1
|
Krom AJ, Marmelshtein A, Gelbard-Sagiv H, Tankus A, Hayat H, Hayat D, Matot I, Strauss I, Fahoum F, Soehle M, Boström J, Mormann F, Fried I, Nir Y. Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex. Proc Natl Acad Sci U S A 2020; 117:11770-11780. [PMID: 32398367 PMCID: PMC7261054 DOI: 10.1073/pnas.1917251117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite its ubiquitous use in medicine, and extensive knowledge of its molecular and cellular effects, how anesthesia induces loss of consciousness (LOC) and affects sensory processing remains poorly understood. Specifically, it is unclear whether anesthesia primarily disrupts thalamocortical relay or intercortical signaling. Here we recorded intracranial electroencephalogram (iEEG), local field potentials (LFPs), and single-unit activity in patients during wakefulness and light anesthesia. Propofol infusion was gradually increased while auditory stimuli were presented and patients responded to a target stimulus until they became unresponsive. We found widespread iEEG responses in association cortices during wakefulness, which were attenuated and restricted to auditory regions upon LOC. Neuronal spiking and LFP responses in primary auditory cortex (PAC) persisted after LOC, while responses in higher-order auditory regions were variable, with neuronal spiking largely attenuated. Gamma power induced by word stimuli increased after LOC while its frequency profile slowed, thus differing from local spiking activity. In summary, anesthesia-induced LOC disrupts auditory processing in association cortices while relatively sparing responses in PAC, opening new avenues for future research into mechanisms of LOC and the design of anesthetic monitoring devices.
Collapse
Affiliation(s)
- Aaron J Krom
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Hadassah School of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hagar Gelbard-Sagiv
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ariel Tankus
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Department of Neurology & Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanna Hayat
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel Hayat
- Department of Anesthesia, Intensive Care and Pain, Tel Aviv Medical Center, Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Idit Matot
- Department of Anesthesia, Intensive Care and Pain, Tel Aviv Medical Center, Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Department of Neurology & Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Firas Fahoum
- Department of Neurology & Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- EEG and Epilepsy Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Martin Soehle
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Jan Boström
- Department of Neurosurgery, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
- Department of Neurology & Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Yuval Nir
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Struct Funct 2019; 224:1505-1518. [PMID: 30826928 PMCID: PMC6532347 DOI: 10.1007/s00429-019-01845-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
High-density electroencephalographic (hdEEG) recordings are widely used in human studies to determine spatio-temporal patterns of cortical electrical activity. How these patterns of activity are modulated by subcortical arousal systems is poorly understood. Here, we couple selective optogenetic stimulation of a defined subcortical cell-type, basal forebrain (BF) parvalbumin (PV) neurons, with hdEEG recordings in mice (Opto-hdEEG). Stimulation of BF PV projection neurons preferentially generated time-locked gamma oscillations in frontal cortices. BF PV gamma-frequency stimulation potently modulated an auditory sensory paradigm used to probe cortical function in neuropsychiatric disorders, the auditory steady-state response (ASSR). Phase-locked excitation of BF PV neurons in advance of 40 Hz auditory stimuli enhanced the power, precision and reliability of cortical responses, and the relationship between responses in frontal and auditory cortices. Furthermore, synchronization within a frontal hub and long-range cortical interactions were enhanced. Thus, phasic discharge of BF PV neurons changes cortical processing in a manner reminiscent of global workspace models of attention and consciousness.
Collapse
|
3
|
Nourski KV, Banks MI, Steinschneider M, Rhone AE, Kawasaki H, Mueller RN, Todd MM, Howard MA. Electrocorticographic delineation of human auditory cortical fields based on effects of propofol anesthesia. Neuroimage 2017; 152:78-93. [PMID: 28254512 PMCID: PMC5432407 DOI: 10.1016/j.neuroimage.2017.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
The functional organization of human auditory cortex remains incompletely characterized. While the posteromedial two thirds of Heschl's gyrus (HG) is generally considered to be part of core auditory cortex, additional subdivisions of HG remain speculative. To further delineate the hierarchical organization of human auditory cortex, we investigated regional heterogeneity in the modulation of auditory cortical responses under varying depths of anesthesia induced by propofol. Non-invasive studies have shown that propofol differentially affects auditory cortical activity, with a greater impact on non-core areas. Subjects were neurosurgical patients undergoing removal of intracranial electrodes placed to identify epileptic foci. Stimuli were 50Hz click trains, presented continuously during an awake baseline period, and subsequently, while propofol infusion was incrementally titrated to induce general anesthesia. Electrocorticographic recordings were made with depth electrodes implanted in HG and subdural grid electrodes implanted over superior temporal gyrus (STG). Depth of anesthesia was monitored using spectral entropy. Averaged evoked potentials (AEPs), frequency-following responses (FFRs) and high gamma (70-150Hz) event-related band power were used to characterize auditory cortical activity. Based on the changes in AEPs and FFRs during the induction of anesthesia, posteromedial HG could be divided into two subdivisions. In the most posteromedial aspect of the gyrus, the earliest AEP deflections were preserved and FFRs increased during induction. In contrast, the remainder of the posteromedial HG exhibited attenuation of both the AEP and the FFR. The anterolateral HG exhibited weaker activation characterized by broad, low-voltage AEPs and the absence of FFRs. Lateral STG exhibited limited activation by click trains, and FFRs there diminished during induction. Sustained high gamma activity was attenuated in the most posteromedial portion of HG, and was absent in all other regions. These differential patterns of auditory cortical activity during the induction of anesthesia may serve as useful physiological markers for field delineation. In this study, the posteromedial HG could be parcellated into at least two subdivisions. Preservation of the earliest AEP deflections and FFRs in the posteromedial HG likely reflects the persistence of feedforward synaptic activity generated by inputs from subcortical auditory pathways, including the medial geniculate nucleus.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA.
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Rashmi N Mueller
- Department of Anesthesia, The University of Iowa, Iowa City, IA, USA
| | - Michael M Todd
- Department of Anesthesia, The University of Iowa, Iowa City, IA, USA; Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 2015; 112:3535-40. [PMID: 25733878 DOI: 10.1073/pnas.1413625112] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cortical gamma band oscillations (GBO, 30-80 Hz, typically ∼40 Hz) are involved in higher cognitive functions such as feature binding, attention, and working memory. GBO abnormalities are a feature of several neuropsychiatric disorders associated with dysfunction of cortical fast-spiking interneurons containing the calcium-binding protein parvalbumin (PV). GBO vary according to the state of arousal, are modulated by attention, and are correlated with conscious awareness. However, the subcortical cell types underlying the state-dependent control of GBO are not well understood. Here we tested the role of one cell type in the wakefulness-promoting basal forebrain (BF) region, cortically projecting GABAergic neurons containing PV, whose virally transduced fibers we found apposed cortical PV interneurons involved in generating GBO. Optogenetic stimulation of BF PV neurons in mice preferentially increased cortical GBO power by entraining a cortical oscillator with a resonant frequency of ∼40 Hz, as revealed by analysis of both rhythmic and nonrhythmic BF PV stimulation. Selective saporin lesions of BF cholinergic neurons did not alter the enhancement of cortical GBO power induced by BF PV stimulation. Importantly, bilateral optogenetic inhibition of BF PV neurons decreased the power of the 40-Hz auditory steady-state response, a read-out of the ability of the cortex to generate GBO used in clinical studies. Our results are surprising and novel in indicating that this presumptively inhibitory BF PV input controls cortical GBO, likely by synchronizing the activity of cortical PV interneurons. BF PV neurons may represent a previously unidentified therapeutic target to treat disorders involving abnormal GBO, such as schizophrenia.
Collapse
|
5
|
Smith PH, Bartlett EL, Kowalkowski A. Unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body. J Comp Neurol 2006; 496:314-34. [PMID: 16566009 PMCID: PMC2943380 DOI: 10.1002/cne.20913] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The medial geniculate body (MGB) has three major subdivisions, ventral (MGV), dorsal (MGD), and medial (MGM). MGM is linked with paralaminar nuclei that are situated medial and ventral to MGV/MGD. Paralaminar nuclei have unique inputs and outputs compared with MGV and MGD and have been linked to circuitry underlying some important functional roles. We recorded intracellularly from cells in the paralaminar nuclei in vitro. We found that they possess an unusual combination of anatomical and physiological features compared with those reported for "standard" thalamic neurons seen in the MGV/MGD and elsewhere in the thalamus. Compared with MGV/MGD neurons, anatomically, 1) paralaminar cell dendrites can be long, branch sparingly, and encompass a much larger area; 2) their dendrites may be smooth but can have well defined spines; and 3) their axons can have collaterals that branch locally within the same or nearby paralaminar nuclei. When compared with MGV/MGD neurons, physiologically, 1) their spikes are larger in amplitude and can be shorter in duration; 2) their spikes can have dual afterhyperpolarizations with fast and slow components; and 3) they can have a reduction or complete absence of the low-threshold, voltage-sensitive calcium conductance that reduces or eliminates the voltage-dependent burst response. We also recorded from cells in the parafascicular nucleus, a nucleus of the posterior intralaminar nuclear group, because they have unusual anatomical features that are similar to those of some of our paralaminar cells. As with the labeled paralaminar cells, parafascicular cells had physiological features distinguishing them from typical thalamic neurons.
Collapse
Affiliation(s)
- Philip H Smith
- Department of Anatomy, University of Wisconsin, Medical School-Madison, 53706, USA.
| | | | | |
Collapse
|