1
|
Li S, He C, Nie H, Pang Q, Wang R, Zeng Z, Song Y. G Allele of the rs1801282 Polymorphism in PPARγ Gene Confers an Increased Risk of Obesity and Hypercholesterolemia, While T Allele of the rs3856806 Polymorphism Displays a Protective Role Against Dyslipidemia: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:919087. [PMID: 35846293 PMCID: PMC9276935 DOI: 10.3389/fendo.2022.919087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The relationships between the rs1801282 and rs3856806 polymorphisms in nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) gene and obesity indexes as well as serum lipid levels have been extensively investigated in various studies, but the results were inconsistent and even contradictory. METHODS PubMed, Google Scholar, Embase, Cochrane Library, Web of Science, Wanfang, CNKI and VIP databases were searched for eligible studies. The random-effTPDEects model was used, and standardized mean difference (SMD) with 95% confidence interval (CI) was calculated to estimate the differences in obesity indexes and serum lipid levels between the subjects with different genotypes in a dominant model. Heterogeneity among studies was assessed by Cochran's x2-based Q-statistic test. Publication bias was identified by using Begg's test. RESULTS One hundred and twenty studies (70,317 subjects) and 33 studies (18,353 subjects) were identified in the analyses for the rs1801282 and rs3856806 polymorphisms, respectively. The G allele carriers of the rs1801282 polymorphism had higher levels of body mass index (SMD = 0.08 kg/m2, 95% CI = 0.04 to 0.12 kg/m2, p < 0.001), waist circumference (SMD = 0.12 cm, 95% CI = 0.06 to 0.18 cm, p < 0.001) and total cholesterol (SMD = 0.07 mmol/L, 95% CI = 0.02 to 0.11 mmol/L, p < 0.01) than the CC homozygotes. The T allele carriers of the rs3856806 polymorphism had lower levels of low-density lipoprotein cholesterol (SMD = -0.09 mmol/L, 95% CI = -0.15 to -0.03 mmol/L, p < 0.01) and higher levels of high-density lipoprotein cholesterol (SMD = 0.06 mmol/L, 95% CI = 0.02 to 0.10 mmol/L, p < 0.01) than the CC homozygotes. CONCLUSIONS The meta-analysis suggests that the G allele of the rs1801282 polymorphism confers an increased risk of obesity and hypercholesterolemia, while the T allele of the rs3856806 polymorphism displays a protective role against dyslipidemia, which can partly explain the associations between these polymorphisms and cardiovascular disease. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier [CRD42022319347].
Collapse
Affiliation(s)
- Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Haiyan Nie
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Qianyin Pang
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Ruixia Wang
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zhifu Zeng
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Yongyan Song,
| |
Collapse
|
2
|
Moltó-Puigmartí C, Jansen E, Heinrich J, Standl M, Mensink RP, Plat J, Penders J, Mommers M, Koppelman GH, Postma DS, Thijs C. Genetic variation in FADS genes and plasma cholesterol levels in 2-year-old infants: KOALA Birth Cohort Study. PLoS One 2013; 8:e61671. [PMID: 23667444 PMCID: PMC3648514 DOI: 10.1371/journal.pone.0061671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
Objective Single nucleotide polymorphisms (SNPs) in genes involved in fatty acid metabolism (FADS1 FADS2 gene cluster) are associated with plasma lipid levels. We aimed to investigate whether these associations are already present early in life and compare the relative contribution of FADS SNPs vs traditional (non-genetic) factors as determinants of plasma lipid levels. Methods Information on infants’ plasma total cholesterol levels, genotypes of five FADS SNPs (rs174545, rs174546, rs174556, rs174561, and rs3834458), anthropometric data, maternal characteristics, and breastfeeding history was available for 521 2-year-old children from the KOALA Birth Cohort Study. For 295 of these 521 children, plasma HDLc and non-HDLc levels were also known. Multivariable linear regression analysis was used to study the associations of genetic and non-genetic determinants with cholesterol levels. Results All FADS SNPs were significantly associated with total cholesterol levels. Heterozygous and homozygous for the minor allele children had about 4% and 8% lower total cholesterol levels than major allele homozygotes. In addition, homozygous for the minor allele children had about 7% lower HDLc levels. This difference reached significance for the SNPs rs174546 and rs3834458. The associations went in the same direction for non-HDLc, but statistical significance was not reached. The percentage of total variance of total cholesterol levels explained by FADS SNPs was relatively low (lower than 3%) but of the same order as that explained by gender and the non-genetic determinants together. Conclusions FADS SNPs are associated with plasma total cholesterol and HDLc levels in preschool children. This brings a new piece of evidence to explain how blood lipid levels may track from childhood to adulthood. Moreover, the finding that these SNPs explain a similar amount of variance in total cholesterol levels as the non-genetic determinants studied reveals the potential importance of investigating the effects of genetic variations in early life.
Collapse
Affiliation(s)
- Carolina Moltó-Puigmartí
- Department of Epidemiology, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Benz V, Kintscher U, Foryst-Ludwig A. Sex-specific differences in Type 2 Diabetes Mellitus and dyslipidemia therapy: PPAR agonists. Handb Exp Pharmacol 2013:387-410. [PMID: 23027460 DOI: 10.1007/978-3-642-30726-3_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The influence of sex on the development of obesity, Type 2 Diabetes Mellitus (T2DM), and dyslipidemia is well documented, although the molecular mechanism underlying those differences reminds elusive. Ligands of peroxisome proliferator-activated receptors (PPARs) are used as oral antidiabetics (PPARgamma agonists: thiazolidinediones, TZDs), or for the treatment of dyslipidemia and cardiovascular diseases, due to their lipid-lowering properties (PPARalpha agonists: fibrates), as PPARs control transcription of a set of genes involved in the regulation of lipid and carbohydrate metabolism. Given a high prevalence of those metabolic disorders, and thus a broad use of PPAR agonists, the present review will discuss distinct aspects of sex-specific differences in antiobesity treatment using those groups of PPAR ligands.
Collapse
Affiliation(s)
- Verena Benz
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | |
Collapse
|
4
|
Lwow F, Dunajska K, Milewicz A, Laczmański L, Jedrzejuk D, Trzmiel-Bira A, Szmigiero L. ADRB3 and PPARγ2 gene polymorphisms and their association with cardiovascular disease risk in postmenopausal women. Climacteric 2012; 16:473-8. [PMID: 23113754 DOI: 10.3109/13697137.2012.738721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The contribution of heritability to the development of cardiovascular disease (CVD) is of interest as the identification of genes enhancing the susceptibility of individuals to CVD may help the design of clinical interventions optimized for the individual's genome. METHODS We studied the associations of polymorphism of ADRB3 and PPARγ2 genes with obesity indices, unfavorable lipid profile parameters and insulin resistance index HOMA in 343 postmenopausal women. RESULTS No association was found between tested polymorphisms and CVD risk factors such as total cholesterol ≥ 5.0 mmol/l, high density lipoprotein cholesterol < 1.2 mmol/l, low density lipoprotein cholesterol > 3.0 mmol/l and triacylglycerols > 1.7 mmol/l. The presence of arterial hypertension and HOMA value ≥ 1.95 were also not related to these polymorphisms. A significant association between PPARγ2 gene polymorphism and total body fat mass (odds ratio = 1.90 at p = 0.037) as well as android fat deposit mass (odds ratio = 1.82 at p = 0.048) was found. CONCLUSIONS CVD risk factors in postmenopausal women are not directly associated with the polymorphisms of PPARγ2 and ADRB3 genes. We suggest that some indirect link between PPARγ2 gene polymorphism and susceptibility of postmenopausal women to CVD may exist. This suggestion is based on our finding that high total body fat mass and high android fat deposits are associated with the presence of the Pro12Ala allele of the PPARγ2 gene.
Collapse
Affiliation(s)
- F Lwow
- Department of Health Promotion, Faculty of Physiotherapy, University School of Physical Education, Wroclaw, Poland
| | | | | | | | | | | | | |
Collapse
|
5
|
Cecil J, Dalton M, Finlayson G, Blundell J, Hetherington M, Palmer C. Obesity and eating behaviour in children and adolescents: contribution of common gene polymorphisms. Int Rev Psychiatry 2012; 24:200-10. [PMID: 22724641 DOI: 10.3109/09540261.2012.685056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of childhood obesity is increasing in many countries and confers risks for early type 2 diabetes, cardiovascular disease and metabolic syndrome. In the presence of potent 'obesogenic' environments not all children become obese, indicating the presence of susceptibility and resistance. Taking an energy balance approach, susceptibility could be mediated through a failure of appetite regulation leading to increased energy intake or via diminished energy expenditure. Evidence shows that heritability estimates for BMI and body fat are paralleled by similar coefficients for energy intake and preferences for dietary fat. Twin studies implicate weak satiety and enhanced food responsiveness as factors determining an increase in BMI. Single gene mutations, for example in the leptin receptor gene, that lead to extreme obesity appear to operate through appetite regulating mechanisms and the phenotypic response involves overconsumption and a failure to inhibit eating. Investigations of robustly characterized common gene variants of fat mass and obesity associated (FTO), peroxisome proliferator-activated receptor (PPARG) and melanocortin 4 receptor (MC4R) which contribute to variance in BMI also influence the variance in appetite factors such as measured energy intake, satiety responsiveness and the intake of palatable energy-dense food. A review of the evidence suggests that susceptibility to childhood obesity involving specific allelic variants of certain genes is mediated primarily through food consumption (appetite regulation) rather than through a decrease in activity-related energy expenditure. This conclusion has implications for early detection of susceptibility, and for prevention and management of childhood obesity.
Collapse
Affiliation(s)
- Joanne Cecil
- School of Medicine, University of St Andrews, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Franck N, Länne T, Astrand O, Engvall J, Lindström T, Ostgren CJ, Nystrom FH. Cardiovascular risk factors related to the PPARγ Pro12Ala polymorphism in patients with type 2 diabetes are gender dependent. Blood Press 2011; 21:122-7. [PMID: 22017455 DOI: 10.3109/08037051.2011.623349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The interaction of the PPARγ Pro12Ala polymorphism with diabetes and cardiovascular risk is controversial. We studied 173 women and 309 men in the observational CARDIPP trial in which determination of left ventricular mass, carotid intima-media thickness (IMT) and pulse wave velocity (PWV) were performed. Blood pressures were measured with 24-h ambulatory technique (ABP). Heterozygotes and homozygotes of Ala were defined as Ala in the analyses. Men with Ala-isoform displayed higher waist circumference (Ala: 107 ± 14 cm, Pro: 104 ± 11 cm, p = 0.045) and body weight (Ala: 95.7 ± 18 kg, Pro: 91.6 ± 14 kg, p = 0.042) than Pro-homozygotes. Men with ALA-isoform also showed higher systolic ABP levels (Ala: 134 ± 15 mmHg, Pro: 130 ± 14 mmHg, p = 0.004), whereas left ventricular mass index, IMT and PWV were unrelated to isoforms. In contrast, carotid-radial PWV was lower in women with the Ala-isoform (Ala: 7.9 ± 1.0 m/s, Pro: 8.5 ± 1.3 m/s, p = 0.01) and levels of apolipoprotein A1 were higher (Ala: 1.43 ± 0.27 g/l, Pro: 1.35 ± 0.17 g/l, p = 0.03). In conclusion, we found that men with type 2 diabetes having the Ala-isoform of PPARγ Pro12Ala had an unfavorable cardiovascular risk profile, whereas women with this isoform had lower carotid-radial PWV and higher apolipoprotein A1 levels suggesting a beneficial prognosis. These differences according to gender of the ALA isoform in type 2 diabetes deserve further attention.
Collapse
Affiliation(s)
- Niclas Franck
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
Dedoussis GV, Manios Y, Kourlaba G, Kanoni S, Lagou V, Butler J, Papoutsakis C, Scott RA, Yannakoulia M, Pitsiladis YP, Hirschhorn JN, Lyon HN. An age-dependent diet-modified effect of the PPARγ Pro12Ala polymorphism in children. Metabolism 2011; 60:467-73. [PMID: 20580778 DOI: 10.1016/j.metabol.2010.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/16/2022]
Abstract
Variation in the peroxisome proliferator-activated receptor γ gene alters the risk for adiposity in adults, with evidence of interaction with diet. We investigated the age-related association between the Pro12Ala variant (rs1801282) and diet in obesity-related traits in children. The Pro12Ala variant was assayed in 2102 young children aged 1 to 6 years and in 794 periadolescent children aged 10 to 12 years of Greek origin. In both cohorts, no differences were found in obesity traits between the Ala allele carriers and Pro/Pro homozygotes. Sex-stratified analysis showed that, in periadolescent boys, Ala carriers exhibited lower measures of skinfolds (triceps: 16.9 ± 6.9 vs 19.4 ± 7.9 mm, P = .01; subscapular: 9.6 ± 4.5 vs 11.2 ± 5.4 mm, P = .02). On the other hand, young girls who were Ala carriers presented higher measures of triceps skinfold thickness (10.5 ± 3.0 vs 9.9 ± 2.8 mm, P = .04). Nominal gene-diet interactions were revealed in periadolescents for saturated fatty acid (SFA) intake and skinfolds (P for interaction = .05). In Pro/Pro homozygous young girls, SFA and total fat (TF) intake was positively associated with higher body mass index (BMI) (P = .01), waist circumference (P = .02), and skinfold thickness (triceps-SFA: P = 10⁻⁵, triceps-TF: P = 10⁻⁹, subscapular-SFA: P = 10⁻⁶, subscapular-TF: P = 10⁻⁴). For Pro/Pro homozygotes, unsaturated fat intake was inversely associated with BMI (P = .04) in young girls, and with BMI (P = .03), waist circumference (P = .03), and triceps (P = .02) in periadolescent boys. Our results suggest that adiposity in children is influenced by the Pro12Ala polymorphism in a sex-specific and age-dependent manner. We also demonstrate evidence of an age-dependent gene-diet (SFA, TF) interaction, suggesting that the type of fat intake modifies the effect of the Pro12 allele on obesity-related measures.
Collapse
Affiliation(s)
- George V Dedoussis
- Department of Dietetics-Nutrition, Harokopio University, 17671 Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Christopoulos P, Mastorakos G, Gazouli M, Deligeoroglou E, Katsikis I, Diamanti-Kandarakis E, Panidis D, Creatsas G. Peroxisome proliferator-activated receptor-γ and -δ polymorphisms in women with polycystic ovary syndrome. Ann N Y Acad Sci 2010; 1205:185-91. [DOI: 10.1111/j.1749-6632.2010.05647.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Chang MH, Yesupriya A, Ned RM, Mueller PW, Dowling NF. Genetic variants associated with fasting blood lipids in the U.S. population: Third National Health and Nutrition Examination Survey. BMC MEDICAL GENETICS 2010; 11:62. [PMID: 20406466 PMCID: PMC2876148 DOI: 10.1186/1471-2350-11-62] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 04/20/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND The identification of genetic variants related to blood lipid levels within a large, population-based and nationally representative study might lead to a better understanding of the genetic contribution to serum lipid levels in the major race/ethnic groups in the U.S. population. METHODS Using data from the second phase (1991-1994) of the Third National Health and Nutrition Examination Survey (NHANES III), we examined associations between 22 polymorphisms in 13 candidate genes and four serum lipids: high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG). Univariate and multivariable linear regression and within-gene haplotype trend regression were used to test for genetic associations assuming an additive mode of inheritance for each of the three major race/ethnic groups in the United States (non-Hispanic white, non-Hispanic black, and Mexican American). RESULTS Variants within APOE (rs7412, rs429358), PON1 (rs854560), ITGB3 (rs5918), and NOS3 (rs2070744) were found to be associated with one or more blood lipids in at least one race/ethnic group in crude and adjusted analyses. In non-Hispanic whites, no individual polymorphisms were associated with any lipid trait. However, the PON1 A-G haplotype was significantly associated with LDL-C and TC. In non-Hispanic blacks, APOE variant rs7412 and haplotype T-T were strongly associated with LDL-C and TC; whereas, rs5918 of ITGB3 was significantly associated with TG. Several variants and haplotypes of three genes were significantly related to lipids in Mexican Americans: PON1 in relation to HDL-C; APOE and NOS3 in relation to LDL-C; and APOE in relation to TC. CONCLUSIONS We report the significant associations of blood lipids with variants and haplotypes in APOE, ITGB3, NOS3, and PON1 in the three main race/ethnic groups in the U.S. population using a large, nationally representative and population-based sample survey. Results from our study contribute to a growing body of literature identifying key determinants of plasma lipoprotein concentrations and could provide insight into the biological mechanisms underlying serum lipid and cholesterol concentrations.
Collapse
Affiliation(s)
- Man-huei Chang
- National Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
10
|
Ordovas JM. Genetic influences on blood lipids and cardiovascular disease risk: tools for primary prevention. Am J Clin Nutr 2009; 89:1509S-1517S. [PMID: 19339403 PMCID: PMC2677003 DOI: 10.3945/ajcn.2009.27113e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetic polymorphism in human populations is part of the evolutionary process that results from the interaction between the environment and the human genome. Recent changes in diet have upset this equilibrium, potentially influencing the risk of most common morbidities such as cardiovascular diseases, obesity, diabetes, and cancer. Reduction of these conditions is a major public health concern, and such a reduction could be achieved by improving our ability to detect disease predisposition early in life and by providing more personalized behavioral recommendations for successful primary prevention. In terms of cardiovascular diseases, polymorphisms at multiple genes have been associated with differential effects in terms of lipid metabolism; however, the connection with cardiovascular disease has been more elusive, and considerable heterogeneity exists among studies regarding the predictive value of genetic markers. This may be because of experimental limitations, the intrinsic complexity of the phenotypes, and the aforementioned interactions with environmental factors. The integration of genetic and environmental complexity into current and future research will drive the field toward the implementation of clinical tools aimed at providing dietary advice optimized for the individual's genome. This may imply that dietary changes are implemented early in life to gain maximum benefit. However, it is important to highlight that most reported studies have focused on adult populations and to extrapolate these findings to children and adolescents may not be justified until proper studies have been carried out in these populations and until the ethical and legal issues associated with this new field are adequately addressed.
Collapse
Affiliation(s)
- José M Ordovas
- Nutrition and Genomics Laboratory, USDA Human Nutrition Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
11
|
Dedoussis GV, Vidra N, Butler J, Papoutsakis C, Yannakoulia M, Hirschhorn JN, Lyon HN. Peroxisome proliferator-activated receptor-γ (PPARγ) Pro12Ala polymorphism and risk for pediatric obesity. Clin Chem Lab Med 2009; 47:1047-50. [DOI: 10.1515/cclm.2009.242] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Ruiz JR, Labayen I, Ortega FB, Moreno LA, González-Lamuño D, Martí A, Nova E, Fuentes MG, Redondo-Figuero C, Martínez JA, Sjöström M, Castillo MJ. Birth weight and blood lipid levels in Spanish adolescents: influence of selected APOE, APOC3 and PPARgamma2 gene polymorphisms. The AVENA Study. BMC MEDICAL GENETICS 2008; 9:98. [PMID: 19000312 PMCID: PMC2615435 DOI: 10.1186/1471-2350-9-98] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 11/10/2008] [Indexed: 12/03/2022]
Abstract
Background There is increasing evidence indicating that genes involved in certain metabolic processes of cardiovascular diseases may be of particular influence in people with low body weight at birth. We examined whether the apolipoprotein (APO) E, APOC3 and the peroxisome proliferator-activated receptor-γ-2 (PPARγ2) polymorphisms influence the association between low birth weight and blood lipid levels in healthy adolescents aged 13–18.5 years. Methods A cross-sectional study of 502 Spanish adolescents born at term was conducted. Total (TC) and high density lipoprotein cholesterol (HDLc), triglycerides (TG), apolipoprotein (apo) A and B, and lipoprotein(a) [Lp(a)] were measured. Low density lipoprotein cholesterol (LDLc), TC-HDLc, TC/HDLc and apoB/apoA were calculated. Results Low birth weight was associated with higher levels of TC, LDLc, apoB, Lp(a), TC-HDLc, TC/HDLc and apoB/apoA in males with the APOE ε3ε4 genotype, whereas in females, it was associated with lower HDLc and higher TG levels. In males with the APOC3 S1/S2 genotype, low birth weight was associated with lower apoA and higher Lp(a), yet this association was not observed in females. There were no associations between low birth weight and blood lipids in any of the PPARγ2 genotypes. Conclusion The results indicate that low birth weight has a deleterious influence on lipid profile particularly in adolescents with the APOE ε3/ε4 genotype. These findings suggest that intrauterine environment interact with the genetic background affecting the lipid profile in later life.
Collapse
Affiliation(s)
- Jonatan R Ruiz
- Department of Medical Physiology, School of Medicine, University of Granada, 18071 Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Lagou V, Scott RA, Manios Y, Chen TLJ, Wang G, Grammatikaki E, Kortsalioudaki C, Liarigkovinos T, Moschonis G, Roma-Giannikou E, Pitsiladis YP. Impact of peroxisome proliferator-activated receptors gamma and delta on adiposity in toddlers and preschoolers in the GENESIS Study. Obesity (Silver Spring) 2008; 16:913-8. [PMID: 18379566 DOI: 10.1038/oby.2008.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR gamma) and peroxisome proliferator-activated receptor delta (PPAR delta) are promising candidate genes for obesity. Associations between adiposity-related phenotypes and genetic variation in PPAR gamma (Pro12Ala and C1431T), as well as PPAR delta (T+294C) were assessed in 2,102 Greek children aged 1-6 years, as part of a large-scale epidemiological study (Growth, Exercise and Nutrition Epidemiological Study In preSchoolers). In girls aged 3-4 years, the Ala12 allele was associated with higher mid-upper arm (P = 0.010) and hip (P = 0.005) circumferences, as well as subscapular (P = 0.008) and total skinfolds (P = 0.011) that explained 2.0, 3.7, 2.1, and 1.9% of the phenotypic variance, respectively, while the T1431 allele was associated with higher mean values for waist circumference (P = 0.018) and suprailiac skinfold (P = 0.017), genotype accounting for 1.6% of the variance in both phenotypes. No significant effects of PPAR delta T+294C polymorphism or the interaction of the PPAR delta and PPAR gamma variants on adiposity-related phenotypes were observed in any age group or gender. Haplotype-based analysis including both PPAR gamma polymorphisms revealed that in girls aged 3-4 years, the Ala-T haplotype was associated with higher waist (P = 0.014) and hip (P = 0.007) circumferences compared to the common Pro-C haplotype. The PPAR gamma Pro12Ala and C1431T polymorphisms are associated with increased adiposity during early childhood in a gender- and age-specific manner and independently of the PPAR delta T+294C polymorphism.
Collapse
Affiliation(s)
- Vasiliki Lagou
- Faculty of Biomedical and Life Sciences, Institute of Diet, Exercise and Lifestyle (IDEAL), University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Caldwell SH, Argo CK. Divergent effects of peroxisome proliferator-activated receptor-gamma ligands in human and mouse nonalcoholic steatohepatitis. Hepatology 2007; 46:285-7. [PMID: 17661403 DOI: 10.1002/hep.21881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|