterol metabolism dysregulation by constitutive p75 NTR signaling in the p75 exonIII-KO mice. Front Mol Neurosci 2023; 16:1237458. [PMID: 37900943 PMCID: PMC10611523 DOI: 10.3389/fnmol.2023.1237458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) is a hallmark of Alzheimer's disease (AD). However, few mouse models of AD recapitulate the neurodegeneration of the cholinergic system. The p75 neurotrophin receptor, p75NTR, has been associated with the degeneration of BFCNs in AD. The senescence-accelerated mouse prone number 8 (SAMP8) is a well-accepted model of accelerated and pathological aging. To gain a better understanding of the role of p75NTR in the basal forebrain during aging, we generated a new mouse line, the SAMP8-p75exonIII-/-. Deletion of p75NTR in the SAMP8 background induces an increase in the number of BFCNs at birth, followed by a rapid decline during aging compared to the C57/BL6 background. This decrease in the number of BFCNs correlates with a worsening in the Y-maze memory test at 6 months in the SAMP8-p75exonIII-/-. We found that SAMP8-p75exonIII-/- and C57/BL6-p75exonIII-/- mice expressed constitutively a short isoform of p75NTR that correlates with an upregulation of the protein levels of SREBP2 and its targets, HMGCR and LDLR, in the BF of both SAMP8-p75exonIII-/- and C57/BL6-p75exonIII-/- mice. As the neurodegeneration of the cholinergic system and the dysregulation of cholesterol metabolism are implicated in AD, we postulate that the generated SAMP8-p75exonIII-/- mouse strain might constitute a good model to study long-term cholinergic neurodegeneration in the CNS. In addition, our results support the role of p75NTR signaling in cholesterol biosynthesis regulation.
Collapse
Affiliation(s)
- Raquel Comaposada-Baró
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Andrea Benito-Martínez
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Juan Julian Escribano-Saiz
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - María Luisa Franco
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Lorenzo Ceccarelli
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | | | - Helena Mira
- Stem Cells and Aging Units of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| |
Collapse
|
4
|
De Vincentiis S, Baggiani M, Merighi F, Cappello V, Lopane J, Di Caprio M, Costa M, Mainardi M, Onorati M, Raffa V. Low Forces Push the Maturation of Neural Precursors into Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205871. [PMID: 37058009 DOI: 10.1002/smll.202205871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Mechanical stimulation modulates neural development and neuronal activity. In a previous study, magnetic "nano-pulling" is proposed as a tool to generate active forces. By loading neural cells with magnetic nanoparticles (MNPs), a precise force vector is remotely generated through static magnetic fields. In the present study, human neural stem cells (NSCs) are subjected to a standard differentiation protocol, in the presence or absence of nano-pulling. Under mechanical stimulation, an increase in the length of the neural processes which showed an enrichment in microtubules, endoplasmic reticulum, and mitochondria is found. A stimulation lasting up to 82 days induces a strong remodeling at the level of synapse density and a re-organization of the neuronal network, halving the time required for the maturation of neural precursors into neurons. The MNP-loaded NSCs are then transplanted into mouse spinal cord organotypic slices, demonstrating that nano-pulling stimulates the elongation of the NSC processes and modulates their orientation even in an ex vivo model. Thus, it is shown that active mechanical stimuli can guide the outgrowth of NSCs transplanted into the spinal cord tissue. The findings suggest that mechanical forces play an important role in neuronal maturation which could be applied in regenerative medicine.
Collapse
Affiliation(s)
| | - Matteo Baggiani
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | | | - Valentina Cappello
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Pontedera, 56025, Italy
| | - Jakub Lopane
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Mariachiara Di Caprio
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy
| | - Mario Costa
- Neuroscience Institute, National Research Council, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Marco Mainardi
- Neuroscience Institute, National Research Council, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Marco Onorati
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| |
Collapse
|
5
|
Pacifico P, Testa G, Amodeo R, Mainardi M, Tiberi A, Convertino D, Arevalo JC, Marchetti L, Costa M, Cattaneo A, Capsoni S. Human TrkAR649W mutation impairs nociception, sweating and cognitive abilities: a mouse model of HSAN IV. Hum Mol Genet 2023; 32:1380-1400. [PMID: 36537577 PMCID: PMC10077510 DOI: 10.1093/hmg/ddac295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
A functional nerve growth factor NGF-Tropomyosin Receptor kinase A (TrkA) system is an essential requisite for the generation and maintenance of long-lasting thermal and mechanical hyperalgesia in adult mammals. Indeed, mutations in the gene encoding for TrkA are responsible for a rare condition, named Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV), characterized by the loss of response to noxious stimuli, anhidrosis and cognitive impairment. However, to date, there is no available mouse model to properly understand how the NGF-TrkA system can lead to pathological phenotypes that are distinctive of HSAN IV. Here, we report the generation of a knock-in mouse line carrying the HSAN IV TrkAR649W mutation. First, by in vitro biochemical and biophysical analyses, we show that the pathological R649W mutation leads to kinase-inactive TrkA also affecting its membrane dynamics and trafficking. In agreement with the HSAN IV human phenotype, TrkAR649W/m mice display a lower response to thermal and chemical noxious stimuli, correlating with reduced skin innervation, in addition to decreased sweating in comparison to TrkAh/m controls. Moreover, the R649W mutation decreases anxiety-like behavior and compromises cognitive abilities, by impairing spatial-working and social memory. Our results further uncover unexplored roles of TrkA in thermoregulation and sociability. In addition to accurately recapitulating the clinical manifestations of HSAN IV patients, our findings contribute to clarifying the involvement of the NGF-TrkA system in pain sensation.
Collapse
Affiliation(s)
- Paola Pacifico
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Giovanna Testa
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Rosy Amodeo
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | - Marco Mainardi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Neuroscience Institute, National Research Council (IN-CNR), Pisa 56124, Italy
| | - Alexia Tiberi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | - Juan Carlos Arevalo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, Salamanca 37007, Spain
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Mario Costa
- Neuroscience Institute, National Research Council (IN-CNR), Pisa 56124, Italy
- Pisa Center for Research and Clinical Implementation Flash Radiotherapy (CPFR@CISUP), Pisa 56126, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Rome 00161, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Department of Neuroscience and Rehabilitation, Institute of Physiology, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|