1
|
Ueda H, Honda A, Miyazaki T, Morishita Y, Hirayama T, Iwamoto J, Ikegami T. High-fat/high-sucrose diet results in a high rate of MASH with HCC in a mouse model of human-like bile acid composition. Hepatol Commun 2025; 9:e0606. [PMID: 39670881 PMCID: PMC11637755 DOI: 10.1097/hc9.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Wild-type (WT) mice fed a conventional high-fat/high-sucrose diet (HFHSD) rarely develop metabolic dysfunction-associated steatohepatitis (MASH) with HCC. Because mouse bile acid (BA) is highly hydrophilic, we hypothesized that making it hydrophobic would lead to MASH with HCC. METHODS Eleven-week-old WT and Cyp2a12/Cyp2c70 double knockout (DKO) mice were divided into two groups, including one which was fed a normal chow diet, and one which was fed an HFHSD. Samples were collected after 15, 30, 47, and 58 weeks for histological, biochemical, and immunological analyses. RESULTS In the HFHSD group, body weight gain did not differ in WT versus DKO mice, although HFHSD-fed DKO mice exhibited markedly accelerated liver inflammation, fibrosis, and carcinogenesis. HFHSD upregulated lipogenesis and downregulated fatty acid oxidation in both WT and DKO mice, which increased liver lipid accumulation and lipotoxicity. However, the increase in reactive oxygen species production and carcinogenesis observed in DKO mice could not be explained by abnormal lipid metabolism alone. Regarding BA metabolism, DKO mice had a higher hydrophobicity index. They exhibited an age-associated increase in chenodeoxycholic acid (CDCA) levels because of CYP8B1 activity inhibition due to the farnesoid X receptor activation. HFHSD further downregulated CYP8B1, presumably by activating the Liver X receptor. Liver CDCA accumulation was associated with increased inflammation, reactive oxygen species production, and hepatocyte FGF15 induction. Moreover, in noncancerous liver tissues, HFHSD appeared to activate STAT3, an oncogenic transcription factor, which was enhanced by a CDCA-rich environment. CONCLUSIONS Here, we developed a new model of MASH with HCC using mice with human-like BA composition and found that HFHSD and elevated hepatic CDCA synergistically increased the risk of MASH with HCC.
Collapse
Affiliation(s)
- Hajime Ueda
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Akira Honda
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Takeshi Hirayama
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Junichi Iwamoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Tadashi Ikegami
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| |
Collapse
|
2
|
Leya M, Jeong H, Yang D, Ton Nu Bao TH, Pandeya PR, Oh SI, Roh YS, Kim JW, Kim B. Hepatocyte-Specific Casein Kinase 1 Epsilon Ablation Ameliorates Metabolic Dysfunction-Associated Steatohepatitis by Up-Regulating Tumor Necrosis Factor Receptor-Associated Factor 3 in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2106-2127. [PMID: 39179201 DOI: 10.1016/j.ajpath.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Casein kinase 1 epsilon (CK1ε), a member of the serine/threonine protein kinase family, phosphorylates a broad range of substrates. However, its role in the development of chronic liver diseases remains elusive. This study aimed to investigate the role of CK1ε in the development and progression of metabolic dysfunction-associated steatohepatitis (MASH). Hepatocyte-specific CK1ε knockout (CK1εΔHEP) mice were generated by crossbreeding mice with floxed CK1ε alleles (CK1εfl/fl) and Cre-expressing albumin mice. Mice were fed either a Western diet (WD) or a methionine- and choline-deficient diet to induce MASH. CK1εΔHEP was associated with a decreased severity of WD- or methionine- and choline-deficient diet-induced MASH, as confirmed by reduced incidence of hepatic lesions and significantly lower levels of alanine aminotransferase, aspartate aminotransferase, and proinflammatory cytokine tumor necrosis factor (TNF)-α. CK1εΔHEP WD-fed mice exhibited significant amelioration of total cholesterol, triglycerides, and de novo lipogenic genes, indicating that CK1ε could influence lipid metabolism. CK1εΔHEP WD-fed mice showed significantly down-regulated TNF receptor-associated factor (TRAF) 3, phosphorylated (p) transforming growth factor-β-activated kinase 1, p-TRAF-associated NF-κB activator (TANK)-binding kinase 1 (TBK1), and p-AKT levels, thereby affecting downstream mitogen-activated protein kinase signaling, indicating a potential mechanism for the observed rescue. Finally, pharmacologic inhibition of CK1ε with PF670462 improved palmitic acid-induced steatohepatitis in vitro and attenuated WD-induced metabolic profile in vivo. In conclusion, CK1ε up-regulates TNF receptor-associated factor 3, which, in turn, causes transforming growth factor-β-activated kinase 1-dependent signaling, amplifies downstream mitogen-activated protein kinase signaling, modifies p-c-Jun levels, and exacerbates inflammation, all of which are factors in WD-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Mwense Leya
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea; School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Daram Yang
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Tien Huyen Ton Nu Bao
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Prakash Raj Pandeya
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea.
| |
Collapse
|
3
|
Willett RA, Tryndyak VP, Hughes Hanks JM, Elkins L, Nagumalli SK, Avigan MI, Ross SA, da Costa GG, Beland FA, Rusyn I, Pogribny IP. A preclinical model of severe NASH-like liver injury by chronic administration of a high-fat and high-sucrose diet in mice. Toxicol Appl Pharmacol 2024; 491:117046. [PMID: 39084266 PMCID: PMC11711102 DOI: 10.1016/j.taap.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease, affecting 38% of adults globally. If left untreated, NAFLD may progress to more advanced forms of the disease, including non-alcoholic steatohepatitis (NASH), liver cirrhosis, and fibrosis. Early NAFLD detection is critical to prevent disease progression. Using an obesogenic high-fat and high-sucrose (HF/HS) diet, we characterized the progression of NAFLD in male and female Collaborative Cross CC042 mice after 20-, 40-, and 60-week intervals of chronic HF/HS diet feeding. The incidence and severity of liver steatosis, inflammation, and fibrosis increased in both sexes over time, with male mice progressing to a NASH-like disease state faster than female mice, as indicated by earlier and more pronounced changes in liver steatosis. Histopathological indication of macrovesicular steatosis and gene expression changes of key lipid metabolism genes were found to be elevated in both sexes after 20 weeks of HF/HS diet. Measurement of circulating markers of inflammation (CXCL10 and TNF-α), histopathological analysis of immune cell infiltrates, and gene expression changes in inflammation-related genes indicated significant liver inflammation after 40 and 60 weeks of HF/HS diet exposure in both sexes. Liver fibrosis, as assessed by Picosirius red and Masson's trichrome staining and changes in expression of key fibrosis related genes indicated significant changes after 40 and 60 weeks of HF/HS diet exposure. In conclusion, we present a preclinical animal model of dietary NAFLD progression, which recapitulates human pathophysiological and pathomorphological changes, that could be used to better understand the progression of NAFLD and support development of new therapeutics.
Collapse
Affiliation(s)
- Rose A Willett
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Lana Elkins
- Toxicologic Pathology Associates, Jefferson, AR, USA
| | - Suresh K Nagumalli
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Mark I Avigan
- Office of Pharmacovigilance and Epidemiology, FDA-Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Sharon A Ross
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | | | - Frederick A Beland
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA.
| |
Collapse
|
4
|
Li Z, Kim W, Utturkar S, Yan B, Lanman NA, Elzey BD, Kazemian M, Yeo Y, Andrisani O. DDX5 deficiency drives non-canonical NF-κB activation and NRF2 expression, influencing sorafenib response and hepatocellular carcinoma progression. Cell Death Dis 2024; 15:583. [PMID: 39122708 PMCID: PMC11315975 DOI: 10.1038/s41419-024-06977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In advanced hepatocellular carcinoma (HCC), RNA helicase DDX5 regulates the Wnt/β-catenin-ferroptosis axis, influencing the efficacy of the multi-tyrosine kinase inhibitor (mTKI) sorafenib. DDX5 inhibits Wnt/β-catenin signaling, preventing sorafenib-induced ferroptosis escape. Sorafenib/mTKIs reduce DDX5 expression, correlating with poor patient survival post-sorafenib treatment. Notably, DDX5-knockout in HCC cells activates Wnt/β-catenin signaling persistently. Herein, we investigate the mechanistic impact of Wnt/β-catenin activation resulting from DDX5 downregulation in the progression and treatment of HCC. RNAseq analyses identified shared genes repressed by DDX5 and upregulated by sorafenib, including Wnt signaling genes, NF-κB-inducing kinase (NIK) essential for non-canonical NF-κB (p52/RelB) activation, and cytoprotective transcription factor NRF2. We demonstrate, Wnt/β-catenin activation induced NIK transcription, leading to non-canonical NF-κB activation, which subsequently mediated NRF2 transcription. Additionally, DDX5 deficiency extended NRF2 protein half-life by inactivating KEAP1 through p62/SQSTM1 stabilization. In a preclinical HCC mouse model, NRF2 knockdown or DDX5 overexpression restricted tumor growth upon sorafenib treatment, via induction of ferroptosis. Importantly, DDX5-knockout HCC cells exhibited elevated expression of Wnt signaling genes, NIK, p52/RelB, and NRF2-regulated genes, regardless of sorafenib treatment. Transcriptomic analyses of HCCs from TCGA and the Stelic Animal Model (STAM) of non-alcoholic steatohepatitis revealed elevated expression of these interconnected pathways in the context of DDX5 downregulation. In conclusion, DDX5 deficiency triggers Wnt/β-catenin signaling, promoting p52/RelB and NRF2 activation, thereby enabling ferroptosis evasion upon sorafenib treatment. Similarly, independent of sorafenib, DDX5 deficiency in liver tumors enhances activation and gene expression of these interconnected pathways, underscoring the clinical relevance of DDX5 deficiency in HCC progression and therapeutic response.
Collapse
Affiliation(s)
- Zhili Li
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Woojun Kim
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sagar Utturkar
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Bingyu Yan
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Nadia Atallah Lanman
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Bennett D Elzey
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Majid Kazemian
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Yoon Yeo
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Green CD, Brown RDR, Uranbileg B, Weigel C, Saha S, Kurano M, Yatomi Y, Spiegel S. Sphingosine kinase 2 and p62 regulation are determinants of sexual dimorphism in hepatocellular carcinoma. Mol Metab 2024; 86:101971. [PMID: 38925249 PMCID: PMC11261290 DOI: 10.1016/j.molmet.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality, and its incidence is increasing due to endemic obesity. HCC is sexually dimorphic in both humans and rodents with higher incidence in males, although the mechanisms contributing to these correlations remain unclear. Here, we examined the role of sphingosine kinase 2 (SphK2), the enzyme that regulates the balance of bioactive sphingolipid metabolites, sphingosine-1-phosphate (S1P) and ceramide, in gender specific MASH-driven HCC. METHODS Male and female mice were fed a high fat diet with sugar water, a clinically relevant model that recapitulates MASH-driven HCC in humans followed by physiological, biochemical cellular and molecular analyses. In addition, correlations with increased risk of HCC recurrence were determined in patients. RESULTS Here, we report that deletion of SphK2 protects both male and female mice from Western diet-induced weight gain and metabolic dysfunction without affecting hepatic lipid accumulation or fibrosis. However, SphK2 deficiency decreases chronic diet-induced hepatocyte proliferation in males but increases it in females. Remarkably, SphK2 deficiency reverses the sexual dimorphism of HCC, as SphK2-/- male mice are protected whereas the females develop liver cancer. Only in male mice, chronic western diet induced accumulation of the autophagy receptor p62 and its downstream mediators, the antioxidant response target NQO1, and the oncogene c-Myc. SphK2 deletion repressed these known drivers of HCC development. Moreover, high p62 expression correlates with poor survival in male HCC patients but not in females. In hepatocytes, lipotoxicity-induced p62 accumulation is regulated by sex hormones and prevented by SphK2 deletion. Importantly, high SphK2 expression in male but not female HCC patients is associated with a more aggressive HCC differentiation status and increased risk of cancer recurrence. CONCLUSIONS This work identifies SphK2 as a potential regulator of HCC sexual dimorphism and suggests SphK2 inhibitors now in clinical trials could have opposing, gender-specific effects in patients.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sumit Saha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; CREST, JST, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; CREST, JST, Japan
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
6
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
7
|
Repáraz D, Casares N, Fuentes A, Navarro F. Establishment of a murine hepatocellular carcinoma model by hydrodynamic injection and characterization of the immune tumor microenvironment. Methods Cell Biol 2024; 185:79-97. [PMID: 38556453 DOI: 10.1016/bs.mcb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant neoplasms. Current treatments for HCC, such as tyrosine kinase inhibitors, have limited efficacy, highlighting the urgent need for better therapies. Immunotherapies, including anti-programmed death receptor 1 (PD-1) and anti-Cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and more recently, the combination of anti-PD-L1 and anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, have shown efficacy against HCC, resulting in Food and Drug Administration (FDA) approval. However, these immunotherapies only show efficiency in a small proportion of patients, meaning there is a great need to improve and optimize treatments against HCC. Accurate animal models that mimic human HCC are necessary to help better understand the nature of these tumors, which in turn will allow the development and testing of new treatments. Existing pre-clinical HCC models can be divided into non-genetic and genetic models. Non-genetic models involve implanting human or murine HCC cell lines or inducing tumors using chemical compounds or dietary modifications. These models have limitations, including slow tumor development and a lack of resemblance to human HCC. Genetic models, on the other hand, manipulate gene expression to induce HCC in mice and provide a better understanding of the effects of specific genes on tumor development. One method commonly used to generate HCC is hydrodynamic tail vein injection (HTVI), which consists of the delivery of oncogenes directly to the liver, resulting in expression and subsequent hepatocyte transformation. Usually, Sleeping Beauty transposase-containing plasmids are used to achieve stable and long-term gene expression. Once the HCC tumor is generated, and a proper tumor microenvironment (TME) is established, it is important to study the immune compartment of the TME, which plays a crucial role in HCC development and response to treatment. Techniques like flow cytometry can be used to analyze the immune cell populations in HCC tumors and assess their impact on tumor development and survival in mice. In this article, we thoroughly describe an example of the methodology to successfully generate HCC murine models via HTVI, and we propose a way to characterize the immune TME by flow cytometry.
Collapse
Affiliation(s)
- David Repáraz
- Radio-Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - Noelia Casares
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Navarra, Spain
| | - Andrea Fuentes
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Navarra, Spain
| | - Flor Navarro
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Navarra, Spain.
| |
Collapse
|
8
|
de Oliveira-Júnior FC, Oliveira ACPD, Pansa CC, Molica LR, Moraes KCM. Drosophila melanogaster as a Biotechnological Tool to Investigate the Close Connection Between Fatty Diseases and Pesticides. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2024; 67. [DOI: 10.1590/1678-4324-2024230091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Brown RDR, Green CD, Weigel C, Ni B, Celi FS, Proia RL, Spiegel S. Overexpression of ORMDL3 confers sexual dimorphism in diet-induced non-alcoholic steatohepatitis. Mol Metab 2024; 79:101851. [PMID: 38081412 PMCID: PMC10772294 DOI: 10.1016/j.molmet.2023.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
OBJECTIVE The bioactive sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) accumulate with overnutrition and have been implicated in non-alcoholic steatohepatitis (NASH) development. ORMDL3, a negative regulator of the rate-limiting step in ceramide biosynthesis, has been identified as an obesity-related gene. Therefore, we assessed the role of ORMDL3 in diet-induced obesity and development of NASH. METHODS Globally overexpressing Ormdl3-Flag transgenic mice (ORMDL3TG) were fed a western high-fat, carbohydrate and cholesterol enriched diet, with high fructose-glucose drinking water. Physiological, biochemical and sphingolipidomic analyses were employed to measure the effect of ORMDL3 overexpression on NASH development. RESULTS ORMDL3TG male but not female mice fed a western high-fat diet and sugar water had exacerbated adipocyte hypertrophy together with increased severity of white adipose inflammation and fibrosis. Hepatic steatosis, dyslipidemia, impaired glucose homeostasis, hyperinsulinemia, and insulin resistance were significantly more severe only in obese ORMDL3TG male mice that accompanied dramatic liver fibrosis, inflammation, and formation of hepatic crown-like structures, which are unique features of human and murine NASH. Obesogenic diet induces ORMDL expression in male mice but reduces it in females. Mechanistically, overexpression of Ormdl3 lowered the levels of S1P and ceramides only in obese female mice and antithetically increased them in tissues of obese males. ORMDL3TG male mice exhibited a much greater induction of the UPR, propagating ER stress that contributed to their early development of NASH. CONCLUSIONS This study uncovered a previously unrecognized role for ORMDL3 in sexual dimorphism important for the development and progression of NASH.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Bin Ni
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francesco S Celi
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Richard L Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
10
|
Hansen HH, Pors S, Andersen MW, Vyberg M, Nøhr-Meldgaard J, Nielsen MH, Oró D, Madsen MR, Lewinska M, Møllerhøj MB, Madsen AN, Feigh M. Semaglutide reduces tumor burden in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH-HCC with advanced fibrosis. Sci Rep 2023; 13:23056. [PMID: 38155202 PMCID: PMC10754821 DOI: 10.1038/s41598-023-50328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is emerging as a major cause of hepatocellular carcinoma (HCC), however, it is not resolved if compounds in late-stage clinical development for NASH may have additional therapeutic benefits in NASH-driven HCC (NASH-HCC). Here, we profiled monotherapy with semaglutide (glucagon-like-receptor-1 receptor agonist) and lanifibranor (pan-peroxisome proliferator-activated receptor agonist) in a diet-induced obese (DIO) mouse model of NASH-HCC. Disease progression was characterized in male C57BL/6 J mice fed the GAN (Gubra Amylin NASH) diet high in fat, fructose and cholesterol for 12-72 weeks (n = 15 per group). Other GAN DIO-NASH-HCC mice fed the GAN diet for 54 weeks and with biopsy-confirmed NASH (NAFLD Activity Score ≥ 5) and advanced fibrosis (stage F3) received vehicle (n = 16), semaglutide (30 nmol/kg, s.c., n = 15), or lanifibranor (30 mg/kg, p.o., n = 15) once daily for 14 weeks. GAN DIO-NASH-HCC mice demonstrated progressive NASH, fibrosis and HCC burden. Tumors presented with histological and molecular signatures of poor prognostic HCC. Consistent with clinical trial outcomes in NASH patients, both lanifibranor and semaglutide improved NASH while only lanifibranor reduced fibrosis in GAN DIO-NASH-HCC mice. Notably, only semaglutide reduced tumor burden in GAN DIO-NASH-HCC mice. In conclusion, the GAN DIO-NASH-HCC mouse is a clinical translational model of NASH-HCC. Semaglutide improves both NASH and tumor burden in GAN DIO-NASH-HCC mice, highlighting the suitability of this preclinical model for profiling novel drug therapies targeting NASH-HCC.
Collapse
Affiliation(s)
| | - Susanne Pors
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Mogens Vyberg
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | - Denise Oró
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | | | | | | | - Michael Feigh
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| |
Collapse
|
11
|
Padiadpu J, Garcia‐Jaramillo M, Newman NK, Pederson JW, Rodrigues R, Li Z, Singh S, Monnier P, Trinchieri G, Brown K, Dzutsev AK, Shulzhenko N, Jump DB, Morgun A. Multi-omic network analysis identified betacellulin as a novel target of omega-3 fatty acid attenuation of western diet-induced nonalcoholic steatohepatitis. EMBO Mol Med 2023; 15:e18367. [PMID: 37859621 PMCID: PMC10630881 DOI: 10.15252/emmm.202318367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-β2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.
Collapse
Affiliation(s)
| | | | - Nolan K Newman
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Jacob W Pederson
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Richard Rodrigues
- College of PharmacyOregon State UniversityCorvallisORUSA
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Zhipeng Li
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Sehajvir Singh
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Philip Monnier
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Kevin Brown
- College of PharmacyOregon State UniversityCorvallisORUSA
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisORUSA
| | - Amiran K Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Natalia Shulzhenko
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | - Andrey Morgun
- College of PharmacyOregon State UniversityCorvallisORUSA
| |
Collapse
|
12
|
López-Pérez A, Remeseiro S, Hörnblad A. Diet-induced rewiring of the Wnt gene regulatory network connects aberrant splicing to fatty liver and liver cancer in DIAMOND mice. Sci Rep 2023; 13:18666. [PMID: 37907668 PMCID: PMC10618177 DOI: 10.1038/s41598-023-45614-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
Several preclinical models have been recently developed for metabolic associated fatty liver disease (MAFLD) and associated hepatocellular carcinoma (HCC) but comprehensive analysis of the regulatory and transcriptional landscapes underlying disease in these models are still missing. We investigated the regulatory and transcriptional landscape in fatty livers and liver tumours from DIAMOND mice that faithfully mimic human HCC development in the context of MAFLD. RNA-sequencing and ChIP-sequencing revealed rewiring of the Wnt/β-catenin regulatory network in DIAMOND tumours, as manifested by chromatin remodelling and associated switching in the expression of the canonical TCF/LEF downstream effectors. We identified splicing as a major mechanism leading to constitutive oncogenic activation of β-catenin in a large subset of DIAMOND tumours, a mechanism that is independent on somatic mutations in the locus and that has not been previously shown. Similar splicing events were found in a fraction of human HCC and hepatoblastoma samples.
Collapse
Affiliation(s)
- Ana López-Pérez
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187, Umeå, Sweden
| | - Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
13
|
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers (Basel) 2023; 15:4566. [PMID: 37760534 PMCID: PMC10527326 DOI: 10.3390/cancers15184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (NASH) are chronic hepatic conditions leading to hepatocellular carcinoma (HCC) development. According to the recent "multiple-parallel-hits hypothesis", NASH could be caused by abnormal metabolism, accumulation of lipids, mitochondrial dysfunction, and oxidative and endoplasmic reticulum stresses and is found in obese and non-obese patients. Recent translational research studies have discovered new proteins and signaling pathways that are involved not only in the development of NAFLD but also in its progression to NASH, cirrhosis, and HCC. Nevertheless, the mechanisms of HCC developing from precancerous lesions have not yet been fully elucidated. Now, it is of particular importance to start research focusing on the discovery of novel molecular pathways that mediate alterations in glucose and lipid metabolism, which leads to the development of liver steatosis. The role of mTOR signaling in NASH progression to HCC has recently attracted attention. The goals of this review are (1) to highlight recent research on novel genetic and protein contributions to NAFLD/NASH; (2) to investigate how recent scientific findings might outline the process that causes NASH-associated HCC; and (3) to explore the reliable biomarkers/targets of NAFLD/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.S.); (H.W.)
| | | | | |
Collapse
|
14
|
Yamada K, Tanaka T, Kai K, Matsufuji S, Ito K, Kitajima Y, Manabe T, Noshiro H. Suppression of NASH-Related HCC by Farnesyltransferase Inhibitor through Inhibition of Inflammation and Hypoxia-Inducible Factor-1α Expression. Int J Mol Sci 2023; 24:11546. [PMID: 37511305 PMCID: PMC10380354 DOI: 10.3390/ijms241411546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory processes play major roles in carcinogenesis and the progression of hepatocellular carcinoma (HCC) derived from non-alcoholic steatohepatitis (NASH). But, there are no therapies for NASH-related HCC, especially focusing on these critical steps. Previous studies have reported that farnesyltransferase inhibitors (FTIs) have anti-inflammatory and anti-tumor effects. However, the influence of FTIs on NASH-related HCC has not been elucidated. In hepatoblastoma and HCC cell lines, HepG2, Hep3B, and Huh-7, we confirmed the expression of hypoxia-inducible factor (HIF)-1α, an accelerator of tumor aggressiveness and the inflammatory response. We established NASH-related HCC models under inflammation and free fatty acid burden and confirmed that HIF-1α expression was increased under both conditions. Tipifarnib, which is an FTI, strongly suppressed increased HIF-1α, inhibited cell proliferation, and induced apoptosis. Simultaneously, intracellular interleukin-6 as an inflammation marker was increased under both conditions and significantly suppressed by tipifarnib. Additionally, tipifarnib suppressed the expression of phosphorylated nuclear factor-κB and transforming growth factor-β. Finally, in a NASH-related HCC mouse model burdened with diethylnitrosamine and a high-fat diet, tipifarnib significantly reduced tumor nodule formation in association with decreased serum interleukin-6. In conclusion, tipifarnib has anti-tumor and anti-inflammatory effects in a NASH-related HCC model and may be a promising new agent to treat this disease.
Collapse
Affiliation(s)
- Kohei Yamada
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Shohei Matsufuji
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Kotaro Ito
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Yoshihiko Kitajima
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
- Department of Surgery, National Hospital Organization Higashisaga Hospital, Saga 849-0101, Japan
| | - Tatsuya Manabe
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| |
Collapse
|
15
|
Li X, Du Y, Xue C, Kang X, Sun C, Peng H, Fang L, Han Y, Xu X, Zhao C. SIRT2 Deficiency Aggravates Diet-Induced Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites. Int J Mol Sci 2023; 24:8970. [PMID: 37240315 PMCID: PMC10219207 DOI: 10.3390/ijms24108970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
| |
Collapse
|
16
|
Skytthe MK, Pedersen FB, Wernberg CW, Indira Chandran V, Krag A, Di Caterino T, Mandacaru SC, Blagoev B, Lauridsen MM, Detlefsen S, Graversen JH, Moestrup SK. Obese Patients With Nonalcoholic Fatty Liver Disease Have an Increase in Soluble Plasma CD163 and a Concurrent Decrease in Hepatic Expression of CD163. GASTRO HEP ADVANCES 2023; 2:711-720. [PMID: 39129874 PMCID: PMC11307542 DOI: 10.1016/j.gastha.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Macrophages play an important role in the development of nonalcoholic fatty liver disease (NAFLD) and its progression to nonalcoholic steatohepatitis (NASH). In this study, we investigated the hepatic expression of the macrophage scavenger receptor CD163 and the plasma level of its shed soluble form (sCD163) in patients with obesity and NASH, non-NASH NAFLD (NAFL), or healthy livers (no NAFLD). Methods Paired liver biopsies and plasma samples were collected from 61 patients with obesity (body mass index ≥35). Hepatic expression of CD163 was analyzed by immunohistochemistry and data-independent acquisition mass spectrometry, whilst plasma levels of sCD163 were determined by enzyme-linked immunosorbent assay and data-independent acquisition mass spectrometry. NAFLD stage and activity were assessed using the Kleiner fibrosis and NASH Clinical Research Network (NAS-CRN) scoring system. Results sCD163 turned out as a promising predictor of NASH with an area under the receiver-operating characteristic curve of 0.78 [0.65;0.92] (P = .0008). sCD163 increased with more severe NAFLD both in univariate (odds ratio [OR] = 3.31[1.80;6.11], P < .001) and multivariable ordinal logistic regression adjusting for NAFLD risk factors (OR = 2.02 [1.03;3.97], P = .042). On the other hand, hepatic expression of CD163 was negatively associated with more severe NAFLD in univariate ordinal logistic regression determined by immunohistochemistry (OR = 0.91[0.84;0.98], P = .015) and proteomics (OR = 0.13[0.02;0.80], P = .028). Taking NAFLD risk factors into account, hepatic expression of CD163 was only associated with the fibrosis stage (OR = 0.01 [0.0003;0.21], P = .004). Accordingly, hepatic CD163 surface expression and sCD163 were negatively correlated (rho = -0.478, P = .0001). Conclusion An increased plasma sCD163 and a concurrent decreased hepatic expression of CD163 are strongly associated with NAFLD in obese patients.
Collapse
Affiliation(s)
| | - Felix Boel Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Charlotte Wilhelmina Wernberg
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of South Denmark, Esbjerg, Denmark
| | | | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of South Denmark, Esbjerg, Denmark
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
| | - Tina Di Caterino
- Department of Pathology, Odense University Hospital, Odense Denmark
| | - Samuel Coelho Mandacaru
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mette Munk Lauridsen
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of South Denmark, Esbjerg, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Søren Kragh Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Biomedicine, Aarhus University, Aarhus Denmark
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| |
Collapse
|
17
|
Akl MG, Widenmaier SB. Immunometabolic factors contributing to obesity-linked hepatocellular carcinoma. Front Cell Dev Biol 2023; 10:1089124. [PMID: 36712976 PMCID: PMC9877434 DOI: 10.3389/fcell.2022.1089124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern that is promoted by obesity and associated liver complications. Onset and progression of HCC in obesity is a multifactorial process involving complex interactions between the metabolic and immune system, in which chronic liver damage resulting from metabolic and inflammatory insults trigger carcinogenesis-promoting gene mutations and tumor metabolism. Moreover, cell growth and proliferation of the cancerous cell, after initiation, requires interactions between various immunological and metabolic pathways that provide stress defense of the cancer cell as well as strategic cell death escape mechanisms. The heterogenic nature of HCC in addition to the various metabolic risk factors underlying HCC development have led researchers to focus on examining metabolic pathways that may contribute to HCC development. In obesity-linked HCC, oncogene-induced modifications and metabolic pathways have been identified to support anabolic demands of the growing HCC cells and combat the concomitant cell stress, coinciding with altered utilization of signaling pathways and metabolic fuels involved in glucose metabolism, macromolecule synthesis, stress defense, and redox homeostasis. In this review, we discuss metabolic insults that can underlie the transition from steatosis to steatohepatitis and from steatohepatitis to HCC as well as aberrantly regulated immunometabolic pathways that enable cancer cells to survive and proliferate in the tumor microenvironment. We also discuss therapeutic modalities targeted at HCC prevention and regression. A full understanding of HCC-associated immunometabolic changes in obesity may contribute to clinical treatments that effectively target cancer metabolism.
Collapse
Affiliation(s)
- May G. Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Physiology, University of Alexandria, Alexandria, Egypt
| | - Scott B. Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Green CD, Spiegel S. Preclinical models of non-alcoholic steatohepatitis leading to hepatocellular carcinoma. Adv Biol Regul 2023; 87:100925. [PMID: 36706611 DOI: 10.1016/j.jbior.2022.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 01/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer related deaths worldwide and its incidence is increasing due to endemic obesity and the growing burden of non-alcoholic steatohepatitis (NASH) associated liver cancer. Although much is known about the clinical and histological pathology of NASH-driven HCC in humans, its etiology remains unclear and there is a lack of reliable biomarkers and limited effective therapies. Progress has been hampered by the scarcity of standardized animal models that recapitulate the gradual progression of NASH towards HCC observed in humans. Here we review existing mouse models and their suitability for studying NASH-driven HCC with special emphasis on a preclinical model that we recently developed that faithfully mimics all the clinical endpoints of progression of the human disease. Moreover, it is highly translatable, allows the use of gene-targeted mice, and is suitable for gaining knowledge of how NASH progresses to HCC and development of new targets for treatment.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
19
|
Gallage S, Avila JEB, Ramadori P, Focaccia E, Rahbari M, Ali A, Malek NP, Anstee QM, Heikenwalder M. A researcher's guide to preclinical mouse NASH models. Nat Metab 2022; 4:1632-1649. [PMID: 36539621 DOI: 10.1038/s42255-022-00700-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its inflammatory form, non-alcoholic steatohepatitis (NASH), have quickly risen to become the most prevalent chronic liver disease in the Western world and are risk factors for the development of hepatocellular carcinoma (HCC). HCC is not only one of the most common cancers but is also highly lethal. Nevertheless, there are currently no clinically approved drugs for NAFLD, and NASH-induced HCC poses a unique metabolic microenvironment that may influence responsiveness to certain treatments. Therefore, there is an urgent need to better understand the pathogenesis of this rampant disease to devise new therapies. In this line, preclinical mouse models are crucial tools to investigate mechanisms as well as novel treatment modalities during the pathogenesis of NASH and subsequent HCC in preparation for human clinical trials. Although, there are numerous genetically induced, diet-induced and toxin-induced models of NASH, not all of these models faithfully phenocopy and mirror the human pathology very well. In this Perspective, we shed some light onto the most widely used mouse models of NASH and highlight some of the key advantages and disadvantages of the various models with an emphasis on 'Western diets', which are increasingly recognized as some of the best models in recapitulating the human NASH pathology and comorbidities.
Collapse
Affiliation(s)
- Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nisar P Malek
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Quentin M Anstee
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
20
|
Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. Int J Mol Sci 2022; 23:14762. [PMID: 36499091 PMCID: PMC9737809 DOI: 10.3390/ijms232314762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.
Collapse
Affiliation(s)
- Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Guo Xiang Cheam
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
21
|
Wang Y, Tai YL, Way G, Zeng J, Zhao D, Su L, Jiang X, Jackson KG, Wang X, Gurley EC, Liu J, Liu J, Chen W, Wang XY, Sanyal AJ, Hylemon PB, Zhou H. RNA binding protein HuR protects against NAFLD by suppressing long noncoding RNA H19 expression. Cell Biosci 2022; 12:172. [PMID: 36224648 PMCID: PMC9558407 DOI: 10.1186/s13578-022-00910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND NAFLD has become the most common chronic liver disease worldwide. Human antigen R (HuR), an RNA-binding protein, is an important post-transcriptional regulator. HuR has been reported as a key player in regulating lipid homeostasis in the liver and adipose tissues by using tissue-specific HuR knockout mice. However, the underlying mechanism by which hepatocyte-specific HuR regulates hepatic lipid metabolism under metabolic stress remains unclear and is the focus of this study. METHODS Hepatocyte-specific HuR deficient mice (HuRhKO) and age-/gender-matched control mice, as well as long-noncoding RNA H19 knockout mice (H19-/-), were fed a Western Diet plus sugar water (WDSW). Hepatic lipid accumulation, inflammation and fibrosis were examined by histology, RNA transcriptome analysis, qRT-PCR, and Western blot analysis. Bile acid composition was measured using LC-MS/MS. RESULTS Hepatocyte-specific deletion of HuR not only significantly increased hepatic lipid accumulation by modulating fatty acid synthesis and metabolism but also markedly induced inflammation by increasing immune cell infiltration and neutrophil activation under metabolic stress. In addition, hepatic deficiency of HuR disrupted bile acid homeostasis and enhanced liver fibrosis. Mechanistically, HuR is a repressor of H19 expression. Analysis of a recently published dataset (GSE143358) identified H19 as the top-upregulated gene in liver-specific HuR knockout mice. Similarly, hepatocyte-specific deficiency of HuR dramatically induced the expression of H19 and sphingosine-1 phosphate receptor 2 (S1PR2), but reduced the expression of sphingosine kinase 2 (SphK2). WDSW-induced hepatic lipid accumulation was alleviated in H19-/- mice. Furthermore, the downregulation of H19 alleviated WDSW-induced NAFLD in HuRhKO mice. CONCLUSIONS HuR not only functions as an RNA binding protein to modulate post-transcriptional gene expression but also regulates H19 promoter activity. Hepatic HuR is an important regulator of hepatic lipid metabolism via modulating H19 expression.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, China
| | - Yun-Ling Tai
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
| | - Grayson Way
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Jing Zeng
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
| | - Derrick Zhao
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Lianyong Su
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Xixian Jiang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Kaitlyn G. Jackson
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Xuan Wang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Emily C. Gurley
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA USA
| | - Jinpeng Liu
- Department of Computer Science, University of Kentucky, Lexington, KY USA
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang-Yang Wang
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
- Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Arun J. Sanyal
- Department of Internal Medicine/GI Division, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Phillip B. Hylemon
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|