1
|
Wu S, Yang S, Qu H. circ_CHFR regulates ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by miR-15a-5p/EGFR axis in human brain microvessel endothelial cells. Open Life Sci 2021; 16:1053-1063. [PMID: 34676300 PMCID: PMC8483062 DOI: 10.1515/biol-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/29/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is a significant risk factor for various brain vascular diseases. Circular RNA (circRNA) is involved in the pathogenesis of brain vascular diseases. This study revealed the roles of circ_CHFR in ox-LDL-mediated cell proliferation, apoptosis, and endothelial-to-mesenchymal transition (EndoMT). Our results showed that circ_CHFR and EGFR expressions were dramatically upregulated, while miR-15a-5p expression was downregulated in ox-LDL-induced human brain microvessel endothelial cells (HBMECs) relative to control groups. circ_CHFR knockdown hindered the effects of ox-LDL exposure on cell proliferation, cell cycle, apoptosis, and EndoMT in HBMECs, whereas these impacts were abolished by miR-15a-5p inhibitor. In addition, circ_CHFR functioned as a sponge of miR-15a-5p and miR-15a-5p bound to EGFR. Thus, we concluded that circ_CHFR silencing hindered ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by downregulating EGFR expression through sponging miR-15a-5p in HBMECs. Our findings provide a new mechanism for studying circRNA-directed therapy in ox-LDL-induced human brain vascular diseases.
Collapse
Affiliation(s)
- Shanwu Wu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Sheng Yang
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Hongyan Qu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| |
Collapse
|
2
|
Lenz IJ, Plesnila N, Terpolilli NA. Role of endothelial nitric oxide synthase for early brain injury after subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab 2021; 41:1669-1681. [PMID: 33256507 PMCID: PMC8221759 DOI: 10.1177/0271678x20973787] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first few hours and days after subarachnoid hemorrhage (SAH) are characterized by cerebral ischemia, spasms of pial arterioles, and a significant reduction of cerebral microperfusion, however, the mechanisms of this early microcirculatory dysfunction are still unknown. Endothelial nitric oxide production is reduced after SAH and exogenous application of NO reduces post-hemorrhagic microvasospasm. Therefore, we hypothesize that the endothelial NO-synthase (eNOS) may be involved in the formation of microvasospasms, microcirculatory dysfunction, and unfavorable outcome after SAH. SAH was induced in male eNOS deficient (eNOS-/-) mice by endovascular MCA perforation. Three hours later, the cerebral microcirculation was visualized using in vivo 2-photon-microscopy. eNOS-/- mice had more severe SAHs, more severe ischemia, three time more rebleedings, and a massively increased mortality (50 vs. 0%) as compared to wild type (WT) littermate controls. Three hours after SAH eNOS-/- mice had fewer perfused microvessels and 40% more microvasospasms than WT mice. The current study indicates that a proper function of eNOS plays a key role for a favorable outcome after SAH and helps to explain why patients suffering from hypertension or other conditions associated with impaired eNOS function, have a higher risk of unfavorable outcome after SAH.
Collapse
Affiliation(s)
- Irina J Lenz
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
3
|
Zhou J, Guo P, Guo Z, Sun X, Chen Y, Feng H. Fluid metabolic pathways after subarachnoid hemorrhage. J Neurochem 2021; 160:13-33. [PMID: 34160835 DOI: 10.1111/jnc.15458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 06/20/2021] [Indexed: 01/05/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating cerebrovascular disease with high mortality and morbidity. In recent years, a large number of studies have focused on the mechanism of early brain injury (EBI) and delayed cerebral ischemia (DCI), including vasospasm, neurotoxicity of hematoma and neuroinflammatory storm, after aSAH. Despite considerable efforts, no novel drugs have significantly improved the prognosis of patients in phase III clinical trials, indicating the need to further re-examine the multifactorial pathophysiological process that occurs after aSAH. The complex pathogenesis is reflected by the destruction of the dynamic balance of the energy metabolism in the nervous system after aSAH, which prevents the maintenance of normal neural function. This review focuses on the fluid metabolic pathways of the central nervous system (CNS), starting with ruptured aneurysms, and discusses the dysfunction of blood circulation, cerebrospinal fluid (CSF) circulation and the glymphatic system during disease progression. It also proposes a hypothesis on the metabolic disorder mechanism and potential therapeutic targets for aSAH patients.
Collapse
Affiliation(s)
- Jiru Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
4
|
Papaioannou VE, Budohoski KP, Placek MM, Czosnyka Z, Smielewski P, Czosnyka M. Association of transcranial Doppler blood flow velocity slow waves with delayed cerebral ischemia in patients suffering from subarachnoid hemorrhage: a retrospective study. Intensive Care Med Exp 2021; 9:11. [PMID: 33768351 PMCID: PMC7994457 DOI: 10.1186/s40635-021-00378-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background Cerebral vasospasm (VS) and delayed cerebral ischemia (DCI) constitute major complications following subarachnoid hemorrhage (SAH). A few studies have examined the relationship between different indices of cerebrovascular dynamics with the occurrence of VS. However, their potential association with the development of DCI remains elusive. In this study, we investigated the pattern of changes of different transcranial Doppler (TCD)-derived indices of cerebrovascular dynamics during vasospasm in patients suffering from subarachnoid hemorrhage, dichotomized by the presence of delayed cerebral ischemia. Methods A retrospective analysis was performed using recordings from 32 SAH patients, diagnosed with VS. Patients were divided in two groups, depending on development of DCI. Magnitude of slow waves (SWs) of cerebral blood flow velocity (CBFV) was measured. Cerebral autoregulation was estimated using the moving correlation coefficient Mxa. Cerebral arterial time constant (tau) was expressed as the product of resistance and compliance. Complexity of CBFV was estimated through measurement of sample entropy (SampEn). Results In the whole population (N = 32), magnitude of SWs of ipsilateral to VS side CBFV was higher during vasospasm (4.15 ± 1.55 vs before: 2.86 ± 1.21 cm/s, p < 0.001). Ipsilateral SWs of CBFV before VS had higher magnitude in DCI group (N = 19, p < 0.001) and were strongly predictive of DCI, with area under the curve (AUC) = 0.745 (p = 0.02). Vasospasm caused a non-significant shortening of ipsilateral values of tau and increase in SampEn in all patients related to pre-VS measurements, as well as an insignificant increase of Mxa in DCI related to non-DCI group (N = 13). Conclusions In patients suffering from subarachnoid hemorrhage, TCD-detected VS was associated with higher ipsilateral CBFV SWs, related to pre-VS measurements. Higher CBFV SWs before VS were significantly predictive of delayed cerebral ischemia.
Collapse
Affiliation(s)
- Vasilios E Papaioannou
- Department of Intensive Care Medicine, Alexandroupolis Hospital, Democritus University of Thrace, 68100, Alexandoupolis, Greece. .,Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK.
| | - Karol P Budohoski
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK.,Department of Neurosurgery, Cambridge University Hospitals, Cambridge, CB20QQ, UK
| | - Michal M Placek
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK.,Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Zofia Czosnyka
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK
| | - Peter Smielewski
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK
| | - Marek Czosnyka
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK
| |
Collapse
|
5
|
Wee CL, Mokhtar SS, Singh KKB, Yahaya S, Leung SWS, Rasool AHG. Calcitriol Supplementation Ameliorates Microvascular Endothelial Dysfunction in Vitamin D-Deficient Diabetic Rats by Upregulating the Vascular eNOS Protein Expression and Reducing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3109294. [PMID: 33623633 PMCID: PMC7875614 DOI: 10.1155/2021/3109294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 01/20/2021] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus contributes to macro- and microvascular complications, leading to adverse cardiovascular events. This study examined the effects of vitamin D deficiency on the vascular function and tissue oxidative status in the microcirculation of diabetic rats and to determine whether these effects can be reversed with calcitriol (active vitamin D metabolite) supplementation. Streptozotocin-induced diabetic rats were fed for 10 weeks with control diet (DC) or vitamin D-deficient diet without (DD) or with oral calcitriol supplementation (0.15 μg/kg) in the last four weeks (DDS) (10 rats each group). A nondiabetic rat group that received control diet was also included (NR). After 10 weeks, rats were sacrificed; mesenteric arterial rings with and without endothelium were studied using wire myograph. Western blotting of the mesenteric arterial tissue was performed to determine the protein expression of endothelial nitric oxide synthase (eNOS) enzyme. Antioxidant enzyme superoxide dismutase (SOD) activity and oxidative stress marker malondialdehyde (MDA) levels in the mesenteric arterial tissue were also measured. The DC group had significantly lower acetylcholine-induced relaxation and augmented endothelium-dependent contraction, with reduced eNOS expression, compared to NR rats. In mesenteric arteries of DD, acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent relaxations were lower than those in DC. Calcitriol supplementation in DDS restored endothelium-dependent relaxation. Mesenteric artery endothelium-dependent contraction of DD was greater than DC; it was not affected by calcitriol supplementation. The eNOS protein expression and SOD activity were significantly lower while MDA levels were greater in DD compared to DC; these effects were not observed in DDS that received calcitriol supplementation. In conclusion, vitamin D deficiency causes eNOS downregulation and oxidative stress, thereby impairing the vascular function and posing an additional risk for microvascular complications in diabetes. Calcitriol supplementation to diabetics with vitamin D deficiency could potentially be useful in the management of or as an adjunct to diabetes-related cardiovascular complications.
Collapse
Affiliation(s)
- Chee Lee Wee
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Kirnpal Kaur Banga Singh
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Sahran Yahaya
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
6
|
The Role of Oxidative Stress in Early Brain Injury after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/8877116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review focuses on the problem of oxidative stress in early brain injury (EBI) after spontaneous subarachnoid hemorrhage (SAH). EBI involves complex pathophysiological mechanisms, including oxidative stress. In the first section, we describe the main sources of free radicals in EBI. There are several sources of excessive generation of free radicals from mitochondrial free radicals’ generation and endoplasmic reticulum stress, to hemoglobin and enzymatic free radicals’ generation. The second part focuses on the disruption of antioxidant mechanisms in EBI. The third section describes some newly found molecular mechanisms and pathway involved in oxidative stress after EBI. The last section is dedicated to the pathophysiological mechanisms through which free radicals mediate early brain injury.
Collapse
|
7
|
Zhao DD, Guo ZD, He S, Yin C. High intracranial pressure may be the initial inducer of elevated plasma D-dimer level after aneurysmal subarachnoid haemorrhage. Int J Neurosci 2019; 130:694-699. [PMID: 31852390 DOI: 10.1080/00207454.2019.1702546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dong-Dong Zhao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zong-Duo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sen He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Liu L, Zhang P, Zhang Z, Hu Q, He J, Liu H, Zhao J, Liang Y, He Z, Li X, Sun X, Guo Z. LXA4 ameliorates cerebrovascular endothelial dysfunction by reducing acute inflammation after subarachnoid hemorrhage in rats. Neuroscience 2019; 408:105-114. [DOI: 10.1016/j.neuroscience.2019.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
|
9
|
Liu ZW, Zhao JJ, Pang HG, Song JN. Vascular endothelial growth factor A promotes platelet adhesion to collagen IV and causes early brain injury after subarachnoid hemorrhage. Neural Regen Res 2019; 14:1726-1733. [PMID: 31169190 PMCID: PMC6585561 DOI: 10.4103/1673-5374.257530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role of vascular endothelial growth factor A in platelet adhesion in cerebral microvessels in the early stage of subarachnoid hemorrhage remains unclear. In this study, the endovascular puncture method was used to produce a rat model of subarachnoid hemorrhage. Then, 30 minutes later, vascular endothelial growth factor A antagonist anti-vascular endothelial growth factor receptor 2 antibody, 10 μg, was injected into the right ventricle. Immunohistochemistry and western blot assay were used to assess expression of vascular endothelial growth factor A, occludin and claudin-5. Immunohistochemical double labeling was conducted to examine co-expression of GP Ia-II integrin and type IV collagen. TUNEL was used to detect apoptosis in the hippocampus. Neurological score was used to assess behavioral performance. After subarachnoid hemorrhage, the expression of vascular endothelial growth factor A increased in the hippocampus, while occludin and claudin-5 expression levels decreased. Co-expression of GP Ia-II integrin and type IV collagen and the number of apoptotic cells increased, whereas behavioral performance was markedly impaired. After treatment with anti-vascular endothelial growth factor receptor 2 antibody, occludin and claudin-5 expression recovered, while co-expression of GP Ia-II integrin and type IV collagen and the number of apoptotic cells decreased. Furthermore, behavioral performance improved notably. Our findings suggest that increased vascular endothelial growth factor A levels promote platelet adhesion and contribute to early brain injury after subarachnoid hemorrhage. This study was approved by the Biomedical Ethics Committee, Medical College of Xi’an Jiaotong University, China in December 2015.
Collapse
Affiliation(s)
- Zun-Wei Liu
- Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun-Jie Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong-Gang Pang
- The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
10
|
Wu C, Zhao J, Chen Y, Li T, Zhu R, Zhu B, Zhang Y. Tangeretin protects human brain microvascular endothelial cells against oxygen-glucose deprivation-induced injury. J Cell Biochem 2018; 120:4883-4891. [PMID: 30260010 DOI: 10.1002/jcb.27762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/06/2018] [Indexed: 01/24/2023]
Abstract
Tangeretin, a citrus flavonoid extracted from the peel of citrus fruits, was reported to possess antiasthmatic, antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of tangeretin on human brain microvascular endothelial cells (HBMECs) has not been examined. This study was designed to investigate the protective effects of tangeretin on oxygen-glucose deprivation (OGD)-induced injury of HBMECs, and explore the underlying mechanisms. Our results showed that tangeretin improved HBMECs viability in response to OGD. In addition, tangeretin was able to increase the activity of superoxide dismutase and decrease the levels of reactive oxygen species and malondialdehyde (MDA), as well as ameliorate cell apoptosis in OGD-stimulated HBMECs. Mechanistic studies showed that tangeretin prevented the activation of JNK signaling pathway in OGD-stimulated HBMECs. Taken together, our current study demonstrated that tangeretin could ameliorate OGD-induced HBMECs injury through the JNK signaling pathway. Thus, tangeretin might be used as a therapeutic strategy for ischemia-reperfusion brain injury and related diseases.
Collapse
Affiliation(s)
- Chunfang Wu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jun Zhao
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yong Chen
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ting Li
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ruiming Zhu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Baihui Zhu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Youran Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
11
|
Park JH, Park KA, Cha J, Kim ST, Chung CS, Lee MJ. A case report of isolated orbital vasculitis mimicking retinal migraine: A potential cause of recurrent transient monocular blindness and ipsilateral headache. Cephalalgia 2018; 39:792-798. [PMID: 30099954 DOI: 10.1177/0333102418794482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Retinal migraine is an important differential diagnosis of recurrent transient monocular blindness accompanied by headache when other etiologies are excluded. Here, we report a case of orbital vasculitis which initially mimicked retinal migraine. CASE REPORT A 47-year-old woman had recurrent episodes of fully reversible transient monocular blindness accompanied by ipsilateral headache for 15 months. The patient's neuroimaging and cardiac and ophthalmologic evaluations were normal. With a diagnosis of retinal migraine, her symptoms remitted in response to prophylactic treatment with topiramate and propranolol for 8 months. Three months after discontinuation of medications, transient monocular blindness recurred. High-resolution vessel wall magnetic resonance imaging revealed enhancement of the ipsilateral orbital vessels. Isolated orbital vasculitis was diagnosed. Complete remission of transient monocular blindness was achieved after steroid pulse therapy. DISCUSSION Isolated orbital vasculitis should be considered in differential diagnosis of recurrent transient monocular blindness and ipsilateral headache. High-resolution vessel wall magnetic resonance imaging can be helpful for the diagnosis.
Collapse
Affiliation(s)
- Ji-Hyung Park
- 1 Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Ah Park
- 2 Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihoon Cha
- 3 Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Tae Kim
- 4 Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chin-Sang Chung
- 1 Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,5 Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Mi Ji Lee
- 1 Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,5 Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
12
|
Kolar M, Nohejlova K, Duska F, Mares J, Pachl J. Changes of cortical perfusion in the early phase of subarachnoid bleeding in a rat model and the role of intracranial hypertension. Physiol Res 2018; 66:S545-S551. [PMID: 29355383 DOI: 10.33549/physiolres.933795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain perfusion is reduced early after subarachnoid hemorrhage (SAH) due to intracranial hypertension and early vasospasm. The contribution of these two mechanisms is unknown. By performing a prophylactic decompressive craniectomy (DC) in a rat model of SAH we aimed to study brain perfusion after the component of intracranial hypertension has been eliminated. We used 2x2 factorial design, where rats received either decompressive craniectomy or sham operation followed by injection of 250 microl of blood or normal saline into prechiasmatic cistern. The cortical perfusion has been continually measured by laser speckle-contrast analysis for 30 min. Injection of blood caused a sudden increase of intracranial pressure (ICP) and drop of cerebral perfusion, which returned to baseline within 6 min. DC effectively prevented the rise of ICP, but brain perfusion after SAH was significantly lower and took longer to normalize compared to non-DC animals due to increased cerebral vascular resistance, which lasted throughout 30 min experimental period. Our findings suggest that intracranial hypertension plays dominant role in the very early hypoperfusion after SAH whilst the role of early vasospasm is only minor. Prophylactic DC effectively maintained cerebral perfusion pressure, but worsened cerebral perfusion by increased vascular resistance.
Collapse
Affiliation(s)
- M Kolar
- Department of Anesthesiology and Critical Care Medicine, Teaching Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Jin K, Wu H, Lv T, Dai J, Zhang X, Jin Y. Ethyl pyruvate attenuates delayed experimental cerebral vasospasm following subarachnoid haemorrhage in rats: possible role of JNK pathway. RSC Adv 2018; 8:7726-7734. [PMID: 35539121 PMCID: PMC9078488 DOI: 10.1039/c7ra10801j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
The pathophysiology of delayed cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH) is multifaceted and involves endothelial apoptosis and inflammation. Ethyl pyruvate (EP) could attenuate early brain injury following SAH via anti-inflammation and inhibition of the c-Jun N-terminal kinase (JNK) signalling pathway. However, the role of EP in the delayed CVS has yet to be determined. In this study, we examined the effect of EP on endothelial apoptosis and inflammation and explore possible signalling pathways. We found that EP could significantly attenuate the delayed CVS. Possible mechanisms include a decrease in the endothelial cell apoptosis of the basilar artery and alleviation of endothelial inflammation. The JNK signalling pathway may play an important role in the neuroprotective effects of EP on delayed CVS. The results suggest that EP may be a possible therapy for delayed CVS, and the JNK signalling pathway should be targeted for therapeutic purposes in the future. The pathophysiology of delayed cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH) is multifaceted and involves endothelial apoptosis and inflammation.![]()
Collapse
Affiliation(s)
- Ke Jin
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Hui Wu
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Tao Lv
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Jiong Dai
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Xiaohua Zhang
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Yichao Jin
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| |
Collapse
|
14
|
Gybel-Brask M, Rasmussen R, Stensballe J, Johansson PI, Ostrowski SR. Effect of delayed onset prostacyclin on markers of endothelial function and damage after subarachnoid hemorrhage. Acta Neurochir (Wien) 2017; 159:1073-1078. [PMID: 28386837 DOI: 10.1007/s00701-017-3168-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a neurological emergency. Delayed ischemic neurological deficit is one of the main causes of poor outcome after SAH and is probably caused, at least in part, by cerebral vasospasm. The pathophysiology of this is multifaceted, but endothelial damage and activation as well as glycocalyx damage have been implicated. Prostacyclin has been shown to protect damaged and activated endothelium and to facilitate glycocalyx repair. We investigated biomarkers of endothelial activation and damage in patients with SAH randomized to 5 days prostacyclin infusion or placebo. METHODS Patients with aneurysmal SAH managed by coiling or surgery, and a World Federation of Neurological Surgeons score between 1 and 4, and Fisher grade 3 or 4, were treated with a continuous low-dose intravenous prostacyclin infusion or placebo initiated on day 5 and discontinued on day 10 after SAH. Blood samples were drawn from the patients before, during and after prostacyclin/placebo infusion. Soluble biomarkers of endothelial cell activation (sE-selectin, sVE-cadherin) and damage (sTM), glycocalyx damage (syndecan-1) and sympathoadrenal activation (adrenaline, noradrenaline), were measured by ELISA. RESULTS Ninety patients were randomized. Prostacyclin infusion influenced neither biomarkers of sympathoadrenal activation, endothelial activation and damage nor biomarkers of endothelial glycocalyx breakdown. CONCLUSIONS We did not find any effects on markers of sympathoadrenal activation, endothelial damage and activation, or glycocalyx degradation of delayed onset prostacyclin infusion compared to placebo. Further trials investigating early onset endothelial repair using prostacyclin are warranted.
Collapse
Affiliation(s)
- Mikkel Gybel-Brask
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Rune Rasmussen
- Department of Neurosurgery, Neurocenter, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jakob Stensballe
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Anesthesia, Center of Head and Orthopedics, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Pär I Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Surgery, University of Texas Health Medical School, Houston, TX, USA
- Center for Systems Biology, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Sisse R Ostrowski
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
15
|
Balbi M, Koide M, Schwarzmaier SM, Wellman GC, Plesnila N. Acute changes in neurovascular reactivity after subarachnoid hemorrhage in vivo. J Cereb Blood Flow Metab 2017; 37:178-187. [PMID: 26676226 PMCID: PMC5363735 DOI: 10.1177/0271678x15621253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/15/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022]
Abstract
Subarachnoid hemorrhage causes acute and long-lasting constrictions of pial arterioles. Whether these vessels dilate normally to neuronal activity is of great interest since a mismatch between delivery and consumption of glucose and oxygen may cause additional neuronal damage. Therefore, we investigated neurovascular reactivity of pial and parenchymal arterioles after experimental subarachnoid hemorrhage. C57BL/6 mice were subjected to subarachnoid hemorrhage by filament perforation or sham surgery. Neurovascular reactivity was assessed 3 h later by forepaw stimulation or inhalation of 10% CO2 Diameters of cerebral arterioles were assessed using two-photon microscopy. Neurovascular coupling and astrocytic endfoot Ca2+ were measured in brain slices using two-photon and infrared-differential interference contrast microscopy. Vessels of sham-operated mice dilated normally to CO2 and forepaw stimulation. Three hours after subarachnoid hemorrhage, CO2 reactivity was completely lost in both pial and parenchymal arterioles, while neurovascular coupling was not affected. Brain slices studies also showed normal neurovascular coupling and a normal increase in astrocytic endfoot Ca2+ acutely after subarachnoid hemorrhage. These findings suggest that communication between neurons, astrocytes, and parenchymal arterioles is not affected in the first few hours after subarachnoid hemorrhage, while CO2 reactivity, which is dependent on NO signaling, is completely lost.
Collapse
Affiliation(s)
- Matilde Balbi
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Munich, Germany
| | - Masayo Koide
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - George C Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
16
|
Etminan N, Macdonald R. Management of aneurysmal subarachnoid hemorrhage. HANDBOOK OF CLINICAL NEUROLOGY 2017; 140:195-228. [DOI: 10.1016/b978-0-444-63600-3.00012-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Wei MJ, Feng JG, Jiang ZQ, Zeng CH, Jiang LP, Hong T. Identification of OPN, TNC and E-selectin as potential recognition proteins in cerebral vasospasm after subarachnoid hemorrhage. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Pan Q, Liao X, Liu H, Wang Y, Chen Y, Zhao B, Lazartigues E, Yang Y, Ma X. MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. Am J Physiol Cell Physiol 2016; 312:C119-C130. [PMID: 27903586 DOI: 10.1152/ajpcell.00296.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/23/2023]
Abstract
MicroRNA-125a-5p (miR-125a-5p) could participate in the pathogenesis of vascular diseases. In this study, we investigated the role of miR-125a-5p in oxidized low-density lipoprotein (ox-LDL)-induced functional changes in human brain microvessel endothelial cells (HBMEC). The reactive oxygen species (ROS) production, nitric oxide (NO) generation, senescence, apoptosis, and functions of HBMEC were analyzed. For mechanism study, the epidermal growth factor receptor (EGFR)/extracellular signal-regulated protein kinase (ERK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway and phosphatidylinositol-3-kinase (PI3K)/serine/threonine kinase (Akt)/endothelial nitric oxide synthase (eNOS) pathway were analyzed. Results showed the following: 1) Expression of miR-125a-5p was reduced in ox-LDL-treated HBMEC. 2) Overexpression of miR-125a-5p protected HBMEC from ox-LDL-induced apoptosis, senescence, ROS production, and NO reduction. 3) Overexpression of miR-125a-5p increased HBMEC proliferation, migration, and tube formation, while decreasing HBMEC adhesion to leukocytes, as well as counteracting the effects of ox-LDL on those functions. 4) The levels of EGFR/ERK/p38 MAPK pathway, PI3K/Akt/eNOS pathway, cleaved caspase-3, and adherent molecular ICAM-1 and VCAM-1 were associated with the effects of ox-LDL on these HBMEC functions. In conclusion, miR-125a-5p could counteract the effects of ox-LDL on various HBMEC functions via regulating the EGFR/ERK/p38 MAPK and PI3K/Akt/eNOS pathways and cleaved caspase-3, ICAM-1, and VCAM-1 expression.
Collapse
Affiliation(s)
- Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio; and
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China;
| |
Collapse
|
19
|
Yunchang M, Qinxue D, Binbin J, Xin H, Lili Y, Linbi C, Wujun G, Pengbo Z, Junlu W. Human tissue kallikrein ameliorates cerebral vasospasm in a rabbit model of subarachnoid hemorrhage. Neurol Res 2016; 37:1082-9. [PMID: 26923578 DOI: 10.1080/01616412.2015.1110305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Cerebral vasospasm (CVS) and early brain injury are major causes of morbidity and mortality following subarachnoid hemorrhage (SAH). We investigated the efficiency of human tissue kallikrein (HTK) to prevent CVS in a rabbit model of SAH. METHODS Forty-eight Japanese white rabbits were randomly divided into four groups (n = 12 each): control (sham-operated), SAH, SAH + phosphate-buffered saline (PBS, vehicle), and SAH + HTK. Basilar artery (BA) diameters were measured by three-dimensional computed tomography angiography at three time points. Endothelin-1 (ET-1) and nitric oxide (NO) levels in the cerebrospinal fluid (CSF) were assayed 24 h before and 5 and 7 days after SAH. After the last measurement, the animals were killed, and endothelial cell apoptosis was assessed. Bax and Bcl-2 levels in the BA were measured by western blotting. RESULTS HTK was found to significantly reduce CVS following SAH in rabbits. Inverse changes were observed in ET-1 and NO levels in the CSF collected from the SAH group. HTK increased levels of NO, which has a vasodilatory effect, but did not affect levels of ET-1, which has a vasoconstrictive effect. CTA revealed that HTK treatment significantly increased BA diameter. Moreover, HTK treatment reduced the number of apoptotic cells following SAH, presumably by increasing and decreasing Bcl-2 and Bax expression, respectively. CONCLUSION HTK ameliorated CVS and inhibited apoptosis in the BA in a rabbit model of SAH.
Collapse
Affiliation(s)
- Mo Yunchang
- 1 Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shanxi 710004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Iqbal S, Hayman EG, Hong C, Stokum JA, Kurland DB, Gerzanich V, Simard JM. Inducible nitric oxide synthase (NOS-2) in subarachnoid hemorrhage: Regulatory mechanisms and therapeutic implications. Brain Circ 2016; 2:8-19. [PMID: 27774520 PMCID: PMC5074544 DOI: 10.4103/2394-8108.178541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) typically carries a poor prognosis. Growing evidence indicates that overabundant production of nitric oxide (NO) may be responsible for a large part of the secondary injury that follows SAH. Although SAH modulates the activity of all three isoforms of nitric oxide synthase (NOS), the inducible isoform, NOS-2, accounts for a majority of NO-mediated secondary injuries after SAH. Here, we review the indispensable physiological roles of NO that must be preserved, even while attempting to downmodulate the pathophysiologic effects of NO that are induced by SAH. We examine the effects of SAH on the function of the various NOS isoforms, with a particular focus on the pathological effects of NOS-2 and on the mechanisms responsible for its transcriptional upregulation. Finally, we review interventions to block NOS-2 upregulation or to counteract its effects, with an emphasis on the potential therapeutic strategies to improve outcomes in patients afflicted with SAH. There is still much to be learned regarding the apparently maladaptive response of NOS-2 and its harmful product NO in SAH. However, the available evidence points to crucial effects that, on balance, are adverse, making the NOS-2/NO/peroxynitrite axis an attractive therapeutic target in SAH.
Collapse
Affiliation(s)
- Sana Iqbal
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Erik G Hayman
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Caron Hong
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jesse A Stokum
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - David B Kurland
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Pathology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Xiao X, Zhang C, Ma X, Miao H, Wang J, Liu L, Chen S, Zeng R, Chen Y, Bihl JC. Angiotensin-(1-7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Exp Cell Res 2015; 336:58-65. [PMID: 26101159 DOI: 10.1016/j.yexcr.2015.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022]
Abstract
Angiotensin (Ang) II, the main effector of the renin-angiotensin system, has been implicated in the pathogenesis of vascular diseases. Ang-(1-7) binds to the G protein-coupled Mas receptor (MasR) and can exert vasoprotective effects. We investigated the effects and underlying mechanisms of Ang-(1-7) on Ang II-induced dysfunction and oxidative stress in human brain microvascular endothelial cells (HbmECs). The pro-apoptotic activity, reactive oxygen species (ROS) and nitric oxide (NO) productions in HbmECs were measured. The protein expressions of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2), serine/threonine kinase (Akt), endothelial nitric oxide synthase (eNOS) and their phosphorylated forms (p-Akt and p-eNOS) were examined by western blot. MasR antagonist and phosphatidylinositol-3-kinase (PI3K) inhibitor were used for receptor/pathway verification. We found that Ang-(1-7) suppressed Ang II-induced pro-apoptotic activity, ROS over-production and NO reduction in HbmECs, which were abolished by MasR antagonist. In addition, Ang-(1-7) down-regulated the expression of Nox2, and up-regulated the ratios of p-Akt/Akt and its downstream p-eNOS/eNOS in HbmECs. Exposure to PI3K inhibitor partially abrogated Ang-(1-7)-mediated protective effects in HbmECs. Our data suggests that Ang-(1-7)/MasR axis protects HbmECs from Ang II-induced dysfunction and oxidative stress via inhibition of Nox2/ROS and activation of PI3K/NO pathways.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Cheng Zhang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Xiaotang Ma
- Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China
| | - Huilai Miao
- Department of Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China
| | - Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Langni Liu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Rong Zeng
- Department of Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | - Ji C Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
22
|
Caspers J, Rubbert C, Turowski B, Martens D, Reichelt DC, May R, Aissa J, Hänggi D, Etminan N, Mathys C. Timing of Mean Transit Time Maximization is Associated with Neurological Outcome After Subarachnoid Hemorrhage. Clin Neuroradiol 2015; 27:15-22. [PMID: 25939528 DOI: 10.1007/s00062-015-0399-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/15/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Computed tomography perfusion (CTP) has gained significant relevance for the radiological screening of patients at risk of developing delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). Particularly, the impact of MTTPEAK, i.e., the maximal mean transit time value in a series of CTP measurements, for the prediction of long-term outcome has recently been demonstrated by our group. Complementing this recent work, the present study investigated how the timing of MTTPEAK affected the long-term outcome after aneurysmal subarachnoid hemorrhage. METHODS CTP examinations from 103 patients with clinical deterioration attributed to DCI after aSAH were retrospectively analyzed for time interval between SAH ictus and onset of MTTPEAK in association with modified Rankin Scale (mRS) 23.1 months after SAH. RESULTS Patients with unfavorable outcome (mRS > = 2) suffered significant earlier MTTPEAK onsets than patients with favorable outcome (mRS = 0 and 1). MTTPEAK within the first week was associated with significantly higher mRS scores compared to later MTTPEAK. Timing of MTTPEAK together with the value of MTTPEAK and initial World Federation of Neurosurgical Societies (WFNS) grade was a significant predictor for an unfavorable outcome (mRS > = 2). CONCLUSIONS The current findings suggest a presumably higher vulnerability of the brain to early microcirculatory impairments after aSAH and highlight that timing of MTT elevations could be considered for the identification of patients at increased risk for poor neurological outcome due to DCI.
Collapse
Affiliation(s)
- J Caspers
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Moorenstr. 5, 40225, Dusseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - C Rubbert
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Moorenstr. 5, 40225, Dusseldorf, Germany.
| | - B Turowski
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - D Martens
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - D C Reichelt
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - R May
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - J Aissa
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - D Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University, 40225, Dusseldorf, Germany
| | - N Etminan
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University, 40225, Dusseldorf, Germany
| | - C Mathys
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Moorenstr. 5, 40225, Dusseldorf, Germany
| |
Collapse
|
23
|
Aneurysmal Subarachnoid Hemorrhage—Status Quo and Perspective. Transl Stroke Res 2015; 6:167-70. [DOI: 10.1007/s12975-015-0398-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
|
24
|
Milner E, Johnson AW, Nelson JW, Harries MD, Gidday JM, Han BH, Zipfel GJ. HIF-1α Mediates Isoflurane-Induced Vascular Protection in Subarachnoid Hemorrhage. Ann Clin Transl Neurol 2015; 2:325-37. [PMID: 25909079 PMCID: PMC4402079 DOI: 10.1002/acn3.170] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023] Open
Abstract
Objective Outcome after aneurysmal subarachnoid hemorrhage (SAH) depends critically on delayed cerebral ischemia (DCI) – a process driven primarily by vascular events including cerebral vasospasm, microvessel thrombosis, and microvascular dysfunction. This study sought to determine the impact of postconditioning – the phenomenon whereby endogenous protection against severe injury is enhanced by subsequent exposure to a mild stressor – on SAH-induced DCI. Methods Adult male C57BL/6 mice were subjected to sham, SAH, or SAH plus isoflurane postconditioning. Neurological outcome was assessed daily via sensorimotor scoring. Contributors to DCI including cerebral vasospasm, microvessel thrombosis, and microvascular dysfunction were measured 3 days later. Isoflurane-induced changes in hypoxia-inducible factor 1alpha (HIF-1α)-dependent genes were assessed via quantitative polymerase chain reaction. HIF-1α was inhibited pharmacologically via 2-methoxyestradiol (2ME2) or genetically via endothelial cell HIF-1α-null mice (EC-HIF-1α-null). All experiments were performed in a randomized and blinded fashion. Results Isoflurane postconditioning initiated at clinically relevant time points after SAH significantly reduced cerebral vasospasm, microvessel thrombosis, microvascular dysfunction, and neurological deficits in wild-type (WT) mice. Isoflurane modulated HIF-1α-dependent genes – changes that were abolished in 2ME2-treated WT mice and EC-HIF-1α-null mice. Isoflurane-induced DCI protection was attenuated in 2ME2-treated WT mice and EC-HIF-1α-null mice. Interpretation Isoflurane postconditioning provides strong HIF-1α-mediated macro- and microvascular protection in SAH, leading to improved neurological outcome. These results implicate cerebral vessels as a key target for the brain protection afforded by isoflurane postconditioning, and HIF-1α as a critical mediator of this vascular protection. They also identify isoflurane postconditioning as a promising novel therapeutic for SAH.
Collapse
Affiliation(s)
- Eric Milner
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Program in Neuroscience, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Andrew W Johnson
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - James W Nelson
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Michael D Harries
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Jeffrey M Gidday
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Byung Hee Han
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108 ; Department of Neurology, Washington University School of Medicine St. Louis, Missouri, 63108
| |
Collapse
|
25
|
Wang CX, Lin YX, Xie GB, Shi JX, Zhou ML. Constriction and dysfunction of pial arterioles after regional hemorrhage in the subarachnoid space. Brain Res 2015; 1601:85-91. [PMID: 25598204 DOI: 10.1016/j.brainres.2015.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 11/17/2022]
Abstract
Increasing evidence indicates that poor outcomes after brain hemorrhage, especially after subarachnoid hemorrhage (SAH), can be attributed largely to dysfunction of the cerebral microcirculation. However, the cause of this dysfunction remains unclear. Here, we investigated changes in the cerebral microcirculation after regional hemorrhage in the subarachnoid space using the closed cranial window technique in mice. A single pial arteriole on the surface of the brain was punctured to induce a regional hemorrhage in the subarachnoid space. Physiological parameters were monitored during the procedure, and microvessel diameter was measured after hemorrhage. The vasoreactivity of the arterioles in response to hypercapnia as well as to topical application of the vasodilator acetylcholine (ACh) and S-nitroso-N-acetyl-penicillamine (SNAP) were assessed. The constriction of pial arterioles was detected without changes in other physiological parameters. Decreased reactivity of pial arterioles to all of the applied vasodilatory stimuli was observed after hemorrhage. Our results indicate that regional hemorrhage in the subarachnoid space can induce the vasospasm of microvessels and also reduce the vasoreactivity of pial arterioles.
Collapse
Affiliation(s)
- Chun-xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yi-xing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Guang-bin Xie
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ji-xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Meng-liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
26
|
Etminan N, Macdonald RL, Davis C, Burton K, Steiger HJ, Hänggi D. Intrathecal application of the nimodipine slow-release microparticle system eg-1962 for prevention of delayed cerebral ischemia and improvement of outcome after aneurysmal subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:281-6. [PMID: 25366637 DOI: 10.1007/978-3-319-04981-6_47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effective reduction of delayed cerebral ischemia (DCI), a main contributor for poor outcome following aneurysmal subarachnoid hemorrhage (SAH), remains challenging. Previous clinical trials on systemic pharmaceutical treatment of SAH mostly failed to improve outcome, probably because of insensitive pharmaceutical targets and outcome measures, small sample size, insufficient subarachnoid drug concentrations and also detrimental, systemic effects of the experimental treatment per se. Interestingly, in studies that are more recent, intrathecal administration of nicardipine pellets following surgical aneurysm repair was suggested to have a beneficial effect on DCI and neurological outcome. However, this positive effect remained restricted to patients who were treated surgically for a ruptured aneurysm. Because of the favorable results of the preclinical data on DCI and neurological outcome in the absence of neurotoxicity or systemic side effects, we are initiating clinical trials. The PROMISE (Prolonged Release nimOdipine MIcro particles after Subarachnoid hemorrhage) trial is designed as an unblinded, nonrandomized, single-center, single-dose, dose-escalation safety and tolerability phase 1 study in patients surgically treated for aSAH and will investigate the effect of intracisternal EG-1962 administration. The NEWTON (Nimodipine microparticles to Enhance recovery While reducing TOxicity after subarachNoid hemorrhage) trial is a phase 1/2a multicenter, controlled, randomized, open-label, dose-escalation, safety, tolerability, and pharmacokinetic study comparing EG-1962 and nimodipine in patients with aneurysmal SAH.
Collapse
Affiliation(s)
- Nima Etminan
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstr.5, 40225, Düsseldorf, Germany,
| | | | | | | | | | | |
Collapse
|
27
|
Zhao D, Liu Q, Ji Y, Wang G, He X, Tian W, Xu H, Lei T, Wang Y. Correlation between nitric oxide and early brain injury after subarachnoid hemorrhage. Int J Neurosci 2014; 125:531-9. [DOI: 10.3109/00207454.2014.951442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
The endothelium, a protagonist in the pathophysiology of critical illness: focus on cellular markers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:985813. [PMID: 24800259 PMCID: PMC3988750 DOI: 10.1155/2014/985813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 12/23/2022]
Abstract
The endotheliumis key in the pathophysiology of numerous diseases as a result of its precarious function in the regulation of tissue homeostasis. Therefore, its clinical evaluation providing diagnostic and prognostic markers, as well as its role as a therapeutic target, is the focus of intense research in patientswith severe illnesses. In the critically ill with sepsis and acute brain injury, the endothelium has a cardinal function in the development of organ failure and secondary ischemia, respectively. Cellular markers of endothelial function such as endothelial progenitor cells (EPC) and endothelialmicroparticles (EMP) are gaining interest as biomarkers due to their accessibility, although the lack of standardization of EPC and EMP detection remains a drawback for their routine clinical use. In this paper we will review data available on EPC, as a general marker of endothelial repair, and EMP as an equivalent of damage in critical illnesses, in particular sepsis and acute brain injury. Their determination has resulted in new insights into endothelial dysfunction in the critically ill. It remains speculative whether their determination might guide therapy in these devastating acute disorders in the near future.
Collapse
|
29
|
Therapeutic implications of estrogen for cerebral vasospasm and delayed cerebral ischemia induced by aneurysmal subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:727428. [PMID: 24724095 PMCID: PMC3958795 DOI: 10.1155/2014/727428] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 12/18/2022]
Abstract
Cerebral vasospasm (CV) remains the leading cause of delayed morbidity and mortality following aneurysmal subarachnoid hemorrhage (SAH). However, increasing evidence supports etiologies of delayed cerebral ischemia (DCI) other than CV. Estrogen, specifically 17 β -estradiol (E2), has potential therapeutic implications for ameliorating the delayed neurological deterioration which follows aneurysmal SAH. We review the causes of CV and DCI and examine the evidence for E2-mediated vasodilation and neuroprotection. E2 potentiates vasodilation by activating endothelial nitric oxide synthase (eNOS), preventing increased inducible NOS (iNOS) activity caused by SAH, and decreasing endothelin-1 production. E2 provides neuroprotection by increasing thioredoxin expression, decreasing c-Jun N-terminal kinase activity, increasing neuroglobin levels, preventing SAH-induced suppression of the Akt signaling pathway, and upregulating the expression of adenosine A2a receptor. The net effect of E2 modulation of these various effectors is the promotion of neuronal survival, inhibition of apoptosis, and decreased oxidative damage and inflammation. E2 is a potentially potent therapeutic tool for improving outcomes related to post-SAH CV and DCI. However, clinical evidence supporting its benefits remains lacking. Given the promising preclinical data available, further studies utilizing E2 for the treatment of patients with ruptured intracranial aneurysms appear warranted.
Collapse
|
30
|
Subarachnoid Hemorrhage: a Review of Experimental Studies on the Microcirculation and the Neurovascular Unit. Transl Stroke Res 2014; 5:174-89. [DOI: 10.1007/s12975-014-0323-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
|
31
|
Abstract
Subarachnoid haemorrhage (SAH) causes early brain injury (EBI) that is mediated by effects of transient cerebral ischaemia during bleeding plus effects of the subarachnoid blood. Secondary effects of SAH include increased intracranial pressure, destruction of brain tissue by intracerebral haemorrhage, brain shift, and herniation, all of which contribute to pathology. Many patients survive these phenomena, but deteriorate days later from delayed cerebral ischaemia (DCI), which causes poor outcome or death in up to 30% of patients with SAH. DCI is thought to be caused by the combined effects of angiographic vasospasm, arteriolar constriction and thrombosis, cortical spreading ischaemia, and processes triggered by EBI. Treatment for DCI includes prophylactic administration of nimodipine, and current neurointensive care. Prompt recognition of DCI and immediate treatment by means of induced hypertension and balloon or pharmacological angioplasty are considered important by many physicians, although the evidence to support such approaches is limited. This Review summarizes the pathophysiology of DCI after SAH and discusses established treatments for this condition. Novel strategies--including drugs such as statins, sodium nitrite, albumin, dantrolene, cilostazol, and intracranial delivery of nimodipine or magnesium--are also discussed.
Collapse
|
32
|
Etminan N, Beseoglu K, Heiroth HJ, Turowski B, Steiger HJ, Hänggi D. Early Perfusion Computerized Tomography Imaging as a Radiographic Surrogate for Delayed Cerebral Ischemia and Functional Outcome After Subarachnoid Hemorrhage. Stroke 2013; 44:1260-6. [DOI: 10.1161/strokeaha.111.675975] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nima Etminan
- From the Department of Neurosurgery (N.E., K.B. H.H, H.-J.S., D.H.) and Institute for Diagnostic and Interventional Radiology (B.T.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kerim Beseoglu
- From the Department of Neurosurgery (N.E., K.B. H.H, H.-J.S., D.H.) and Institute for Diagnostic and Interventional Radiology (B.T.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hi-Jae Heiroth
- From the Department of Neurosurgery (N.E., K.B. H.H, H.-J.S., D.H.) and Institute for Diagnostic and Interventional Radiology (B.T.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bernd Turowski
- From the Department of Neurosurgery (N.E., K.B. H.H, H.-J.S., D.H.) and Institute for Diagnostic and Interventional Radiology (B.T.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans Jakob Steiger
- From the Department of Neurosurgery (N.E., K.B. H.H, H.-J.S., D.H.) and Institute for Diagnostic and Interventional Radiology (B.T.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel Hänggi
- From the Department of Neurosurgery (N.E., K.B. H.H, H.-J.S., D.H.) and Institute for Diagnostic and Interventional Radiology (B.T.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
33
|
Acute microvascular changes after subarachnoid hemorrhage and transient global cerebral ischemia. Stroke Res Treat 2013; 2013:425281. [PMID: 23589781 PMCID: PMC3621372 DOI: 10.1155/2013/425281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 01/27/2023] Open
Abstract
Subarachnoid hemorrhage and transient global cerebral ischemia result in similar pathophysiological changes in the cerebral microcirculation. These changes include microvascular constriction, increased leukocyte-endothelial interactions, blood brain barrier disruption, and microthrombus formation. This paper will look at various animal and preclinical studies that investigate these various microvascular changes, perhaps providing insight in how these microvessels can be a therapeutic target in both subarachnoid hemorrhage and transient global cerebral ischemia.
Collapse
|
34
|
|
35
|
Sehba FA, Friedrich V. Cerebral microvasculature is an early target of subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012; 115:199-205. [PMID: 22890669 DOI: 10.1007/978-3-7091-1192-5_37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most subarachnoid hemorrhage (SAH) patients exhibit clinical signs of cerebral ischemia at admission but no angiographic vasospasm. Consequently, the source of early cerebral ischemia is not understood. Parenchymal microvessels may contribute to early cerebral ischemia, but the low resolution of current imaging has prevented their analysis in SAH patients. Animal studies demonstrated that early after SAH structure and function of parenchymal vessels are compromised to the level that may very well contribute to early ischemia. We review these studies.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery and Neurosciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
36
|
Villa F, Iacca C, Molinari AF, Giussani C, Aletti G, Pesenti A, Citerio G. Inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Crit Care Med 2012; 40:2797-804. [PMID: 22824929 DOI: 10.1097/ccm.0b013e31825b8bc6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Isoflurane is a volatile anesthetic that has a vasodilating effect on cerebral vessels producing a cerebral blood flow increase. Furthermore, it has been shown in animal studies that isoflurane, when used as a preconditioning agent, has neuroprotective properties, inducing tolerance to ischemia. However, it is not routinely used in neurointensive care because of the potential increase in intracranial pressure caused by the rise in cerebral blood flow. Nevertheless, subarachnoid hemorrhage patients who are at risk for vasospasm may benefit from an increase in cerebral blood flow. We measured regional cerebral blood flow during intravenous sedation with propofol and during sedation with isoflurane in patients with severe subarachnoid hemorrhage not having intracranial hypertension. DESIGN The study is a crossover, open clinical trial (NCT00830843). SETTING Neurointensive care unit of an academic hospital. PATIENTS Thirteen patients with severe subarachnoid hemorrhage, (median Fisher scale 4), monitored on clinical indication with intracranial pressure device and a thermal diffusion probe for the assessment of regional cerebral blood flow. An intracranial pressure>18 mm Hg was an exclusion criterion. INTERVENTIONS Cerebral and hemodynamic variables were assessed at three steps. Step 1: sedation with propofol 3-4 mg/kg/hr; step 2: after 1 hr of propofol discontinuation and isoflurane 0.8%; step 3: after 1 hr of propofol at the same previous infusion rate. Cerebral perfusion pressure and arterial PCO2 were maintained constant. Mean cerebral artery flow velocity and jugular vein oxygen saturation were measured at the end of each step. MEASUREMENTS AND MAIN RESULTS Regional cerebral blood flow increased significantly during step 2 (39.3±29 mL/100 hg/min) compared to step 1 (20.8±10.7) and step 3 (24.7±8). There was no difference in regional cerebral blood flow comparing step 1 vs. step 3. No significant difference in intracranial pressure, mean cerebral artery transcranial Doppler velocity, PaCO2, cerebral perfusion pressure between the different steps. CONCLUSIONS Isoflurane increases regional cerebral blood flow in comparison to propofol. Intracranial pressure did not change significantly in the population not affected by intracranial hypertension.
Collapse
Affiliation(s)
- Federico Villa
- Division of NeuroIntensive Care, Department of Anesthesia and Critical Care, Ospedale San Gerardo, Monza, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
How Large Is the Typical Subarachnoid Hemorrhage? A Review of Current Neurosurgical Knowledge. World Neurosurg 2012; 77:686-97. [DOI: 10.1016/j.wneu.2011.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/07/2011] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
|
38
|
Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012; 97:14-37. [PMID: 22414893 PMCID: PMC3327829 DOI: 10.1016/j.pneurobio.2012.02.003] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 12/11/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 h and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients' outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH.
Collapse
Affiliation(s)
- Fatima A Sehba
- The Departments of Neurosurgery and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
39
|
Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroinflammation 2011; 8:103. [PMID: 21854561 PMCID: PMC3170601 DOI: 10.1186/1742-2094-8-103] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 08/19/2011] [Indexed: 12/17/2022] Open
Abstract
Background Subarachnoid haemorrhage (SAH) elicits rapid pathological changes in the structure and function of parenchymal vessels (≤ 100 μm). The role of neutrophils in these changes has not been determined. This study investigates the role of neutrophils in early microvascular changes after SAH Method Rats were either untreated, treated with vinblastine or anti-polymorphonuclear (PMN) serum, which depletes neutrophils, or treated with pyrrolidine dithiocarbamate (PDTC), which limits neutrophil activity. SAH was induced by endovascular perforation. Neutrophil infiltration and the integrity of vascular endothelium and basement membrane were assessed immunohistochemically. Vascular collagenase activity was assessed by in situ zymography. Results Vinblastine and anti-PMN serum reduced post-SAH accumulation of neutrophils in cerebral vessels and in brain parenchyma. PDTC increased the neutrophil accumulation in cerebral vessels and decreased accumulation in brain parenchyma. In addition, each of the three agents decreased vascular collagenase activity and post-SAH loss of vascular endothelial and basement membrane immunostaining. Conclusions Our results implicate neutrophils in early microvascular injury after SAH and indicate that treatments which reduce neutrophil activity can be beneficial in limiting microvascular injury and increasing survival after SAH.
Collapse
|
40
|
Nitric oxide in early brain injury after subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:99-103. [PMID: 21116923 DOI: 10.1007/978-3-7091-0353-1_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Nitric Oxide (NO) is the major regulator of cerebral blood flow. In addition, it inhibits platelet adherence and aggregation, reduces adherence of leukocytes to the endothelium, and suppresses vessel injury. NO is produced on demand by nitric oxide synthase and has a very short half life. Hence maintenance of its cerebral level is crucial for normal vascular physiology. Time dependent alterations in cerebral NO level and the enzymes responsible for its synthesis are found after subarachnoid hemorrhage (SAH). Cerebral NO level decreases, recovers and increases within the first 24 h after SAH. Each change in cerebral NO level elicits a different pathological response form already compromised brain. These response range from constriction, platelet aggregation and vascular injury that occurs during the early hours and delayed occurring vasospasm, neuronal and axonal damage. This review summarizes the underlying mechanism and the consequence of alteration in cerebral NO level on brain during the first 72 h after SAH.
Collapse
|
41
|
Sehba FA, Friedrich V. Early micro vascular changes after subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:49-55. [PMID: 21116914 DOI: 10.1007/978-3-7091-0353-1_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During the last decade much effort has been invested in understanding the events that occur early after SAH. It is now widely accepted that these early events not only participate in the early ischemic injury but also set the stage for the pathogenesis of delayed vasospasm. That early cerebral ischemia occurs after SAH is documented in both experimental SAH and in human autopsy studies; however, angiographic evidence for vasoconstriction early after SAH is lacking and the source of early ischemic injury is therefore unclear. Recently, the cerebral microvasculature has been identified as an early target of SAH. Changes in the anatomical structure of cerebral microvessels, sufficient to cause functional deficits, are found early after experimental SAH. These changes may explain cerebral ischemia in human in the absence of angiographic evidence of large vessel vasoconstriction. This paper summarizes known alterations in cerebral microvasculature during the first 48 h after SAH.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
42
|
Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 2010; 43:27-40. [PMID: 21161614 PMCID: PMC3023855 DOI: 10.1007/s12035-010-8155-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/24/2010] [Indexed: 01/07/2023]
Abstract
Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, Box 1136, New York, NY 10029, USA.
| | | | | |
Collapse
|
43
|
Jung CS. Nitric oxide synthase inhibitors and cerebral vasospasm. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 110:87-91. [PMID: 21116921 DOI: 10.1007/978-3-7091-0353-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
L-arginine is a source of nitric oxide (NO) that is cleaved from the terminal guanidino nitrogen atom by nitric oxide synthase (NOS). NO evokes, because of its free radical properties and affinity to heme, ferrous iron and cysteine, a wide spectrum of physiological and pathophysiological effects. For many years, different exogenous NOS inhibitors were used to elucidate the role of NOS and NO in health and disease. Later, endogenous NOS inhibitors, as asymmetric dimethylarginine (ADMA) were discovered. Endogenous inhibitors as ADMA are produced by post-translational methylation of L-arginine which is catalyzed by a family of protein N-methyltransferases (PRMT), using S-adenosylmethionine as a methyl group donor. ADMA is eliminated by dimethylarginine dimethylaminohydrolases (DDAH I or II). ADMA hydrolysis increases NOS activity and NO production. Furthermore, L-citrulline, a by-product of ADMA hydrolysis as well as of NO production by NOS, can in turn inhibit DDAH. Therefore, endogenous inhibition of NOS can be modified via different ways (1) changing the availability of L-arginine and/or of L-citrulline; (2) stimulating or inhibiting DDAH activity; (3) modifying methylation via regulating availability of adenosylmethionine; or (4) modifying PRMT activity. Research elucidating the role of NOS inhibitors in respect of delayed cerebral vasospasm after subarachnoid hemorrhage is summarized.
Collapse
Affiliation(s)
- C S Jung
- Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
44
|
Aminoguanidine inhibition of iNOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in rabbits via restoration of dysfunctional endothelial cells. J Neurol Sci 2010; 295:97-103. [PMID: 20537662 DOI: 10.1016/j.jns.2010.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/11/2010] [Accepted: 04/20/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND This study was to delineate the therapeutic efficacy and potential cellular and molecular mechanisms of aminoguanidine (AG), a relatively selective inhibitor of iNOS activity, in cerebral vasospasm after subarachnoid hemorrhage (SAH) in rabbits. METHODS SAH was induced by a single injection of autologous arterial blood into the cisterna magna of adult male rabbits. An intravenous bolus injection of AG (150 mg/kg) was administrated 1h after SAH, and this dosage was repeated on the following day. Vasospasm was verified by computed tomography angiography (CTA) day 2 after SAH. Rabbit basilar arteries were harvested for transmission electron microscopy (TEM), immunohistochemical examination, RT-PCR, and western blot analysis. RESULTS CTA data revealed that cerebral vasospasm of SAH rabbits was significantly prevented via AG treatment. TEM results demonstrated the ultrastructural morphological changes of endothelial cells of SAH rabbits were ameliorated by AG treatment. In parallel, AG treatment increased eNOS mRNA and protein levels along with the reduced immunoreactivity of nitrotyrosine in rabbit basilar arteries. CONCLUSIONS Our discovery suggested AG inhibition of iNOS activity could significantly reverse cerebral vasospasm after SAH via restoration of dysfunctional endothelial cells by the upregulation of eNOS, indicating a regulatory cross-talk between eNOS and iNOS in the pathogenesis of SAH.
Collapse
|
45
|
Park IS, Meno JR, Witt CE, Chowdhary A, Nguyen TS, Winn HR, Ngai AC, Britz GW. Impairment of intracerebral arteriole dilation responses after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 2009; 111:1008-13. [PMID: 19408973 DOI: 10.3171/2009.3.jns096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cerebrovascular dysfunction after subarachnoid hemorrhage (SAH) may contribute to ischemia, but little is known about the contribution of intracerebral arterioles. In this study, the authors tested the hypothesis that SAH inhibits the vascular reactivity of intracerebral arterioles and documented the time course of this dysfunction. METHODS Subarachnoid hemorrhage was induced using an endovascular filament model in halothane-anesthetized male Sprague-Dawley rats. Penetrating intracerebral arterioles were harvested 2, 4, 7, or 14 days postinsult, cannulated using a micropipette system that allowed luminal perfusion and control of luminal pressure, and evaluated for reactivity to vasodilator agents. RESULTS Spontaneous tone developed in all pressurized (60 mm Hg) intracerebral arterioles harvested in this study (from 66 rats), with similar results in the sham and SAH groups. Subarachnoid hemorrhage did not affect dilation responses to acidic pH (6.8) but led to a persistent impairment of endothelium-dependent dilation responses to adenosine triphosphate (p < 0.01), as well as a transient attenuation (p < 0.05) of vascular smooth muscle-dependent dilation responses to adenosine, sodium nitroprusside, and 8-Br-cyclic guanosine monophosphate (cGMP). Impairment of NO-mediated dilation was more sustained than adenosine- and 8-Br-cGMP-induced responses (up to 7 days postinsult compared with 2 days). All smooth muscle-dependent responses returned to sham levels by 14 days after SAH. CONCLUSIONS Subarachnoid hemorrhage led to a persistent impairment of endothelium-dependent dilation and a transient attenuation of vascular smooth muscle-dependent dilation responses to adenosine. Impairment of NO-mediated dilation occurred when the response to cGMP was intact, suggesting a change in cGMP levels rather than an alteration in intracellular mechanisms downstream from cGMP.
Collapse
Affiliation(s)
- Ik-Seong Park
- Division of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Friedrich V, Flores R, Muller A, Sehba FA. Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience 2009; 165:968-75. [PMID: 19861151 DOI: 10.1016/j.neuroscience.2009.10.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 11/26/2022]
Abstract
Platelet aggregates are present in parenchymal vessels as early as 10 min after experimental subarachnoid hemorrhage (SAH). Structural injury to parenchymal vessel walls and depletion of collagen-IV (the major protein of basal lamina) occur in a similar time frame. Since platelets upon activation release enzymes which can digest collagen-IV, we investigated the topographic relationship between platelet aggregates, endothelium, and basal lamina after SAH produced by endovascular perforation, using triple immunofluorescence and confocal microscopy with deconvolution. The location of platelet aggregates in relation to zymography-detected active collagenase was also examined. As reported previously, most cerebral vessels profiles contained platelets aggregates at 10 min after SAH. High-resolution three-dimensional image analysis placed many platelets at the ab-luminal (basal) side of endothelium at 10 min, and others either within the vascular basal lamina or in nearby parenchyma. By 24 h post hemorrhage, large numbers of platelets had entered the brain parenchyma. The vascular sites of platelet movement were devoid of endothelium and collagen-IV. Collagenase activity colocalized with vascular platelet aggregates. Our data demonstrate that parenchymal entry of platelets into brain parenchyma begins within minutes after hemorrhage. Three-dimensional analysis suggests that platelet aggregates initiate or stimulate local disruption of endothelium and destruction of adjacent basal lamina after SAH.
Collapse
Affiliation(s)
- V Friedrich
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave L Levy Place, New York, NY, USA
| | | | | | | |
Collapse
|
47
|
Neuschmelting V, Marbacher S, Fathi AR, Jakob SM, Fandino J. Elevated level of endothelin-1 in cerebrospinal fluid and lack of nitric oxide in basilar arterial plasma associated with cerebral vasospasm after subarachnoid haemorrhage in rabbits. Acta Neurochir (Wien) 2009; 151:795-801; discussion 801-2. [PMID: 19415172 DOI: 10.1007/s00701-009-0350-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 10/14/2008] [Indexed: 10/20/2022]
Abstract
BACKGROUND The role of endothelin-1 (ET-1) and nitric oxide (NO) as two important mediators in the development of cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH) is controversial. The objective of this study was to determine whether local levels of ET-1 and NO in cerebral arterial plasma and/or in cerebrospinal fluid (CSF) are associated with the occurrence of CVS after SAH. METHODS CVS was induced using the one-haemorrhage rabbit model and confirmed by digital subtraction angiography of the rabbits' basilar artery on day 5. Prior to sacrifice, local CSF and basilar arterial plasma samples were obtained by a transclival approach to the basilar artery. Systemic arterial plasma samples were obtained. ET-1 levels were determined by immunometric technique (pg/ml +/- SEM) and total nitrate/nitrite level spectrophotometrically (micromol/l +/- SEM). FINDINGS Angiographic CVS was documented after SAH induction (n = 12, P < 0.05). The ET-1 level in CSF was significantly elevated by 27.3% to 0.84 +/- 0.08 pg/ml in SAH animals (n = 7) in comparison to controls (0.66 +/- 0.04 pg/ml, n = 7, P < 0.05). There was no significant difference in ET-1 levels in systemic and basilar arterial plasma samples of SAH animals compared to controls. A significant lack of local NO metabolites was documented in basilar arterial plasma after SAH (36.8 +/- 3.1 micromol/l, n = 6) compared to controls (61.8 +/- 6.2 micromol/l, n = 6, P < 0.01). CONCLUSION This study demonstrates that an elevated ET-1 level in CSF and local lack of NO in the basilar arterial plasma samples are associated with CVS after experimental SAH.
Collapse
|
48
|
Toda N, Ayajiki K, Okamura T. Cerebral Blood Flow Regulation by Nitric Oxide: Recent Advances. Pharmacol Rev 2009; 61:62-97. [DOI: 10.1124/pr.108.000547] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
49
|
Sun BL, Zheng CB, Yang MF, Yuan H, Zhang SM, Wang LX. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage. Cell Mol Neurobiol 2009; 29:235-41. [PMID: 18821009 DOI: 10.1007/s10571-008-9316-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 03/30/2007] [Indexed: 12/01/2022]
Abstract
The study aimed to investigate the involvement of cerebral microcirculation turbulence after subarachnoid hemorrhage (SAH). Wistar rats were divided into non-SAH and SAH groups. Autologous arterial hemolysate was injected into rat's cisterna magna to induce SAH. Changes of pial microcirculation within 2 h were observed. It was found that there were no obvious changes of the diameters, flow velocity, and fluid state of microvessels in non-SAH group. With the exception of rare linear-granular flow in A4 arteriole, linear flow was observed in most of the arterioles. There was no blood agglutination in any of the arterioles. After SAH, abnormal cerebral pial microcirculation was found. Spasm of microvessels, decreased blood flow, and agglutination of red blood cells occurred. Five minutes following the induction of SAH, the diameters of the arterioles and venules significantly decreased. The decreased diameters persisted for 2 h after cisternal injection. Decreased flow velocity of venules was found from 5 to 90 min after induction of SAH. Spasm of the basilar artery and increased brain malondialdehyde were also found after SAH. We concluded that cerebral microcirculation turbulence plays an important role in the development of secondary cerebral ischemia following SAH.
Collapse
Affiliation(s)
- Bao-Liang Sun
- Department of Neurology & Institute of Microcirculation, Affiliated Hospital, Taishan Medical College, No.706, Taishan Avenue, Taian, Shandong 271000, China.
| | | | | | | | | | | |
Collapse
|
50
|
Endothelial nitric oxide synthase gene single-nucleotide polymorphism predicts cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2008; 28:1204-11. [PMID: 18319732 PMCID: PMC2744963 DOI: 10.1038/jcbfm.2008.11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vasospasm is a major cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (aSAH). Studies have shown a link between single-nucleotide polymorphisms (SNPs) in the endothelial nitric oxide synthase (eNOS) gene and the incidence of coronary spasm and aneurysms. Alterations in the eNOS T-786 SNP may lead to an increased risk of post-aSAH cerebral vasospasm. In this prospective clinical study, 77 aSAH patients provided genetic material and were followed for the occurrence of vasospasm. In multivariate logistic regression analysis, genotype was the only factor predictive of vasospasm. The odds ratio (OR) for symptomatic vasospasm in patients with one T allele was 3.3 (95% confidence interval (CI): 1.1 to 10.0, P=0.034) and 10.9 for TT. Patients with angiographic spasm were 3.6 times more likely to have a T allele (95% CI: 1.3 to 9.6, P=0.013; for TT: OR 12.6). Patients with severe vasospasm requiring endovascular therapy were more likely to have a T allele (OR 3.5, 95% CI: 1.3 to 9.5, P=0.016; for TT: OR 12.0). Patients with the T allele of the eNOS gene are more likely to have severe vasospasm. Presence of this genotype may allow the identification of individuals at high risk for post-aSAH vasospasm and lead to early treatment and improved outcome.
Collapse
|