1
|
Chu WG, Zhang R, Li HT, Li YC, Ding H, Li ZZ, Han WJ, Wang F, Zheng XX, Mao HH, Yuan H, Wu SX, Xie RG, Luo C. Locus Coeruleus Noradrenergic-Spinal Projections Contribute to Electroacupuncture-Mediated Antinociception in Postoperative Pain in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e01182. [PMID: 40387368 DOI: 10.1002/advs.202501182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/16/2025] [Indexed: 05/20/2025]
Abstract
Postoperative pain remains a significant challenge in healthcare. Electroacupuncture (EA) has gained polarity in helping manage surgical pain and showed beneficial effects on enhancing postoperative analgesia, decreasing opioid requirement. Despite this, the precise mechanisms underlying these actions are poorly understood. Evidence shows the involvement of noradrenaline (NE) in the action of EA. However, the precise identity of the NE source after EA treatment, its mechanisms of action, and the circuitry locus in the pain-regulating pathway remain elusive. It is shown that plantar incision (PI) leads to hypoactivity of noradrenergic neurons in the locus coeruleus (LC), which brings about impaired NE release in the spinal dorsal horn (SDH). EA treatment normalizes the abnormal hypoexcitability of LC noradrenergic neurons after PI and thus triggers enhanced NE release in the SDH. Optogenetic inhibition of LC noradrenergic neurons eliminates EA-induced NE release and antinociceptive effects after PI, while activation of these neurons mimics EA-induced NE release and antinociception. The resultant increased NE release after EA activates spinal α2A-adrenoceptor and inhibits CaMKII signaling, which in turn depresses spinal excitatory neuronal hyperexcitability and eventually relieves postoperative pain. It is concluded that LC noradrenergic-spinal projections and subsequent α2A-adrenoceptor-CaMKII signaling cascades in the SDH contribute to EA-induced antinociception in postoperative pain.
Collapse
Affiliation(s)
- Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ru Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710016, China
- School of Medicine, Yanan University, Yan'an, 716000, China
| | - Hai-Tao Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- The Fourteenth Squadron of the Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Chun Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing-Xing Zheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hong-Hui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Park KT, Sim I, Lee JC, Jin YH, Kim W. Cyperus rotundus Extract and Its Active Metabolite α-Cyperone Alleviates Paclitaxel-Induced Neuropathic Pain via the Modulation of the Norepinephrine Pathway. Metabolites 2024; 14:719. [PMID: 39728499 DOI: 10.3390/metabo14120719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Paclitaxel is a widely used anticancer drug for ovarian, lung, breast, and stomach cancers; however, its clinical use is often limited by the side effects of peripheral neuropathy. This study evaluated the effects of Cyperus rotundus (C. rotundus) extract and its active metabolite, α-cyperone, on paclitaxel-induced neuropathic pain. METHODS The oral administration of C. rotundus extract at doses of 500 mg/kg and intraperitoneal administration of α-cyperone at doses of 480 and 800 μg/kg prevented both the development of cold and mechanical pain. RESULTS The gene and protein expressions of tyrosine hydroxylase and noradrenergic receptors (α1- and α2-adrenergic), which were upregulated by paclitaxel, were significantly downregulated in the C. rotundus extract-treated group. In the locus coeruleus region of the mouse brain, C. rotundus extract administration also reduced the elevated expression of tyrosine hydroxylase induced by paclitaxel. The concentration of α-cyperone in C. rotundus extract was quantified using high-performance liquid chromatography (HPLC). In the group treated with α-cyperone, at levels corresponding to its content in C. rotundus, both cold and mechanical allodynia were effectively prevented. CONCLUSIONS This study suggests that α-cyperone shows potential as a preventive agent for paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Insuk Sim
- Department of Clinical Laboratory Science, Dongnam Health University, Suwon 16328, Republic of Korea
| | - Jae-Chul Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
3
|
Park KT, Jo H, Kim B, Kim W. Red Ginger Extract Prevents the Development of Oxaliplatin-Induced Neuropathic Pain by Inhibiting the Spinal Noradrenergic System in Mice. Biomedicines 2023; 11:432. [PMID: 36830967 PMCID: PMC9953630 DOI: 10.3390/biomedicines11020432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Oxaliplatin is a well-known chemotherapeutic drug that is widely used to treat colorectal cancer. However, it can induce acute side effects in up to 90% of patients. Serotonin and norepinephrine reuptake inhibitors (SNRIs) are used as first-choice drugs; however, even SNRIs are known to be effective only in treatment and not for prevention. Therefore, finding a drug that can prevent the development of cold and mechanical forms of allodynia induced by oxaliplatin is needed. This study demonstrated that multiple oral administrations of 100 mg/kg and 300 mg/kg of red ginger extract could significantly prevent pain development in mice. The role of the noradrenergic system was investigated as an underlying mechanism of action. Both the spinal α1- and α2-adrenergic receptors were significantly downregulated after treatment. Furthermore, the noradrenaline levels in the serum and spinal cord were upregulated and downregulated after treatment with paclitaxel and red ginger, respectively. As the active sub-component of red ginger, ginsenoside Rg3 (Rg3) was identified and quantified using HPLC. Moreover, multiple intraperitoneal injections of Rg3 prevented the development of pain in paclitaxel-treated mice, suggesting that RG3 may induce the effect of red ginger extract.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Park KT, Kim S, Choi I, Han IH, Bae H, Kim W. The involvement of the noradrenergic system in the antinociceptive effect of cucurbitacin D on mice with paclitaxel-induced neuropathic pain. Front Pharmacol 2023; 13:1055264. [PMID: 36686685 PMCID: PMC9846532 DOI: 10.3389/fphar.2022.1055264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Paclitaxel (sold under the brand name Taxol) is a chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are used to attenuate neuropathy, no optimal treatment is available to date. In this study, the effect of cucurbitacins B and D on paclitaxel-induced neuropathic pain was assessed. Multiple paclitaxel injections (a cumulative dose of 8 mg/kg, i. p.) induced cold and mechanical allodynia from days 10 to 21 in mice, and the i. p. administration of 0.025 mg/kg of cucurbitacins B and D attenuated both allodynia types. However, as cucurbitacin B showed a more toxic effect on non-cancerous (RAW 264.7) cells, further experiments were conducted with cucurbitacin D. The cucurbitacin D dose-dependently (0.025, 0.1, and 0.5 mg/kg) attenuated both allodynia types. In the spinal cord, paclitaxel injection increased the gene expression of noradrenergic (α 1-and α 2-adrenergic) receptors but not serotonergic (5-HT1A and 3) receptors. Cucurbitacin D treatment significantly decreased the spinal α 1- but not α 2-adrenergic receptors, and the amount of spinal noradrenaline was also downregulated. However, the tyrosine hydroxylase expression measured via liquid chromatography in the locus coeruleus did not decrease significantly. Finally, cucurbitacin D treatment did not lower the anticancer effect of chemotherapeutic drugs when co-administered with paclitaxel in CT-26 cell-implanted mice. Altogether, these results suggest that cucurbitacin D could be considered a treatment option against paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Suyong Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ilseob Choi
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ik-Hwan Han
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea,*Correspondence: Woojin Kim,
| |
Collapse
|
5
|
Chia JSM, Izham NAM, Farouk AAO, Sulaiman MR, Mustafa S, Hutchinson MR, Perimal EK. Zerumbone Modulates α 2A-Adrenergic, TRPV1, and NMDA NR2B Receptors Plasticity in CCI-Induced Neuropathic Pain In Vivo and LPS-Induced SH-SY5Y Neuroblastoma In Vitro Models. Front Pharmacol 2020; 11:92. [PMID: 32194397 PMCID: PMC7064019 DOI: 10.3389/fphar.2020.00092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Zerumbone has shown great potential in various pathophysiological models of diseases, particularly in neuropathic pain conditions. Further understanding the mechanisms of action is important to develop zerumbone as a potential anti-nociceptive agent. Numerous receptors and pathways function to inhibit and modulate transmission of pain signals. Previously, we demonstrated involvement of the serotonergic system in zerumbone's anti-neuropathic effects. The present study was conducted to determine zerumbone's modulatory potential involving noradrenergic, transient receptor potential vanilloid type 1 (TRPV1) and N-methyl-D-aspartate (NMDA) receptors in chronic constriction injury (CCI)-induced in vitro and lipopolysaccharide (LPS)-induced SH-SY5Y in vitro neuroinflammatory models. von Frey filament and Hargreaves plantar tests were used to assess allodynia and hyperalgesia in the chronic constriction injury-induced neuropathic pain mouse model. Involvement of specific adrenoceptors were investigated using antagonists- prazosin (α1-adrenoceptor antagonist), idazoxan (α2-adrenoceptor antagonist), metoprolol (β1-adrenoceptor antagonist), ICI 118,551 (β2-adrenoceptor antagonist), and SR 59230 A (β3-adrenoceptor antagonist), co-administered with zerumbone (10 mg/kg). Involvement of excitatory receptors; TRPV and NMDA were conducted using antagonists capsazepine (TRPV1 antagonist) and memantine (NMDA antagonist). Western blot was conducted to investigate the effect of zerumbone on the expression of α2A-adrenoceptor, TRPV1 and NMDA NR2B receptors in CCI-induced whole brain samples of mice as well as in LPS-induced SH-SY5Y neuroblastoma cells. Pre-treatment with α1- and α2-adrenoceptor antagonists significantly attenuated both anti-allodynic and anti-hyperalgesic effects of zerumbone. For β-adrenoceptors, only β2-adrenoceptor antagonist significantly reversed the anti-allodynic and anti-hyperalgesic effects of zerumbone. β1-adrenoceptor antagonist only reversed the anti-allodynic effect of zerumbone. The anti-allodynic and anti-hyperalgesic effects of zerumbone were both absent when TRPV1 and NMDA receptors were antagonized in both nociceptive assays. Zerumbone treatment markedly decreased the expression of α2A-adrenoceptor, while an up-regulation was observed of NMDA NR2B receptors. Expression of TRPV1 receptors however did not significantly change. The in vitro study, representing a peripheral model, demonstrated the reduction of both NMDA NR2B and TRPV1 receptors while significantly increasing α2A-adrenoceptor expression in contrast to the brain samples. Our current findings suggest that the α1-, α2-, β1- and β2-adrenoceptors, TRPV1 and NMDA NR2B are essential for the anti-allodynic and antihyperalgesic effects of zerumbone. Alternatively, we demonstrated the plasticity of these receptors through their response to zerumbone's administration.
Collapse
Affiliation(s)
- Jasmine Siew Min Chia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Centre for Community Health Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noor Aishah Mohammed Izham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sanam Mustafa
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark R Hutchinson
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| | - Enoch Kumar Perimal
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Parallels between lumbosacral radiculopathy and complex regional pain syndrome: α1-adrenoceptor upregulation, reduced dermal nerve fibre density, and hemisensory disturbances in postsurgical sciatica. Pain 2019; 160:1891-1900. [DOI: 10.1097/j.pain.0000000000001574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Complex regional pain syndrome: intradermal injection of phenylephrine evokes pain and hyperalgesia in a subgroup of patients with upregulated α1-adrenoceptors on dermal nerves. Pain 2019; 159:2296-2305. [PMID: 29994991 DOI: 10.1097/j.pain.0000000000001335] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this study was to determine whether upregulated cutaneous expression of α1-adrenoceptors (α1-AR) is a source of pain in patients with complex regional pain syndrome (CRPS). Immunohistochemistry was used to identify α1-AR on nerve fibres and other targets in the affected and contralateral skin of 90 patients, and in skin samples from 38 pain-free controls. The distribution of α1-AR was compared between patients and controls, and among subgroups of patients defined by CRPS duration, limb temperature asymmetry, and diagnostic subtype (CRPS I vs CRPS II). In addition, α1-AR expression was investigated in relation to pain and pinprick hyperalgesia evoked by intradermal injection of the α1-AR agonist phenylephrine. Expression of α1-AR on nerve bundles in the CRPS-affected limb was greater in patients who reported prolonged pain and pinprick hyperalgesia around the phenylephrine injection site than in patients with transient pain after the injection. In addition, α1-AR expression in nerve bundles was greater in patients with CRPS II than CRPS I, and was greater in acute than more long-standing CRPS. Although less clearly associated with the nociceptive effects of phenylephrine, α1-AR expression was greater on dermal nerve fibres in the painful than contralateral limb. Together, these findings are consistent with nociceptive involvement of cutaneous α1-AR in CRPS. This involvement may be greater in acute than chronic CRPS, and in CRPS II than CRPS I.
Collapse
|
8
|
Wei L, Zhu YM, Zhang YX, Liang F, Jia H, Qu CL, Wang J, Tang JS, Lu SM, Huo FQ, Yan CX. Activation of α1 adrenoceptors in ventrolateral orbital cortex attenuates allodynia induced by spared nerve injury in rats. Neurochem Int 2016; 99:85-93. [PMID: 27296114 DOI: 10.1016/j.neuint.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 01/27/2023]
Abstract
Recent studies have demonstrated that noradrenaline acting in the ventrolateral orbital cortex (VLO) can potentially reduce allodynia induced by spared nerve injury (SNI), and this effect is mediated by α2 adrenoceptor. The present study examined the effect of the α1 adrenoceptors in the VLO on allodynia induced by SNI in the rats. The mechanical paw withdrawal threshold (PWT) was measured using von-Frey filaments. Microinjection of selective α1 adrenoceptor agonist methoxamine (20, 50, 100 μg in 0.5 μl) into the VLO, contralateral to the site of nerve injury, increased PWT in a dose-dependent manner. This effect was antagonized by pre-microinjection of the selective α1 adrenoceptor antagonist benoxathian into the same VLO site, and blocked by electrolytic lesion of the ventrolateral periaqueductal gray (PAG). Furthermore, pre-administration of non-selective glutamate receptor antagonist kynurenic acid, phospholipase C (PLC) inhibitor U73122, and protein kinase C (PKC) inhibitor chelerythrine to the VLO also blocked methoxamine-induced inhibition of allodynia. These results suggest that activation of α1 adrenoceptors in the VLO can potentially reduce allodynia induced by SNI. This effect may be direct excitation of the VLO neurons, via PLC-PKC signaling pathway, projecting to the PAG or facilitating glutamate release and then indirectly exciting the VLO output neurons projecting to the PAG, leading to activation of the PAG-brainstem descending inhibitory system which depresses the nociceptive transmission at the spinal cord level.
Collapse
Affiliation(s)
- Lai Wei
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Division of Forensic Medicine, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yuan-Mei Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Feng Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Chao-Ling Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Jing Wang
- Key Laboratory of Orthopedics of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, China
| | - Jing-Shi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - She-Min Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China.
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China.
| |
Collapse
|
9
|
Drummond ES, Maker G, Birklein F, Finch PM, Drummond PD. Topical prazosin attenuates sensitivity to tactile stimuli in patients with complex regional pain syndrome. Eur J Pain 2015; 20:926-35. [DOI: 10.1002/ejp.817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Eleanor S. Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases; Murdoch University; Perth Western Australia
| | - Garth Maker
- Centre for Research on Chronic Pain and Inflammatory Diseases; Murdoch University; Perth Western Australia
| | - Frank Birklein
- Centre for Research on Chronic Pain and Inflammatory Diseases; Murdoch University; Perth Western Australia
- Department of Neurology; University Medical Center; Mainz Germany
| | - Philip M. Finch
- Centre for Research on Chronic Pain and Inflammatory Diseases; Murdoch University; Perth Western Australia
| | - Peter D. Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases; Murdoch University; Perth Western Australia
| |
Collapse
|
10
|
Li D, Lee Y, Kim W, Lee K, Bae H, Kim SK. Analgesic Effects of Bee Venom Derived Phospholipase A(2) in a Mouse Model of Oxaliplatin-Induced Neuropathic Pain. Toxins (Basel) 2015; 7:2422-34. [PMID: 26131771 PMCID: PMC4516921 DOI: 10.3390/toxins7072422] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
A single infusion of oxaliplatin, which is widely used to treat metastatic colorectal cancer, induces specific sensory neurotoxicity signs that are triggered or aggravated when exposed to cold or mechanical stimuli. Bee Venom (BV) has been traditionally used in Korea to treat various pain symptoms. Our recent study demonstrated that BV alleviates oxaliplatin-induced cold allodynia in rats, via noradrenergic and serotonergic analgesic pathways. In this study, we have further investigated whether BV derived phospholipase A2 (bvPLA2) attenuates oxaliplatin-induced cold and mechanical allodynia in mice and its mechanism. The behavioral signs of cold and mechanical allodynia were evaluated by acetone and a von Frey hair test on the hind paw, respectively. The significant allodynia signs were observed from one day after an oxaliplatin injection (6 mg/kg, i.p.). Daily administration of bvPLA2 (0.2 mg/kg, i.p.) for five consecutive days markedly attenuated cold and mechanical allodynia, which was more potent than the effect of BV (1 mg/kg, i.p.). The depletion of noradrenaline by an injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4, 50 mg/kg, i.p.) blocked the analgesic effect of bvPLA2, whereas the depletion of serotonin by injecting DL-p-chlorophenylalanine (PCPA, 150 mg/kg, i.p.) for three successive days did not. Furthermore, idazoxan (α2-adrenegic receptor antagonist, 1 mg/kg, i.p.) completely blocked bvPLA2-induced anti-allodynic action, whereas prazosin (α1-adrenegic antagonist, 10 mg/kg, i.p.) did not. These results suggest that bvPLA2 treatment strongly alleviates oxaliplatin-induced acute cold and mechanical allodynia in mice through the activation of the noradrenergic system, via α2-adrenegic receptors, but not via the serotonergic system.
Collapse
Affiliation(s)
- Dongxing Li
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Younju Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Woojin Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Kyungjin Lee
- Department of Herbology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| |
Collapse
|
11
|
Drummond ES, Dawson LF, Finch PM, Li W, Guo TZ, Kingery WS, Drummond PD. Increased bilateral expression of α1-adrenoceptors on peripheral nerves, blood vessels and keratinocytes does not account for pain or neuroinflammatory changes after distal tibia fracture in rats. Neuroscience 2014; 281:99-109. [PMID: 25267387 DOI: 10.1016/j.neuroscience.2014.09.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 11/25/2022]
Abstract
In certain forms of nerve injury and inflammation, noradrenaline augments pain via actions on up-regulated α1-adrenoceptors (α1-ARs). The aim of this study was to use immunohistochemistry to examine α1-AR expression on peripheral neurons, cutaneous blood vessels and keratinocytes after distal tibia fracture and cast immobilization, a model of complex regional pain syndrome type 1. We hypothesized that there would be increased α1-AR expression on neurons and keratinocytes in the injured limb in comparison to the contralateral unaffected limb after distal tibia fracture, in association with inflammatory changes and pain. α1-AR expression was increased on plantar keratinocytes, dermal blood vessels and peripheral nerve fibers at 16weeks after injury both in the fractured and contralateral uninjured limb. Similar changes were seen in controls whose limb had been immobilized in a cast for 4weeks but not fractured. Neurofilament 200 (NF200), a marker of myelinated neurons, and calcitonin gene-related peptide (CGRP), a neuropeptide involved in neuro-inflammatory signaling, decreased 4weeks after fracture and casting but then increased at the 16-week time point. As some of these changes were also detected in the contralateral hind limb, they probably were triggered by a systemic response to fracture and casting. Soon after the cast was removed, intraplantar injections of the α1-AR antagonist prazosin released local vasoconstrictor tone but had no effect on pain behaviors. However, systemic injection of prazosin inhibited behavioral signs of pain, suggesting that fracture and/or casting triggered an up-regulation of α1-ARs in central nociceptive pathways that augmented pain. Together, these findings indicate that α1-AR expression increases in the hind limbs after distal tibia fracture and cast immobilization. However, these peripheral increases do not contribute directly to residual pain.
Collapse
Affiliation(s)
- E S Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - L F Dawson
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - P M Finch
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - W Li
- Physical Medicine and Rehabilitation Services, VAPAHCS, Palo Alto, CA, USA; Department of Anesthesia, Stanford University, Stanford, CA, USA
| | - T-Z Guo
- Physical Medicine and Rehabilitation Services, VAPAHCS, Palo Alto, CA, USA
| | - W S Kingery
- Physical Medicine and Rehabilitation Services, VAPAHCS, Palo Alto, CA, USA
| | - P D Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
12
|
Drummond PD, Drummond ES, Dawson LF, Mitchell V, Finch PM, Vaughan CW, Phillips JK. Upregulation of α1-adrenoceptors on cutaneous nerve fibres after partial sciatic nerve ligation and in complex regional pain syndrome type II. Pain 2014; 155:606-616. [DOI: 10.1016/j.pain.2013.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
13
|
Drummond ES, Dawson LF, Finch PM, Bennett GJ, Drummond PD. Increased Expression of Cutaneous α1-Adrenoceptors After Chronic Constriction Injury in Rats. THE JOURNAL OF PAIN 2014; 15:188-96. [DOI: 10.1016/j.jpain.2013.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
14
|
Mechanisms of electroacupuncture-induced analgesia on neuropathic pain in animal model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:436913. [PMID: 23983779 PMCID: PMC3747484 DOI: 10.1155/2013/436913] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/23/2013] [Accepted: 07/11/2013] [Indexed: 01/28/2023]
Abstract
Neuropathic pain remains as one of the most difficult clinical pain syndromes to treat. Electroacupuncture (EA), involving endogenous opioids and neurotransmitters in the central nervous system (CNS), is reported to be clinically efficacious in various fields of pain. Although multiple experimental articles were conducted to assess the effect of EA-induced analgesia, no review has been published to assess the efficacy and clarify the mechanism of EA on neuropathic pain. To this aim, this study was firstly designed to evaluate the EA-induced analgesic effect on neuropathic pain and secondly to guide and help future efforts to advance the neuropathic pain treatment. For this purpose, articles referring to the analgesic effect of acupuncture on neuropathic pain and particularly the work performed in our own laboratory were analyzed. Based on the articles reviewed, the role of spinal opioidergic, adrenergic, serotonergic, cholinergic, and GABAergic receptors in the mechanism of EA-induced analgesia was studied. The results of this research demonstrate that μ and δ opioid receptors, α2-adrenoreceptors, 5-HT1A and 5-HT3 serotonergic receptors, M1 muscarinic receptors, and GABAA and GABAB GABAergic receptors are involved in the mechanisms of EA-induced analgesia on neuropathic pain.
Collapse
|
15
|
|
16
|
Drummond PD. A possible role of the locus coeruleus in complex regional pain syndrome. Front Integr Neurosci 2012; 6:104. [PMID: 23162445 PMCID: PMC3492846 DOI: 10.3389/fnint.2012.00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/23/2012] [Indexed: 12/27/2022] Open
Abstract
Heightened sensitivity to painful stimulation commonly spreads from the affected limb to the ipsilateral forehead in patients with complex regional pain syndrome (CRPS). In addition, acoustic startle evokes greater auditory discomfort and increases in limb pain when presented on the affected than unaffected side. In contrast, limb pain ordinarily evokes analgesia in the ipsilateral forehead of healthy participants, and acoustic startle suppresses limb pain. Together, these findings suggest that hemilateral and generalized pain control mechanisms are disrupted in CRPS, and that multisensory integrative processes are compromised. Failure to inhibit nociceptive input from the CRPS-affected limb could sensitize spinal and supraspinal neurons that receive convergent nociceptive and auditory information from hemilateral body sites. Somatosensory, auditory, and emotional inputs may then aggravate pain by feeding into this sensitized nociceptive network. In particular, a disturbance in hemilateral pain processing that involves the locus coeruleus could exacerbate the symptoms of CRPS in some patients.
Collapse
|
17
|
Segall SK, Maixner W, Belfer I, Wiltshire T, Seltzer Z, Diatchenko L. Janus molecule I: dichotomous effects of COMT in neuropathic vs nociceptive pain modalities. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2012; 11:222-35. [PMID: 22483297 DOI: 10.2174/187152712800672490] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/27/2011] [Accepted: 10/28/2012] [Indexed: 01/02/2023]
Abstract
The enzyme catechol-O-methyltransferase (COMT) has been shown to play a critical role in pain perception by regulating levels of epinephrine (Epi) and norepinephrine (NE). Although the key contribution of catecholamines to the perception of pain has been recognized for a long time, there is a clear dichotomy of observations. More than a century of research has demonstrated that increasing adrenergic transmission in the spinal cord decreases pain sensitivity in animals. Equally abundant evidence demonstrates the opposite effect of adrenergic signaling in the peripheral nervous system, where adrenergic signaling increases pain sensitivity. Viewing pain processing within spinal and peripheral compartments and determining the directionality of adrenergic signaling helps clarify the seemingly contradictory findings of the pain modulatory properties of adrenergic receptor agonists and antagonists presented in other reviews. Available evidence suggests that adrenergic signaling contributes to pain phenotypes through α(1/2) and β(2/3) receptors. While stimulation of α(2) adrenergic receptors seems to uniformly produce analgesia, stimulation of α(1) or β receptors produces either analgesic or hyperalgesic effects. Establishing the directionality of adrenergic receptor modulation of pain processing, and related COMT activity in different pain models are needed to bring meaning to recent human molecular genetic findings. This will enable the translation of current findings into meaningful clinical applications such as diagnostic markers and novel therapeutic targets for complex human pain conditions.
Collapse
Affiliation(s)
- S K Segall
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Li R, Wright CE, Winkel KD, Gershwin LA, Angus JA. The pharmacology of Malo maxima jellyfish venom extract in isolated cardiovascular tissues: A probable cause of the Irukandji syndrome in Western Australia. Toxicol Lett 2011; 201:221-9. [PMID: 21237252 DOI: 10.1016/j.toxlet.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The in vitro cardiac and vascular pharmacology of Malo maxima, a newly described jellyfish suspected of causing Irukandji syndrome in the Broome region of Western Australia, was investigated in rat tissues. In left atria, M. maxima crude venom extract (CVE; 1-100μg/mL) caused concentration-dependent inotropic responses which were unaffected by atropine (1μM), but significantly attenuated by tetrodotoxin (TTX; 0.1μM), propranolol (1μM), Mg(2+) (6mM) or calcitonin gene-related peptide antagonist (CGRP(8-37); 1μM). CVE caused no change in right atrial rate until 100μg/mL, which elicited bradycardia. This was unaffected by atropine, TTX, propranolol or CGRP(8-37). In the presence of Mg(2+), CVE 30-100μg/mL caused tachycardia. In small mesenteric arteries CVE caused concentration-dependent contractions (pEC(50) 1.03±0.07μg/mL) that were unaffected by prazosin (0.3μM), ω-conotoxin GVIA (0.1μM) or Mg(2+) (6mM). There was a 2-fold increase in sensitivity in the presence of CGRP(8-37) (3μM). TTX (0.1μM), box jellyfish Chironex fleckeri antivenom (92.6U/mL) and benextramine (3μM) decreased sensitivity by 2.6, 1.9 and 2.1-fold, respectively. CVE-induced maximum contractions were attenuated by C. fleckeri antivenom (-22%) or benextramine (-49%). M. maxima CVE appears to activate the sympathetic, but not parasympathetic, nervous system and to stimulate sensory nerve CGRP release in left atria and resistance arteries. These effects are consistent with the catecholamine excess thought to cause Irukandji syndrome, with additional actions of CGRP release.
Collapse
Affiliation(s)
- Ran Li
- Cardiovascular Therapeutics Unit, Department of Pharmacology, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
19
|
Park CH, Yong A, Lee SH. Involvement of selective alpha-2 adrenoreceptor in sympathetically maintained pain. J Korean Neurosurg Soc 2010; 47:420-3. [PMID: 20617085 DOI: 10.3340/jkns.2010.47.6.420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/28/2010] [Accepted: 05/23/2010] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Peripheral nerve injury often leads to neuropathic pain, which is characterized by burning pain, allodynia, and hyperalgesia. The role of the sympathetic nervous system in neuropathic pain is a complex and controversial issue. It is generally accepted that the alpha adrenoreceptor (AR) in sympathetic nerve system plays a significant role in the maintenance of pain. Among alpha adrenoreceptor, alpha-1 receptors play a major role in the sympathetic mediated pain. The primary goal of this study is to test the hypothesis that sympathetically maintained pain involves peripheral alpha-2 receptors in human. METHODS The study was a randomized, prospective, double-blinded, crossover study involving twenty patients. The treatments were : Yohimbine (30 mg mixed in 500 mL normal saline), and Phentolamine (1 mg/kg in 500 mL normal saline) in 500 mL normal saline at 70 mL/hr initially then titrated. The patients underwent infusions on three different appointments, at least one month apart. Thus, all patients received all 2 treatments. Pain measurement was by visual analogue scale, neuropathic pain questionnaire, and McGill pain questionnaire. RESULTS There were significant decreases in the visual analogue scale, neuropathic score, McGill pain score of yohimnine, and phentolamine. CONCLUSION We conclude that alpha-2 adrenoreceptor, along with alpha-2 adrenoreceptor, may be play role in sympathetically maintained pain in human.
Collapse
Affiliation(s)
- Chan Hong Park
- Department of Anesthesiology and Pain Medicine, Daegu Wooridul Hospital, Daegu, Korea
| | | | | |
Collapse
|
20
|
Sorkin LS, Yaksh TL. Behavioral models of pain states evoked by physical injury to the peripheral nerve. Neurotherapeutics 2009; 6:609-19. [PMID: 19789066 PMCID: PMC5084283 DOI: 10.1016/j.nurt.2009.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/09/2009] [Indexed: 11/30/2022] Open
Abstract
Physical injury or compression of the root, dorsal root ganglion, or peripheral sensory axon leads to well-defined changes in biology and function. Behaviorally, humans report ongoing painful dysesthesias and aberrations in function, such that an otherwise innocuous stimulus will yield a pain report. These behavioral reports are believed to reflect the underlying changes in nerve function after injury, wherein increased spontaneous activity arises from the neuroma and dorsal root ganglion and spinal changes increase the response of spinal projection neurons. These pain states are distinct from those associated with tissue injury and pose particular problems in management. To provide for developing an understanding of the underlying mechanisms of these pain states and to promote development of therapeutic agents, preclinical models involving section, compression, and constriction of the peripheral nerve or compression of the dorsal root ganglion have been developed. These models give rise to behaviors, which parallel those observed in the human after nerve injury. The present review considers these models and their application.
Collapse
Affiliation(s)
- Linda S. Sorkin
- grid.266100.30000000121074242Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr., Mail Code 0818, 92093-0818 La Jolla, CA
| | - Tony L. Yaksh
- grid.266100.30000000121074242Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr., Mail Code 0818, 92093-0818 La Jolla, CA
| |
Collapse
|
21
|
Jeong Y, Holden JE. Lateral Hypothalamic-Induced Alpha-Adrenoceptor Modulation Occurs in a Model of Inflammatory Pain in Rats. Biol Res Nurs 2009; 10:331-9. [DOI: 10.1177/1099800408325053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous work from our lab showed that stimulation of the lateral hypothalamus (LH) produces analgesia (antinociception) in a model of thermal nociceptive pain. This antinociceptive effect is mediated by α2-adrenoceptors in the spinal cord dorsal horn. However, a concomitant, opposing hyperalgesic (pro-nociceptive) response also occurs, which is mediated by α1-adrenoceptors in the dorsal horn. Antinociception predominates but is attenuated by the pronociceptive response. To determine whether such an effect occurs in a model of inflammatory pain, we applied mustard oil (allyl isothiocyanate; 20 μl) to the left ankle of female Sprague-Dawley rats. We then stimulated the LH using carbamylcholine chloride (carbachol; 125 nmol). The foot withdrawal latencies were measured. Some rats received intrathecal α-adrenoceptor antagonists to determine whether the opposing α-adrenoceptor response was present. Mustard oil application produced hyperalgesia in the affected paw, while the LH stimulation increased the foot withdrawal latencies for the mustard oil paw as compared to the control group. Following carbachol microinjection in the LH, WB4101, an α1-adrenoceptor antagonist, produced significantly longer foot withdrawal latencies compared to saline controls, while yohimbine, an α2-antagonist, decreased the foot withdrawal latencies from 10 min postinjection ( p < .05). These findings support the hypothesis that the LH-induced nociceptive modulation is mediated through an α-adrenoceptor opposing response in a model of inflammatory pain.
Collapse
Affiliation(s)
- Younhee Jeong
- College of Nursing Science, Kyunghee University, Seoul,
Korea
| | - Janean E. Holden
- University of Illinois at Chicago, and Department of
Medical-Surgical Nursing, College of Nursing, Chicago, Illinois,
| |
Collapse
|
22
|
Xanthos DN, Coderre TJ. Sympathetic vasoconstrictor antagonism and vasodilatation relieve mechanical allodynia in rats with chronic postischemia pain. THE JOURNAL OF PAIN 2008; 9:423-33. [PMID: 18262849 PMCID: PMC4531090 DOI: 10.1016/j.jpain.2007.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/13/2007] [Accepted: 12/18/2007] [Indexed: 11/29/2022]
Abstract
UNLABELLED Chronic pain that responds to antisympathetic treatments and alpha-adrenergic antagonists is clinically referred to as sympathetically maintained pain. Animal models of neuropathic pain have shown mixed results in terms of antinociceptive effectiveness of antisympathetic agents. The effectiveness of these agents have not been yet investigated in animal models of complex regional pain syndrome-type 1 (CRPS-I). In this study, we examined the effectiveness of antisympathetic agents and sympathetic vasoconstrictor antagonists, as well as agents that are vasodilators, in relieving mechanical allodynia in a recently developed animal model of CRPS-I (chronic postischemia pain or CPIP) produced by 3 hours of hind paw ischemia-reperfusion injury. Systemic guanethidine, phentolamine, clonidine, and prazosin are effective in reducing mechanical allodynia particularly at 2 days after reperfusion, and less so at 7 days after reperfusion. A nitric oxide donor vasodilator, SIN-1, also reduces mechanical allodynia more effectively at 2 days after reperfusion, but not at 7 days after reperfusion. These results suggest that the pain of CPIP, and possibly also CRPS-I, is relieved by reducing sympathetically mediated vasoconstriction, or enhancing vasodilatation. PERSPECTIVE The results of this study indicate that sympathetic block, or administration of alpha(1)-adrenergic antagonists, clonidine, or a nitric oxide donor, relieve allodynia in an animal model of CRPS-I. Thus, the pain of CRPS-I may depend on enhanced vasoconstrictor responsiveness, which may be relieved by blocking sympathetic efferent-dependent vasoconstriction, or by enhancing nitric oxide-dependent vasodilatation.
Collapse
Affiliation(s)
- Dimitris N. Xanthos
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Terence J. Coderre
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Zhao C, Chen L, Tao YX, Tall JM, Borzan J, Ringkamp M, Meyer RA, Raja SN. Lumbar sympathectomy attenuates cold allodynia but not mechanical allodynia and hyperalgesia in rats with spared nerve injury. THE JOURNAL OF PAIN 2007; 8:931-7. [PMID: 17693138 DOI: 10.1016/j.jpain.2007.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 05/30/2007] [Accepted: 06/17/2007] [Indexed: 11/24/2022]
Abstract
UNLABELLED In certain patients with neuropathic pain, the pain is dependent on activity in the sympathetic nervous system. To investigate whether the spared nerve injury model (SNI) produced by injury to the tibial and common peroneal nerves and leaving the sural nerve intact is a model for sympathetically maintained pain, we measured the effects of surgical sympathectomy on the resulting mechanical allodynia, mechanical hyperalgesia, and cold allodynia. Decreases of paw withdrawal thresholds to von Frey filament stimuli and increases in duration of paw withdrawal to pinprick or acetone stimuli were observed in the ipsilateral paw after SNI, compared with their pre-SNI baselines. Compared with sham surgery, surgical lumbar sympathectomy had no effect on the mechanical allodynia and mechanical hyperalgesia induced by SNI. However, the sympathectomy significantly attenuated the cold allodynia induced by SNI. These results suggest that the allodynia and hyperalgesia to mechanical stimuli in the SNI model is not sympathetically maintained. However, the sympathetic nervous system may be involved, in part, in the mechanisms of cold allodynia in the SNI model. PERSPECTIVE The results of our study suggest that the SNI model is not an appropriate model of sympathetically maintained mechanical allodynia and hyperalgesia but may be useful to study the mechanisms of cold allodynia associated with sympathetically maintained pain states.
Collapse
Affiliation(s)
- Chengshui Zhao
- Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nackley AG, Tan KS, Fecho K, Flood P, Diatchenko L, Maixner W. Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both beta2- and beta3-adrenergic receptors. Pain 2006; 128:199-208. [PMID: 17084978 PMCID: PMC1905861 DOI: 10.1016/j.pain.2006.09.022] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 11/19/2022]
Abstract
Catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, has recently been implicated in the modulation of pain. Our group demonstrated that human genetic variants of COMT are predictive for the development of Temporomandibular Joint Disorder (TMJD) and are associated with heightened experimental pain sensitivity [Diatchenko, L, Slade, GD, Nackley, AG, Bhalang, K, Sigurdsson, A, Belfer, I, et al., Genetic basis for individual variations in pain perception and the development of a chronic pain condition, Hum Mol Genet 2005;14:135-43.]. Variants associated with heightened pain sensitivity produce lower COMT activity. Here we report the mechanisms underlying COMT-dependent pain sensitivity. To characterize the means whereby elevated catecholamine levels, resulting from reduced COMT activity, modulate heightened pain sensitivity, we administered a COMT inhibitor to rats and measured behavioral responsiveness to mechanical and thermal stimuli. We show that depressed COMT activity results in enhanced mechanical and thermal pain sensitivity. This phenomenon is completely blocked by the nonselective beta-adrenergic antagonist propranolol or by the combined administration of selective beta(2)- and beta(3)-adrenergic antagonists, while administration of beta(1)-adrenergic, alpha-adrenergic, or dopaminergic receptor antagonists fail to alter COMT-dependent pain sensitivity. These data provide the first direct evidence that low COMT activity leads to increased pain sensitivity via a beta(2/3)-adrenergic mechanism. These findings are of considerable clinical importance, suggesting that pain conditions resulting from low COMT activity and/or elevated catecholamine levels can be treated with pharmacological agents that block both beta(2)- and beta(3)-adrenergic receptors.
Collapse
Affiliation(s)
- Andrea Gail Nackley
- Center for Neurosensory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA Comprehensive Center for Inflammatory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA Division of Pain Medicine, Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7010, USA
| | | | | | | | | | | |
Collapse
|
25
|
Klass M, Hord A, Wilcox M, Denson D, Csete M. A role for endothelin in neuropathic pain after chronic constriction injury of the sciatic nerve. Anesth Analg 2005; 101:1757-1762. [PMID: 16301255 DOI: 10.1213/01.ane.0000180766.74782.7e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to explore the role of endothelin in neuropathic pain. Endothelins (ET) are a family (ET-1, ET-2, ET-3) of ubiquitously expressed peptides involved in control of vascular tone. Injected ET-1 causes intense pain via activation of ETA receptors, modulated by analgesic signals initiated by ETB receptor activation. Using a rat model of chronic constriction injury of the sciatic nerve, we found that pharmacologic ETA receptor antagonism acutely and significantly reduced thermal and mechanical hyperalgesic responses 5 days after injury. Furthermore, ET-1 and the ETA receptor are locally upregulated at the site of chronic constriction injury at both the message and the protein levels, suggesting that ET-1 may be involved in establishing pain after the injury. These data point to ET-1 as an important mediator of pain in general and suggest that ETA antagonism deserves study as a potential novel therapy for neuropathic pain.
Collapse
Affiliation(s)
- Markus Klass
- Departments of Anesthesiology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | |
Collapse
|
26
|
Kim SK, Park JH, Bae SJ, Kim JH, Hwang BG, Min BI, Park DS, Na HS. Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp Neurol 2005; 195:430-6. [PMID: 16054138 DOI: 10.1016/j.expneurol.2005.06.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/12/2005] [Accepted: 06/06/2005] [Indexed: 12/14/2022]
Abstract
The present study was performed to examine the effects of electroacupuncture (EA) on cold allodynia and its mechanisms related to the spinal adrenergic and serotonergic systems in a rat model of neuropathic pain. For the neuropathic surgery, the right superior caudal trunk was resected at the level between S1 and S2 spinal nerves innervating the tail. Two weeks after the nerve injury, EA stimulation (2 or 100 Hz) was delivered to Zusanli (ST36) for 30 min. The behavioral signs of cold allodynia were evaluated by the tail immersion test [i.e., immersing the tail in cold water (4 degrees C) and measuring the latency to an abrupt tail movement] before and after the stimulation. And then, we examined the effects of intrathecal injection of prazosin (alpha1-adrenoceptor antagonist, 30 microg), yohimbine (alpha2-adrenoceptor antagonist, 30 microg), NAN-190 (5-HT1A antagonist, 15 microg), ketanserin (5-HT2A antagonist, 30 microg), and MDL-72222 (5-HT3 antagonist, 12 microg) on the action of EA stimulation. Although both 2 Hz and 100 Hz EA significantly relieved the cold allodynia signs, 2 Hz EA induced more robust effects than 100 Hz EA. In addition, intrathecal injection of yohimbine, NAN-190, and MDL-72222, but not prazosin and ketanserin, significantly blocked the relieving effects of 2 Hz EA on cold allodynia. These results suggest that low-frequency (2 Hz) EA is more suitable for the treatment of cold allodynia than high-frequency (100 Hz) EA, and spinal alpha2-adrenergic, 5-HT1A and 5-HT3, but not alpha1-adrenergic and 5-HT2A, receptors play important roles in mediating the relieving effects of 2 Hz EA on cold allodynia in neuropathic rats.
Collapse
Affiliation(s)
- Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung-Hee University, Dongdaemoon-Gu, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim SK, Min BI, Kim JH, Hwang BG, Yoo GY, Park DS, Na HS. Effects of α1- and α2-adrenoreceptor antagonists on cold allodynia in a rat tail model of neuropathic pain. Brain Res 2005; 1039:207-10. [PMID: 15781064 DOI: 10.1016/j.brainres.2005.01.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
Systemic administrations (0.1, 0.5, and 2 mg/kg) of alpha1-adrenoreceptor (AR) antagonist prazosin dose-dependently attenuated cold allodynia in a rat tail model of neuropathic pain, whereas alpha2-AR antagonist yohimbine exacerbated it. These results suggest that the functions of alpha1- and alpha2-AR in this model are excitatory and inhibitory, respectively, consistent with their general properties. It is also proposed that cold allodynia can be reversed by alpha1-AR antagonist and exacerbated by alpha2-AR antagonist.
Collapse
Affiliation(s)
- Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung-Hee University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Waldron JB, Sawynok J. Peripheral P2X receptors and nociception: interactions with biogenic amine systems. Pain 2004; 110:79-89. [PMID: 15275755 DOI: 10.1016/j.pain.2004.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 03/04/2004] [Indexed: 01/12/2023]
Abstract
ATP is implicated in peripheral nociception following activation of P2X, and particularly P2X(3) receptors. The present study examined interactions between alphabeta-methylene-ATP (a P2X(3) receptor ligand) and 5-hydroxytryptamine (5-HT), noradrenaline (NA) and histamine, following local administration into the hindpaw, on spontaneous pain behaviors and thermal hyperalgesia in Sprague-Dawley rats. The interaction with NA was further explored using systemic 6-hydroxydopamine (6-OHDA) and locally administered indomethacin. alphabeta-methylene-ATP produced no spontaneous pain behaviors. Coadministration of 5-HT with alphabeta-methylene-ATP mildly augmented flinching behaviors, while histamine had no such effect. Coadministration of NA with alphabeta-methylene-ATP produced a pronounced expression of flinching and biting/licking behaviors. alphabeta-Methylene-ATP, given alone, produced thermal hyperalgesia, and this was markedly augmented by both 5-HT and NA, but not histamine. 6-OHDA (neurotoxin for sympathetic neurons) and indomethacin (cyclooxygenase inhibitor) reduced the augmenting effect of NA on alphabeta-methylene-ATP-induced thermal hyperalgesia, but had no effect on spontaneous pain behaviors produced by the alphabeta-methylene-ATP/NA combination. Effects of alphabeta-methylene-ATP, NA and their combination were also examined in Long Evans and Wistar rats. In both strains, alphabeta-methylene-ATP and NA both individually led to significant intrinsic flinching behaviors, and the effect of their combination was even more pronounced than in Sprague-Dawley rats. These results provide evidence for: (a) a strong enhancement by NA and 5-HT of nociception produced by peripheral P2X receptors in Sprague-Dawley rats, (b) an indirect action of NA, via sympathetic efferents and prostanoids, with thermal hyperalgesia, and (c) a greater expression of spontaneous pain behaviors with alphabeta-methylene-ATP and NA alone, and with their combination, in Wistar and Long Evans rats compared to Sprague-Dawley rats.
Collapse
Affiliation(s)
- James B Waldron
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, Canada B3H 1X5
| | | |
Collapse
|
29
|
Ren Y, Zou X, Fang L, Lin Q. Sympathetic modulation of activity in Adelta- and C-primary nociceptive afferents after intradermal injection of capsaicin in rats. J Neurophysiol 2004; 93:365-77. [PMID: 15371497 DOI: 10.1152/jn.00804.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropathic and inflammatory pain can be modulated by the sympathetic nervous system. In some pain models, sympathetic postganglionic efferents are involved in the modulation of nociceptive transmission in the periphery. The purpose of this study is to examine the sensitization of Adelta- and C-primary afferent nociceptors induced by intradermal injection of capsaicin (CAP) to see whether the presence of sympathetic efferents is essential for the sensitization. Single primary afferent discharges were recorded from the tibial nerve after the fiber types were identified by conduction velocity in anesthetized rats. An enhanced response of some Adelta- and most C-primary afferent fibers to mechanical stimuli was seen in sham-sympathectomized rats after CAP (1%, 15 mul) injection, but the enhanced responses of both Adelta- and C-fibers were reduced after sympathetic postganglionic efferents were removed. Peripheral pretreatment with norepinephrine by intraarterial injection could restore and prolong the CAP-induced enhancement of responses under sympathectomized conditions. In sympathetically intact rats, pretreatment with an alpha(1)-adrenergic receptor antagonist (terazosin) blocked completely the enhanced responses of C-fibers after CAP injection in sympathetically intact rats without significantly affecting the enhanced responses of Adelta-fibers. In contrast, a blockade of alpha(2)-adrenergic receptors by yohimbine only slightly reduced the CAP-evoked enhancement of responses. We conclude that the presence of sympathetic efferents is essential for the CAP-induced sensitization of Adelta- and C-primary afferent fibers to mechanical stimuli and that alpha(1)-adrenergic receptors play a major role in the sympathetic modulation of C-nociceptor sensitivity in the periphery.
Collapse
Affiliation(s)
- Yong Ren
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
30
|
Roh DH, Kwon YB, Kim HW, Ham TW, Yoon SY, Kang SY, Han HJ, Lee HJ, Beitz AJ, Lee JH. Acupoint stimulation with diluted bee venom (apipuncture) alleviates thermal hyperalgesia in a rodent neuropathic pain model: Involvement of spinal alpha2-adrenoceptors. THE JOURNAL OF PAIN 2004; 5:297-303. [PMID: 15336634 DOI: 10.1016/j.jpain.2004.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/04/2004] [Accepted: 05/04/2004] [Indexed: 11/28/2022]
Abstract
UNLABELLED Chemical acupuncture with diluted bee venom (DBV), termed apipuncture, has been traditionally used in oriental medicine to treat several inflammatory diseases and chronic pain conditions. In the present study we investigated the potential antihyperalgesic and antiallodynic effects of apipuncture in a rat neuropathic pain model. DBV (0.25 mg/kg, subcutaneous) was injected into the Zusanli acupoint 2 weeks after chronic constrictive injury (CCI) of the sciatic nerve. Between 5 and 45 minutes after DBV injection, we observed a significant reduction in the thermal hyperalgesia induced by CCI, but apipuncture failed to reduce CCI-induced mechanical allodynia. We subsequently examined whether this antihyperalgesic effect of apipuncture was related to the activation of spinal opioid receptors and/or alpha2-adrenoceptors. Intrathecal pretreatment with naloxone (10 microg/rat), an opioid receptor antagonist, did not reverse the antihyperalgesic effect of apipuncture, whereas pretreatment with idazoxan (40 microg/rat), an alpha2-adrenoceptor antagonist, completely blocked the effect of apipuncture. These results indicate that DBV-induced apipuncture significantly reduces the thermal hyperalgesia generated by CCI and also suggest that this antihyperalgesic effect is dependent on the activation of alpha2-adrenoceptors, but not opioid receptors, in the spinal cord. PERSPECTIVE The antinociceptive effect of apipuncture was evaluated in a rodent neuropathic pain model. The relieving effect of apipuncture on thermal hyperalgesia was found to be mediated by spinal alpha2-adrenoceptors, but not opioid receptors. These data suggest that apipuncture might be an effective alternative therapy for patients with painful peripheral neuropathy, especially for those who are poorly responsive to opioid analgesics.
Collapse
Affiliation(s)
- Dae-Hyun Roh
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
As demonstrated above, the anatomy and neuropharmacology of the pain pathways within the CNS, even to the level of the midbrain, are extraordinarily complex. Indeed, discussions of the effects of these agents on the neuropharmacology of the thalamus, hypothalamus, and cortex were excluded from this review owing to their adding further to this complexity. Also, the dearth of data regarding FMS pain pathophysiology necessitated a relatively generic analysis of the pain pathways. As mentioned in the introduction, the current thought is that central sensitization plays an important role in FMS. However, we see in this chapter that the behavioral state of central sensitization may be a result of alterations in either the ascending systems or in one or more descending systems. Studies to assess the presence or relative importance of such changes in FMS are difficult to perform in humans, and to date there are no animal models of FMS. Accepting these limitations, it is apparent that many drugs considered to date for the treatment of FMS do target a number of appropriate sites within both the ascending and descending pain pathways. The data regarding clinical efficacy on some good candidate agents, however, is extremely preliminary. For example, it is evident from the present analysis that SNRIs, alpha 2 agonists, and NK1 antagonists may be particularly well suited to FMS, although current data supporting their use is either anecdotal or from open-label trials [114,149]. Other sites within the pain pathways have not yet been targeted. Examples of these include the use of CCKB antagonists to block on-cell activation or of nitric oxide synthetase antagonists to block the downstream mediators of NMDA activation. Efficacy of such agents may give considerable insight into the pathophysiology of FMS. Finally, as indicated previously, FMS consists of more than just chronic pain, and the question of how sleep abnormalities, depression, fatigues, and so forth tie into disordered pain processing is being researched actively. Future research focusing on how the various manifestations of FMS relate to one another undoubtedly will lead to a more rational targeting of drugs in this complex disorder.
Collapse
Affiliation(s)
- Srinivas G Rao
- Cypress Bioscience, 4350 Executive Drive, Suite 325, San Diego, CA 92131, USA.
| |
Collapse
|
32
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
33
|
Hord AH, Chalfoun AG, Denson DD, Azevedo MI. Systemic tizanidine hydrochloride (Zanaflex) relieves thermal hyperalgesia in rats with an experimental mononeuropathy. Anesth Analg 2001; 93:1310-5. [PMID: 11682421 DOI: 10.1097/00000539-200111000-00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED We sought to determine whether tizanidine, an alpha2-agonist, relieved thermal hyperalgesia in rats with surgically induced neuropathic pain. We used a Sprague-Dawley rat model in which a chronic constriction of the sciatic nerve caused the rats to develop postural changes, mechanical allodynia, and thermal hyperalgesia. Thermal hyperalgesia was verified through paw withdrawal latency (PWL). PWL was tested before surgery, after surgery, and after injections with tizanidine (0.5, 1.0, or 2.0 mg/kg) or normal saline. Ambulatory and total movements were evaluated by placing the rats in activity cages. Thermal hyperalgesia was induced in all rats after surgery. Tizanidine, but not saline, caused a significant improvement in PWL (P < 0.05), with complete reversal of thermal hyperalgesia at all doses on postoperative Day 6. Rats who received tizanidine 2 mg/kg maintained complete reversal of thermal hyperalgesia through postoperative Day 9. Some sedation was observed with tizanidine 2 mg/kg, but not with smaller doses. We conclude that tizanidine effectively reversed thermal hyperalgesia in a rat model. IMPLICATIONS This study was conducted to determine whether tizanidine could attenuate the thermal hyperalgesia that occurs in rats with surgically induced chronic constriction of the sciatic nerve. Tizanidine was effective in reducing sensitivity to heat, as measured by paw withdrawal latency, and did not cause sedation at smaller doses.
Collapse
Affiliation(s)
- A H Hord
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|