1
|
Ashiq N, Munir F, Khan S, Yousaf A, Mahmood MH. Noble element coatings on endotracheal tubes for ventilator-associated pneumonia prevention: A systematic review and meta-analysis of randomized controlled trials in emergency care settings. Medicine (Baltimore) 2024; 103:e39750. [PMID: 39312345 PMCID: PMC11419469 DOI: 10.1097/md.0000000000039750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is the second most prevalent nosocomial infection in emergency care settings. An emerging strategy to reduce this risk involves coating endotracheal tubes (ETTs) with noble elements, leveraging the antimicrobial properties of elements such as silver, gold, and palladium. This systematic review and meta-analysis aimed to evaluate the effectiveness of noble element coatings on ETTs in reducing VAP incidence rates, mortality, duration of mechanical ventilation, and length of stay in the intensive care unit (ICU). METHODS Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a comprehensive search was conducted across 5 databases up to 2024. The quality of the randomized controlled trials was assessed using the updated Cochrane Risk of Bias (RoB) 2 tool. A random-effects meta-analysis was performed using RevMan 5.4 Comprehensive Meta-Analysis software. Statistical heterogeneity among the studies was evaluated using the Higgins I2 value, with P < .05 indicating statistical significance. RESULTS Seven randomized controlled trials from 5 countries were identified. Four studies had some concerns regarding bias, 2 had a high RoB, and 1 had a low RoB. Noble metal-coated ETTs resulted in a lower incidence of VAP compared to noncoated ETTs (relative risk, 0.76 [95% confidence interval [CI], 0.60-0.96]). However, there was no significant difference in mortality rates (relative risk, 1.06 [95% CI, 0.93-1.20]), duration of mechanical ventilation (mean difference, -0.10 [95% CI, -1.62 to 1.41]), and ICU stay (mean difference, 0.07 [95% CI, -1.98 to 2.12]). CONCLUSION Noble metal-coated ETTs effectively reduce the incidence of VAP but do not significantly impact mortality rates, the duration of mechanical ventilation, or ICU stay. Therefore, these coated ETTs should be integrated into a holistic care plan addressing all aspects of patient management in emergency care settings.
Collapse
Affiliation(s)
- Nabeel Ashiq
- Department of Emergency Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Fouzia Munir
- Department of Emergency Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Safeer Khan
- Department of Pharmaceutical Sciences, Institute of Chemical Sciences, Government College University, Lahore, Pakistan
| | - Adil Yousaf
- Green Health Pharmaceutical Company, Riyadh, Kingdom of Saudi Arabia
| | - Malik Hassan Mahmood
- Department of Pharmaceutical Sciences, Institute of Chemical Sciences, Government College University, Lahore, Pakistan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
2
|
Miar S, Gonzales G, Dion G, Ong JL, Malka R, Bizios R, Branski RC, Guda T. Electrospun composite-coated endotracheal tubes with controlled siRNA and drug delivery to lubricate and minimize upper airway injury. Biomaterials 2024; 309:122602. [PMID: 38768544 DOI: 10.1016/j.biomaterials.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Endotracheal Tubes (ETTs) maintain and secure a patent airway; however, prolonged intubation often results in unintended injury to the mucosal epithelium and inflammatory sequelae which complicate recovery. ETT design and materials used have yet to adapt to address intubation associated complications. In this study, a composite coating of electrospun polycaprolactone (PCL) fibers embedded in a four-arm polyethylene glycol acrylate matrix (4APEGA) is developed to transform the ETT from a mechanical device to a dual-purpose device capable of delivering multiple therapeutics while preserving coating integrity. Further, the composite coating system (PCL-4APEGA) is capable of sustained delivery of dexamethasone from the PCL phase and small interfering RNA (siRNA) containing polyplexes from the 4APEGA phase. The siRNA is released rapidly and targets smad3 for immediate reduction in pro-fibrotic transforming growth factor-beta 1 (TGFϐ1) signaling in the upper airway mucosa as well as suppressing long-term sequelae in inflammation from prolonged intubation. A bioreactor was used to study mucosal adhesion to the composite PCL-4APEGA coated ETTs and investigate continued mucus secretory function in ex vivo epithelial samples. The addition of the 4APEGA coating and siRNA delivery to the dexamethasone delivery was then evaluated in a swine model of intubation injury and observed to restore mechanical function of the vocal folds and maintain epithelial thickness when observed over 14 days of intubation. This study demonstrated that increase in surface lubrication paired with surface stiffness reduction significantly decreased fibrotic behavior while reducing epithelial adhesion and abrasion.
Collapse
Affiliation(s)
- Solaleh Miar
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Civil, Environmental, and Biomedical Engineering, University of Hartford, West Hartford, CT, USA.
| | - Gabriela Gonzales
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Gregory Dion
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joo L Ong
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ronit Malka
- Department of Otolaryngology - Head and Neck Surgery, Brooke Army Medical Center, JBSA, Fort Sam Houston, TX, 78234, USA.
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ryan C Branski
- Departments of Rehabilitation Medicine and Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA.
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Gasparetto J, Bressianini Jurkonis L, Ramos Dantas L, Hansen Suss P, Francisco Tuon F. Low-cost antiseptic-impregnated tracheostomy tube for the prevention of ventilator-associated pneumonia caused by multidrug-resistant bacteria: In vitro and pilot study in humans. Rev Argent Microbiol 2024:S0325-7541(24)00079-8. [PMID: 39068088 DOI: 10.1016/j.ram.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/15/2024] [Accepted: 05/09/2024] [Indexed: 07/30/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) is one of the most common causes of nosocomial infections. The aim of this study was to evaluate the antimicrobial and anti-biofilm activity of an in-house low-cost tracheostomy tube impregnated with chlorhexidine and violet crystal. The impregnated tracheostomy tubes demonstrated antimicrobial activity, including for multidrug-resistant bacteria. Fourteen patients were evaluated. During ventilation, VAP occurred in one patient in the coated group and in three patients in the control group (p=0.28). A reduction of biofilm cells was observed. This study provides preliminary evidence to support that the antiseptic impregnation of a tracheostomy tube provides significant antimicrobial activity.
Collapse
Affiliation(s)
- Juliano Gasparetto
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil; Intensive Care Unit, Hospital Universitario Cajuru, Pontificia Universidade Católica do Paraná, Curitiba, Brazil
| | - Leandro Bressianini Jurkonis
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil; Intensive Care Unit, Hospital Universitario Cajuru, Pontificia Universidade Católica do Paraná, Curitiba, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
| |
Collapse
|
4
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
5
|
Tincu RC, Cobilinschi C, Tincu IF, Macovei RA. Efficacy of Noble Metal-alloy Endotracheal Tubes in Ventilator-associated Pneumonia Prevention: a Randomized Clinical Trial. Balkan Med J 2022; 39:167-171. [PMID: 35332771 PMCID: PMC9136541 DOI: 10.4274/balkanmedj.galenos.2021.2021-7-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Endotracheal tube (ETT) is an important risk factor for the development of Ventilator-associated pneumonia (VAP), as it acts as a reservoir for infectious microorganisms and bypasses the host’s defenses. One of the preventive measures for VAP is endotracheal tube composition. It has been reported that biofilm formation is reduced by using ETTs coated with pure silver or silver compounds. However, noble metal-alloy ETTs have not been adequately studied. Aims: To evaluate the efficacy of noble metal alloy ETT (coated Bactiguard Infection Protection ETTs) in preventing VAP compared to standard non-coated ETTs in patients requiring ≥ 48 hours of mechanical ventilation and presenting for coma due to drug intoxication. Study Design: Randomized controlled study. Methods: Participants were randomized using sealed envelopes with a concealed 1:1 allocation to either the intervention group or the control group. The intervention group used a noble metal–alloy ETT, while the control group received standard ETT. The primary outcomes were the incidence of VAP (per ventilated patients) and the duration of mechanical ventilation. Results: Initially, a total of 188 patients were assessed for eligibility, and the final allocation group consisted of 180 patients, who were subsequently randomized into the intervention group (n = 97) and control group (n = 83). The incidence of VAP in the intervention and control groups was 27.83% and 43.16% (P = 0.03), and the VAP ratio per 1000 ventilation days was 51.26/1000 and 83.38/1000 (P = 0.01), respectively. The mean durations of mechanical ventilation were 3.2 ± 0.78 in the intervention group and 5.03 ± 1.88 in the control group (P = 0.22). There was no statistically significant difference between groups in terms of mortality and duration of hospital stay. Conclusion: Noble metal-alloy ETT reduces the incidence of VAP, ventilation days, and ICU stay for patients in mechanical ventilation.
Collapse
Affiliation(s)
- Radu Ciprian Tincu
- Toxicology and Intensive Care Unit Clinical Emergency Hospital Bucharest, Bucharest, Romania
| | - Cristian Cobilinschi
- Anestesiology and Intensive Care Clinical Emergency Hospital Bucharest, Bucharest, Romania
| | - Iulia Florentina Tincu
- Gastroenterology Department "Dr Victor Gomoiu" Clinical Children Hospital, Bucharest, Romania
| | - Radu Alexandru Macovei
- Gastroenterology Department "Dr Victor Gomoiu" Clinical Children Hospital, Bucharest, Romania
| |
Collapse
|
6
|
Wang Y, Cai B, Ni D, Sun Y, Wang G, Jiang H. A novel antibacterial and antifouling nanocomposite coated endotracheal tube to prevent ventilator-associated pneumonia. J Nanobiotechnology 2022; 20:112. [PMID: 35248076 PMCID: PMC8897767 DOI: 10.1186/s12951-022-01323-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The endotracheal tube (ETT) is an essential medical device to secure the airway patency in patients undergoing mechanical ventilation or general anesthesia. However, long-term intubation eventually leads to complete occlusion, ETTs potentiate biofilm-related infections, such as ventilator-associated pneumonia. ETTs are mainly composed of medical polyvinyl chloride (PVC), which adheres to microorganisms to form biofilms. Thus, a simple and efficient method was developed to fabricate CS-AgNPs@PAAm-Gelatin nanocomposite coating to achieve dual antibacterial and antifouling effects.
Results
The PAAm-Gelatin (PAAm = polyacrylamide) molecular chain gel has an interpenetrating network with a good hydrophilicity and formed strong covalent bonds with PVC-ETTs, wherein silver nanoparticles were used as antibacterial agents. The CS-AgNPs@PAAm-Gelatin coating showed great resistance and antibacterial effects against Staphylococcus aureus and Pseudomonas aeruginosa. Its antifouling ability was tested using cell, protein, and platelet adhesion assays. Additionally, both properties were comprehensively evaluated using an artificial broncho-lung model in vitro and a porcine mechanical ventilation model in vivo. These remarkable results were further confirmed that the CS-AgNPs@PAAm-Gelatin coating exhibited an excellent antibacterial capacity, an excellent stain resistance, and a good biocompatibility.
Conclusions
The CS-AgNPs@PAAm-Gelatin nanocomposite coating effectively prevents the occlusion and biofilm-related infection of PVC-ETTs by enhancing the antibacterial and antifouling properties, and so has great potential for future clinical applications.
Graphical Abstract
Collapse
|
7
|
Genetic Diversity, Antimicrobial Resistance Pattern, and Biofilm Formation in Klebsiella pneumoniae Isolated from Patients with Coronavirus Disease 2019 (COVID-19) and Ventilator-Associated Pneumonia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2347872. [PMID: 34957300 PMCID: PMC8703158 DOI: 10.1155/2021/2347872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
Introduction Patients with acute respiratory distress syndrome caused by coronavirus disease 2019 (COVID-19) are at risk for superadded infections, especially infections caused by multidrug resistant (MDR) pathogens. Before the COVID-19 pandemic, the prevalence of MDR infections, including infections caused by MDR Klebsiella pneumoniae (K. pneumoniae), was very high in Iran. This study is aimed at assessing the genetic diversity, antimicrobial resistance pattern, and biofilm formation in K. pneumoniae isolates obtained from patients with COVID-19 and ventilator-associated pneumonia (VAP) hospitalized in an intensive care unit (ICU) in Iran. Methods In this cross-sectional study, seventy K. pneumoniae isolates were obtained from seventy patients with COVID-19 hospitalized in the ICU of Shahid Beheshti hospital, Kashan, Iran, from May to September, 2020. K. pneumoniae was detected through the ureD gene. Antimicrobial susceptibility testing was done using the Kirby-Bauer disc diffusion method, and biofilm was detected using the microtiter plate assay method. Genetic diversity was also analyzed through polymerase chain reaction based on enterobacterial repetitive intergenic consensus (ERIC-PCR). The BioNumerics software (v. 8.0, Applied Maths, Belgium) was used for analyzing the data and drawing dendrogram and minimum spanning tree. Findings. K. pneumoniae isolates had varying levels of resistance to antibiotics meropenem (80.4%), cefepime-aztreonam-piperacillin/tazobactam (70%), tobramycin (61.4%), ciprofloxacin (57.7%), gentamicin (55.7%), and imipenem (50%). Around 77.14% of isolates were MDR, and 42.8% of them formed biofilm. Genetic diversity analysis revealed 28 genotypes (E1-E28) and 74.28% of isolates were grouped into ten clusters (i.e., clusters A-J). Clusters were further categorized into three major clusters, i.e., clusters E, H, and J. Antimicrobial resistance to meropenem, tobramycin, gentamicin, and ciprofloxacin in cluster J was significantly higher than cluster H, denoting significant relationship between ERIC clusters and antimicrobial resistance. However, there was no significant difference among major clusters E, H, and J respecting biofilm formation. Conclusion K. pneumoniae isolates obtained from patients with COVID-19 have high antimicrobial resistance, and 44.2% of them have genetic similarity and can be clustered in three major clusters. There is a significant difference among clusters respecting antimicrobial resistance.
Collapse
|
8
|
Oliva A, Miele MC, Al Ismail D, Di Timoteo F, De Angelis M, Rosa L, Cutone A, Venditti M, Mascellino MT, Valenti P, Mastroianni CM. Challenges in the Microbiological Diagnosis of Implant-Associated Infections: A Summary of the Current Knowledge. Front Microbiol 2021; 12:750460. [PMID: 34777301 PMCID: PMC8586543 DOI: 10.3389/fmicb.2021.750460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Implant-associated infections are characterized by microbial biofilm formation on implant surface, which renders the microbiological diagnosis challenging and requires, in the majority of cases, a complete device removal along with a prolonged antimicrobial therapy. Traditional cultures have shown unsatisfactory sensitivity and a significant advance in the field has been represented by both the application of the sonication technique for the detachment of live bacteria from biofilm and the implementation of metabolic and molecular assays. However, despite the recent progresses in the microbiological diagnosis have considerably reduced the rate of culture-negative infections, still their reported incidence is not negligible. Overall, several culture- and non-culture based methods have been developed for diagnosis optimization, which mostly relies on pre-operative and intra-operative (i.e., removed implants and surrounding tissues) samples. This review outlines the principal culture- and non-culture based methods for the diagnosis of the causative agents of implant-associated infections and gives an overview on their application in the clinical practice. Furthermore, advantages and disadvantages of each method are described.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Claudia Miele
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Dania Al Ismail
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Di Timoteo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimiliano De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Mascellino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
9
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
10
|
Shaqour B, Aizawa J, Guarch-Pérez C, Górecka Ż, Christophersen L, Martinet W, Choińska E, Riool M, Verleije B, Beyers K, Moser C, Święszkowski W, Zaat SAJ, Cos P. Coupling Additive Manufacturing with Hot Melt Extrusion Technologies to Validate a Ventilator-Associated Pneumonia Mouse Model. Pharmaceutics 2021; 13:pharmaceutics13060772. [PMID: 34064276 PMCID: PMC8224298 DOI: 10.3390/pharmaceutics13060772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Additive manufacturing is widely used to produce highly complex structures. Moreover, this technology has proven its superiority in producing tools which can be used in different applications. We designed and produced an extrusion nozzle that allowed us to hot melt extrude drug-loaded tubes. The tubes were an essential part of a new mouse ventilator-associated pneumonia (VAP) model. Ciprofloxacin (CPX) was selected for its expected activity against the pathogen Staphylococcus aureus and ease of incorporation into thermoplastic polyurethane (TPU). TPU was selected as the carrier polymer for its biocompatibility and use in a variety of medical devices such as tubing and catheters. The effect of loading CPX within the TPU polymeric matrix and the physicochemical properties of the produced tubes were investigated. CPX showed good thermal stability and in vitro activity in preventing S. aureus biofilm formation after loading within the tube’s polymeric matrix. Moreover, the produced tubes showed anti-infective efficacy in vivo. The produced tubes, which were extruded via our novel nozzle, were vital for the validation of our mouse VAP model. This model can be adopted to investigate other antibacterial and antibiofilm compounds incorporated in polymeric tubes using hot melt extrusion.
Collapse
Affiliation(s)
- Bahaa Shaqour
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 S.7, 2610 Wilrijk, Belgium; (J.A.); (P.C.)
- Mechanical and Mechatronics Engineering Department, Faculty of Engineering & Information Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
- Correspondence:
| | - Juliana Aizawa
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 S.7, 2610 Wilrijk, Belgium; (J.A.); (P.C.)
| | - Clara Guarch-Pérez
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Żaneta Górecka
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (Ż.G.); (E.C.); (W.Ś.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Lars Christophersen
- Department for Clinical Microbiology, Rigshospitalet, Henrik Harpestrengsvej 4A, Afsnit 93.01, 2100 Copenhagen, Denmark; (L.C.); (C.M.)
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1 T.2, 2610 Wilrijk, Belgium;
| | - Emilia Choińska
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (Ż.G.); (E.C.); (W.Ś.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Bart Verleije
- Voxdale bv, Bijkhoevelaan 32, 2110 Wijnegem, Belgium; (B.V.); (K.B.)
| | - Koen Beyers
- Voxdale bv, Bijkhoevelaan 32, 2110 Wijnegem, Belgium; (B.V.); (K.B.)
| | - Claus Moser
- Department for Clinical Microbiology, Rigshospitalet, Henrik Harpestrengsvej 4A, Afsnit 93.01, 2100 Copenhagen, Denmark; (L.C.); (C.M.)
| | - Wojciech Święszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (Ż.G.); (E.C.); (W.Ś.)
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 S.7, 2610 Wilrijk, Belgium; (J.A.); (P.C.)
| |
Collapse
|
11
|
Oliveira VC, Macedo AP, Melo LDR, Santos SB, Hermann PRS, Silva-Lovato CH, Paranhos HFO, Andrade D, Watanabe E. Bacteriophage Cocktail-Mediated Inhibition of Pseudomonas aeruginosa Biofilm on Endotracheal Tube Surface. Antibiotics (Basel) 2021; 10:78. [PMID: 33467548 PMCID: PMC7830274 DOI: 10.3390/antibiotics10010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Although different strategies to control biofilm formation on endotracheal tubes have been proposed, there are scarce scientific data on applying phages for both removing and preventing Pseudomonas aeruginosa biofilms on the device surface. Here, the anti-biofilm capacity of five bacteriophages was evaluated by a high content screening assay. We observed that biofilms were significantly reduced after phage treatment, especially in multidrug-resistant strains. Considering the anti-biofilm screens, two phages were selected as cocktail components, and the cocktail's ability to prevent colonization of the endotracheal tube surface was tested in a dynamic biofilm model. Phage-coated tubes were challenged with different P. aeruginosa strains. The biofilm growth was monitored from 24 to 168 h by colony forming unit counting, metabolic activity assessment, and biofilm morphology observation. The phage cocktail promoted differences of bacterial colonization; nonetheless, the action was strain dependent. Phage cocktail coating did not promote substantial changes in metabolic activity. Scanning electron microscopy revealed a higher concentration of biofilm cells in control, while tower-like structures could be observed on phage cocktail-coated tubes. These results demonstrate that with the development of new coating strategies, phage therapy has potential in controlling the endotracheal tube-associated biofilm.
Collapse
Affiliation(s)
- Viviane C. Oliveira
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, São Paulo 14040-904, Brazil; (V.C.O.); (P.R.S.H.); (D.A.)
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil; (A.P.M.); (C.H.S.-L.); (H.F.O.P.)
| | - Ana P. Macedo
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil; (A.P.M.); (C.H.S.-L.); (H.F.O.P.)
| | - Luís D. R. Melo
- Centre of Biological Engineering—CEB, University of Minho, 4710-057 Braga, Portugal; (L.D.R.M.); (S.B.S.)
| | - Sílvio B. Santos
- Centre of Biological Engineering—CEB, University of Minho, 4710-057 Braga, Portugal; (L.D.R.M.); (S.B.S.)
| | - Paula R. S. Hermann
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, São Paulo 14040-904, Brazil; (V.C.O.); (P.R.S.H.); (D.A.)
- Department of Nursing, University of Brasília, Distrito Federal, Brasília 72220-275, Brazil
| | - Cláudia H. Silva-Lovato
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil; (A.P.M.); (C.H.S.-L.); (H.F.O.P.)
| | - Helena F. O. Paranhos
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil; (A.P.M.); (C.H.S.-L.); (H.F.O.P.)
| | - Denise Andrade
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, São Paulo 14040-904, Brazil; (V.C.O.); (P.R.S.H.); (D.A.)
| | - Evandro Watanabe
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, São Paulo 14040-904, Brazil; (V.C.O.); (P.R.S.H.); (D.A.)
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil
| |
Collapse
|
12
|
Oliveira VC, Bim FL, Monteiro RM, Macedo AP, Santos ES, Silva-Lovato CH, Paranhos HFO, Melo LDR, Santos SB, Watanabe E. Identification and Characterization of New Bacteriophages to Control Multidrug-Resistant Pseudomonas aeruginosa Biofilm on Endotracheal Tubes. Front Microbiol 2020; 11:580779. [PMID: 33123112 PMCID: PMC7573221 DOI: 10.3389/fmicb.2020.580779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Studies involving antimicrobial-coated endotracheal tubes are scarce, and new approaches to control multidrug-resistant Pseudomonas aeruginosa biofilm on these devices should be investigated. In this study, five new P. aeruginosa bacteriophages from domestic sewage were isolated. All of them belong to the order Caudovirales, Myoviridae family. They are pH and heat stable and produce 27 to 46 particles after a latent period of 30 min at 37°C. Their dsDNA genome (ranging from ∼62 to ∼65 kb) encodes 65 to 89 different putative proteins. They exhibit a broad lytic spectrum and infect 69.7% of the P. aeruginosa strains tested. All the bacteriophages were able to reduce the growth of P. aeruginosa strains in planktonic form. The bacteriophages were also able to reduce the biofilm viability rates and the metabolic activity of P. aeruginosa strains in a model of biofilms associated with endotracheal tubes. In addition, scanning electron microscopy micrographs showed disrupted biofilms and cell debris after treatment of bacteriophages, revealing remarkable biofilm reduction. The lytic activity on multidrug-resistant P. aeruginosa biofilm indicates that the isolated bacteriophages might be considered as good candidates for therapeutic studies and for the application of bacteriophage-encoded products.
Collapse
Affiliation(s)
- Viviane C Oliveira
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe L Bim
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rachel M Monteiro
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Macedo
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Emerson S Santos
- Department of Clinical Toxicological and Bromatologic Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cláudia H Silva-Lovato
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Helena F O Paranhos
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Evandro Watanabe
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
13
|
Pérez-Granda MJ, Alonso B, Zavala R, Latorre MC, Hortal J, Samaniego R, Bouza E, Muñoz P, Guembe M. Selective digestive decontamination solution used as "lock therapy" prevents and eradicates bacterial biofilm in an in vitro bench-top model. Ann Clin Microbiol Antimicrob 2020; 19:44. [PMID: 32972419 PMCID: PMC7513905 DOI: 10.1186/s12941-020-00387-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Most preventing measures for reducing ventilator-associated pneumonia (VAP) are based mainly on the decolonization of the internal surface of the endotracheal tubes (ETTs). However, it has been demonstrated that bacterial biofilm can also be formed on the external surface of ETTs. Our objective was to test in vitro the efficacy of selective digestive decontamination solution (SDDs) onto ETT to prevent biofilm formation and eradicate preformed biofilms of three different microorganisms of VAP. Methods We used an in vitro model in which we applied, at the subglottic space of ETT, biofilms of either P. aeruginosa ATCC 15442, or E. coli ATCC 25922, or S. aureus ATCC 29213, and the SDDs at the same time (prophylaxis) or after 72 h of biofilm forming (treatment). ETT were incubated during 5 days with a regimen of 2 h-locks. ETT fragments were analyzed by sonication and confocal laser scanning microscopy to calculate the percentage reduction of cfu and viable cells, respectively. Results Median (IQR) percentage reduction of live cells and cfu/ml counts after treatment were, respectively, 53.2% (39.4%—64.1%) and 100% (100%–100.0%) for P. aeruginosa, and 67.9% (46.7%–78.7%) and 100% (100%–100.0%) for E. coli. S. aureus presented a complete eradication by both methods. After prophylaxis, there were absence of live cells and cfu/ml counts for all microorganisms. Conclusions SDDs used as “lock therapy” in the subglottic space is a promising prophylactic approach that could be used in combination with the oro-digestive decontamination procedure in the prevention of VAP.
Collapse
Affiliation(s)
- María Jesús Pérez-Granda
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain
| | - Beatriz Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain. .,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain. .,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario "Gregorio Marañón", C/. Dr. Esquerdo, 46, Madrid, 28007, Spain.
| | - Ricardo Zavala
- Biology Department, School of Biology, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Consuelo Latorre
- Biology Department, School of Biology, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Javier Hortal
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,Confocal Laser Scanning Microscopy Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Emilio Bouza
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain. .,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain. .,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario "Gregorio Marañón", C/. Dr. Esquerdo, 46, Madrid, 28007, Spain.
| |
Collapse
|
14
|
Avoiding ventilator-associated pneumonia: Curcumin-functionalized endotracheal tube and photodynamic action. Proc Natl Acad Sci U S A 2020; 117:22967-22973. [PMID: 32868444 DOI: 10.1073/pnas.2006759117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hospital-acquired infections are a global health problem that threatens patients' treatment in intensive care units, causing thousands of deaths and a considerable increase in hospitalization costs. The endotracheal tube (ETT) is a medical device placed in the patient's trachea to assist breathing and delivering oxygen into the lungs. However, bacterial biofilms forming at the surface of the ETT and the development of multidrug-resistant bacteria are considered the primary causes of ventilator-associated pneumonia (VAP), a severe hospital-acquired infection for significant mortality. Under these circumstances, there has been a need to administrate antibiotics together. Although necessary, it has led to a rapid increase in bacterial resistance to antibiotics. Therefore, it becomes necessary to develop alternatives to prevent and combat these bacterial infections. One possibility is to turn the ETT itself into a bactericide. Some examples reported in the literature present drawbacks. To overcome those issues, we have designed a photosensitizer-containing ETT to be used in photodynamic inactivation (PDI) to avoid bacteria biofilm formation and prevent VAP occurrence during tracheal intubation. This work describes ETT's functionalization with curcumin photosensitizer, as well as its evaluation in PDI against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli A significant photoinactivation (up to 95%) against Gram-negative and Gram-positive bacteria was observed when curcumin-functionalized endotracheal (ETT-curc) was used. These remarkable results demonstrate this strategy's potential to combat hospital-acquired infections and contribute to fighting antimicrobial resistance.
Collapse
|
15
|
Rezoagli E, Zanella A, Cressoni M, De Marchi L, Kolobow T, Berra L. Pathogenic Link Between Postextubation Pneumonia and Ventilator-Associated Pneumonia: An Experimental Study. Anesth Analg 2017; 124:1339-1346. [PMID: 28221200 DOI: 10.1213/ane.0000000000001899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The presence of an endotracheal tube is the main cause for developing ventilator-associated pneumonia (VAP), but pneumonia can still develop in hospitalized patients after endotracheal tube removal (postextubation pneumonia [PEP]). We hypothesized that short-term intubation (24 hours) can play a role in the pathogenesis of PEP. To test such hypothesis, we initially evaluated the occurrence of lung colonization and VAP in sheep that were intubated and mechanically ventilated for 24 hours. Subsequently, we assessed the incidence of lung colonization and PEP at 48 hours after extubation in sheep previously ventilated for 24 hours. METHODS To simulate intubated intensive care unit patients placed in semirecumbent position, 14 sheep were intubated and mechanically ventilated with the head elevated 30° above horizontal. Seven of them were euthanized after 24 hours (Control Group), whereas the remaining were euthanized after being awaken, extubated, and left spontaneously breathing for 48 hours after extubation (Awake Group). Criteria of clinical diagnosis of pneumonia were tested. Microbiological evaluation was performed on autopsy in all sheep. RESULTS Only 1 sheep in the Control Group met the criteria of VAP after 24 hours of mechanical ventilation. However, heavy pathogenic bacteria colonization of trachea, bronchi, and lungs (range, 10-10 colony-forming unit [CFU]/g) was reported in 4 of 7 sheep (57%). In the Awake Group, 1 sheep was diagnosed with VAP and 3 developed PEP within 48 hours after extubation (42%), with 1 euthanized at 30 hours because of respiratory failure. On autopsy, 5 sheep (71%) confirmed pathogenic bacterial growth in the lower respiratory tract (range, 10-10 CFU/g). CONCLUSIONS Twenty-four hours of intubation and mechanical ventilation in semirecumbent position leads to significant pathogenic colonization of the lower airways, which can promote the development of PEP. Strategies directed to prevent pathogenic microbiological colonization before and after mechanical ventilation should be considered to avert the onset of PEP.
Collapse
Affiliation(s)
- Emanuele Rezoagli
- From the *Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; †Department of Health Science, School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; ‡Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy; §Department of Anesthesia, Medstar-Georgetown University Hospital, Washington, DC; and ‖Pulmonary and Critical Care Medicine Branch, Section of Pulmonary and Cardiac Assist Devices, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
16
|
Klompas M, Berra L, Branson R. Beware the siren's song of novel endotracheal tube designs. Intensive Care Med 2017; 43:1708-1711. [PMID: 28364302 DOI: 10.1007/s00134-017-4778-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Richard Branson
- Division of Trauma and Critical Care, University of Cincinnati, 231 Albert Sabin Way #558, Cincinnati, OH, 545267, USA.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Lower respiratory tract infections remain one of the leading causes of death in the world. Recently, the introduction of molecular methods based on DNA sequencing and microarrays for the identification of nonculturable microorganisms and subspecies variations has challenged the previous 'one bug - one disease' paradigm, providing us with a broader view on human microbial communities and their role in the development of infectious diseases. The purpose of this review is to describe recent understanding of the role of microbiome and bacterial biofilm in the development of lung infections, and, at the same time, to present new areas of research opportunities. RECENT FINDINGS The review describes recent literature in cystic fibrosis patients, chronic obstructive pulmonary disease patients, and literature in mechanically ventilated patients that helped to elucidate the role of microbiome and biofilm formation in the development of pneumonia. SUMMARY The characterization of the human microbiome and biofilms has changed our understanding of lower respiratory tract infections. More comprehensive, sensitive, and fast methods for bacterial, fungal, and viral detection are warranted to establish the colonization of the lower respiratory tract in healthy individuals and sick patients. Future research might explore the global bacterial, fungal, and viral pulmonary ecosystems and their interdependence to target novel preventive approaches and therapeutic strategies in chronic and acute lung infections.
Collapse
|
18
|
Aguilera Xiol E, Li Bassi G, Wyncoll D, Ntoumenopoulos G, Fernandez-Barat L, Marti JD, Comaru T, De Rosa F, Rigol M, Rinaudo M, Ferrer M, Torres A. Tracheal tube biofilm removal through a novel closed-suctioning system: an experimental study. Br J Anaesth 2016; 115:775-83. [PMID: 26475806 DOI: 10.1093/bja/aev340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tracheal tube biofilm develops during mechanical ventilation. We compared a novel closed-suctioning system vs standard closed-suctioning system in the prevention of tracheal tube biofilm. METHODS Eighteen pigs, on mechanical ventilation for 76 h, with P. aeruginosa pneumonia were randomized to be tracheally suctioned via the KIMVENT* closed-suctioning system (control group) or a novel closed-suctioning system (treatment group), designed to remove tracheal tube biofilm through saline jets and an inflatable balloon. Upon autopsy, two tracheal tube hemi-sections were dissected for confocal and scanning electron microscopy. Biofilm area, maximal and minimal thickness were computed. Biofilm stage was assessed. RESULTS Sixteen animals were included in the final analysis. In the treatment and control group, the mean (sd) pulmonary burden was 3.34 (1.28) and 4.17 (1.09) log cfu gr(-1), respectively (P=0.18). Tracheal tube P. aeruginosa colonization was 5.6 (4.9-6.3) and 6.2 (5.6-6.9) cfu ml(-1) (median and interquartile range) in the treatment and control group, respectively (P=0.23). In the treatment group, median biofilm area was 3.65 (3.22-4.21) log10 μm2 compared with 4.49 (4.27-4.52) log10 μm2 in the control group (P=0.031). In the treatment and control groups, the maximal biofilm thickness was 48.3 (26.7-71.2) µm (median and interquartile range) and 88.8 (43.8-125.7) µm, respectively. The minimal thickness in the treatment and control group was 0.6 (0-4.0) µm and 23.7 (5.3-27.8) µm (P=0.040) (P=0.017). Earlier stages of biofilm development were found in the treatment group (P<0.001). CONCLUSIONS The novel CSS reduces biofilm accumulation within the tracheal tube. A clinical trial is required to confirm these findings and the impact on major outcomes.
Collapse
Affiliation(s)
- E Aguilera Xiol
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - G Li Bassi
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain University of Barcelona, Barcelona, Spain
| | - D Wyncoll
- Critical Care Unit, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - G Ntoumenopoulos
- Critical Care Unit, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom Physiotherapy Department, Guy's & St Thomas' NHS Foundation Trust, United Kingdom School of Physiotherapy, Australian Catholic University, North Sydney Campus, North Sydney, Australia
| | - L Fernandez-Barat
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - J D Marti
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - T Comaru
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - F De Rosa
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain University of Milan, Milan, Italy
| | - M Rigol
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain Department of Cardiology, Hospital Clinic, Barcelona, Spain
| | - M Rinaudo
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - M Ferrer
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain University of Barcelona, Barcelona, Spain
| | - A Torres
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Tokmaji G, Vermeulen H, Müller MCA, Kwakman PHS, Schultz MJ, Zaat SAJ. Silver-coated endotracheal tubes for prevention of ventilator-associated pneumonia in critically ill patients. Cochrane Database Syst Rev 2015; 2015:CD009201. [PMID: 26266942 PMCID: PMC6517140 DOI: 10.1002/14651858.cd009201.pub2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is one of the most common nosocomial infections in intubated and mechanically ventilated patients. Endotracheal tubes (ETTs) appear to be an independent risk factor for VAP. Silver-coated ETTs slowly release silver cations. It is these silver ions that appear to have a strong antimicrobial effect. Because of this antimicrobial effect of silver, silver-coated ETTs could be an effective intervention to prevent VAP in people who require mechanical ventilation for 24 hours or longer. OBJECTIVES Our primary objective was to investigate whether silver-coated ETTs are effective in reducing the risk of VAP and hospital mortality in comparison with standard non-coated ETTs in people who require mechanical ventilation for 24 hours or longer. Our secondary objective was to ascertain whether silver-coated ETTs are effective in reducing the following clinical outcomes: device-related adverse events, duration of intubation, length of hospital and intensive care unit (ICU) stay, costs, and time to VAP onset. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014 Issue 10, MEDLINE, EMBASE, EBSCO CINAHL, and reference lists of trials. We contacted corresponding authors for additional information and unpublished studies. We did not impose any restrictions on the basis of date of publication or language. The date of the last search was October 2014. SELECTION CRITERIA We included all randomized controlled trials (RCTs) and quasi-randomized trials that evaluated the effects of silver-coated ETTs or a combination of silver with any antimicrobial-coated ETTs with standard non-coated ETTs or with other antimicrobial-coated ETTs in critically ill people who required mechanical ventilation for 24 hours or longer. We also included studies that evaluated the cost-effectiveness of silver-coated ETTs or a combination of silver with any antimicrobial-coated ETTs. DATA COLLECTION AND ANALYSIS Two review authors (GT, HV) independently extracted the data and summarized study details from all included studies using the specially designed data extraction form. We used standard methodological procedures expected by The Cochrane Collaboration. We performed meta-analysis for outcomes when possible. MAIN RESULTS We found three eligible randomized controlled trials, with a total of 2081 participants. One of the three included studies did not mention the amount of participants and presented no outcome data. The 'Risk of bias' assessment indicated that there was a high risk of detection bias owing to lack of blinding of outcomes assessors, but we assessed all other domains to be at low risk of bias. Trial design and conduct were generally adequate, with the most common areas of weakness in blinding. The majority of participants were included in centres across North America. The mean age of participants ranged from 61 to 64 years, and the mean duration of intubation was between 3.2 and 7.7 days. One trial comparing silver-coated ETTs versus non-coated ETTs showed a statistically significant decrease in VAP in favour of the silver-coated ETT (1 RCT, 1509 participants; 4.8% versus 7.5%, risk ratio (RR) 0.64, 95% confidence interval (CI) 0.43 to 0.96; number needed to treat for an additional beneficial outcome (NNTB) = 37; low-quality evidence). The risk of VAP within 10 days of intubation was significantly lower with the silver-coated ETTs compared with non-coated ETTs (1 RCT, 1509 participants; 3.5% versus 6.7%, RR 0.51, 95% CI 0.31 to 0.82; NNTB = 32; low-quality evidence). Silver-coated ETT was associated with delayed time to VAP occurrence compared with non-coated ETT (1 RCT, 1509 participants; hazard ratio 0.55, 95% CI 0.37 to 0.84). The confidence intervals for the results of the following outcomes did not exclude potentially important differences with either treatment. There were no statistically significant differences between groups in hospital mortality (1 RCT, 1509 participants; 30.4% versus 26.6%, RR 1.09, 95% CI 0.93 to 1.29; low-quality evidence); device-related adverse events (2 RCTs, 2081 participants; RR 0.65, 95% CI 0.37 to 1.16; low-quality evidence); duration of intubation; and length of hospital and ICU stay. We found no clinical studies evaluating the cost-effectiveness of silver-coated ETTs. AUTHORS' CONCLUSIONS This review provides limited evidence that silver-coated ETT reduces the risk of VAP, especially during the first 10 days of mechanical ventilation.
Collapse
Affiliation(s)
- George Tokmaji
- Academic Medical Center, University of AmsterdamDepartment of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA)Meibergdreef 9AmsterdamNetherlands1105 AZ
| | - Hester Vermeulen
- Academic Medical Centre at the University of AmsterdamDepartment of SurgeryMeibergdreef 9AmsterdamNetherlands1100 AZ
- Amsterdam School of Health Professions, University of Applied Sciences AmsterdamFaculty of NursingAmsterdamNetherlands
| | - Marcella CA Müller
- Academic Medical Center, University of AmsterdamDepartment of Intensive CareMeibergdreef 9AmsterdamNetherlands1100 DD
| | - Paulus HS Kwakman
- Academic Medical Center, University of AmsterdamDepartment of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA)Meibergdreef 9AmsterdamNetherlands1105 AZ
| | - Marcus J Schultz
- Academic Medical Center, University of AmsterdamDepartment of Intensive CareMeibergdreef 9AmsterdamNetherlands1100 DD
- Academic Medical Center, University of AmsterdamLaboratory of Experimental Intensive Care and AnesthesiologyMeibergdreef 9AmsterdamNetherlands1105AZ
| | - Sebastian AJ Zaat
- Academic Medical Center, University of AmsterdamDepartment of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA)Meibergdreef 9AmsterdamNetherlands1105 AZ
| | | |
Collapse
|
20
|
Jones DS, McCoy CP, Andrews GP, McCrory RM, Gorman SP. Hydrogel Antimicrobial Capture Coatings for Endotracheal Tubes: A Pharmaceutical Strategy Designed to Prevent Ventilator-Associated Pneumonia. Mol Pharm 2015; 12:2928-36. [PMID: 26111258 DOI: 10.1021/acs.molpharmaceut.5b00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents a novel strategy for the prevention of ventilator-associated pneumonia that involves coating poly(vinyl chloride, PVC) endotracheal tubes (ET) with hydrogels that may be subsequently used to entrap nebulized antimicrobial solutions. Candidate hydrogels were prepared containing a range of ratios of hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAA) from 100:0 to 70:30 using free radical polymerization and, when required, simultaneous attachment to PVC was performed. The mechanical properties, glass transition temperatures, swelling kinetics, uptake of gentamicin from an aqueous medium, and gentamicin release were characterized. Increasing the MAA content of the hydrogels significantly decreased the ultimate tensile strength, % elongation at break, Young's modulus, and increased the glass transition temperature, the swelling ratio, and gentamicin uptake. Microbial (Staphylococcus aureus and Pseudomonas aeruginosa) adherence to control (drug-free) hydrogels was observed; however, while adherence to gentamicin-containing p(HEMA) occurred, no adherence occurred to gentamicin-containing HEMA:MAA copolymers. Antimicrobial persistence of gentamicin-containing hydrogels was examined by determining the zone of inhibition against each microorganism on successive days. Hydrogel composition affected the observed antimicrobial persistence, with the hydrogel composed of 70:30 HEMA:MAA exhibiting >20 days persistence against S. aureus and P. aeruginosa, respectively. To simulate clinical use, the hydrogels (coated onto PVC) were first exposed to a nebulized solution of gentamicin (4 mL, 80 mg for 20 min), and then to nebulized bacteria (4 mL ca. 1×10(9) colony forming units mL(-1), 30 min). Viable bacteria were not observed on the gentamicin-treated p(HEMA: MAA) copolymers, whereas growth was observed on gentamicin-treated p(HEMA). In light of the excellent antimicrobial activity and physicochemical properties, p(HEMA: MAA) copolymers composed of ratios of 80:20 or 70:30 HEMA: MAA were identified as potentially useful coatings of endotracheal tubes to be used in conjunction with the clinical nebulization of gentamicin and designed for the prevention of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- David S Jones
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Colin P McCoy
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Gavin P Andrews
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Roisin M McCrory
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Sean P Gorman
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| |
Collapse
|
21
|
Høiby N, Bjarnsholt T, Moser C, Bassi G, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann A, Williams C. ESCMID∗ guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 2015; 21 Suppl 1:S1-25. [DOI: 10.1016/j.cmi.2014.10.024] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/22/2023]
|
22
|
Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 2015; 78:510-43. [PMID: 25184564 DOI: 10.1128/mmbr.00013-14] [Citation(s) in RCA: 784] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called "recalcitrance" and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.
Collapse
|
23
|
Li Bassi G, Fernandez-Barat L, Saucedo L, Giunta V, Marti JD, Tavares Ranzani O, Aguilera Xiol E, Rigol M, Roca I, Muñoz L, Luque N, Esperatti M, Saco MA, Ramirez J, Vila J, Ferrer M, Torres A. Endotracheal tube biofilm translocation in the lateral Trendelenburg position. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:59. [PMID: 25887536 PMCID: PMC4355496 DOI: 10.1186/s13054-015-0785-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/03/2015] [Indexed: 12/11/2022]
Abstract
Introduction Laboratory studies demonstrated that the lateral Trendelenburg position (LTP) is superior to the semirecumbent position (SRP) in the prevention of ventilator-associated pulmonary infections. We assessed whether the LTP could also prevent pulmonary colonization and infections caused by an endotracheal tube (ETT) biofilm. Methods Eighteen pigs were intubated with ETTs colonized by Pseudomonas aeruginosa biofilm. Pigs were positioned in LTP and randomized to be on mechanical ventilatin (MV) up to 24 hour, 48 hour, 48 hour with acute lung injury (ALI) by oleic acid and 72 hour. Bacteriologic and microscopy studies confirmed presence of biofilm within the ETT. Upon autopsy, samples from the proximal and distal airways were excised for P.aeruginosa quantification. Ventilator-associated tracheobronchitis (VAT) was confirmed by bronchial tissue culture ≥3 log colony forming units per gram (cfu/g). In pulmonary lobes with gross findings of pneumonia, ventilator-associated pneumonia (VAP) was confirmed by lung tissue culture ≥3 log cfu/g. Results P.aeruginosa colonized the internal lumen of 16 out of 18 ETTs (88.89%), and a mature biofilm was consistently present. P.aeruginosa colonization did not differ among groups, and was found in 23.6% of samples from the proximal airways, and in 7.1% from the distal bronchi (P = 0.001). Animals of the 24 hour group never developed respiratory infections, whereas 20%, 60% and 25% of the animals in group 48 hour, 48 hour-ALI and 72 hour developed P.aeruginosa VAT, respectively (P = 0.327). Nevertheless, VAP never developed. Conclusions Our findings imply that during the course of invasive MV up to 72 hour, an ETT P.aeruginosa biofilm hastily colonizes the respiratory tract. Yet, the LTP compartmentalizes colonization and infection within the proximal airways and VAP never develops.
Collapse
Affiliation(s)
- Gianluigi Li Bassi
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain.
| | - Laia Fernandez-Barat
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain.
| | - Lina Saucedo
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain.
| | | | - Joan Daniel Marti
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain.
| | - Otavio Tavares Ranzani
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain. .,Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Pulmonary Intensive Care Unit, São Paulo, Brazil.
| | - Eli Aguilera Xiol
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain.
| | - Montserrat Rigol
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain.
| | - Ignasi Roca
- Department of Clinical Microbiology, School of Medicine, and Barcelona Centre for International Health Research, (CRESIB) Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | - Laura Muñoz
- Department of Clinical Microbiology, School of Medicine, and Barcelona Centre for International Health Research, (CRESIB) Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | - Nestor Luque
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain.
| | - Mariano Esperatti
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain.
| | | | - Jose Ramirez
- Pathology Department, Hospital Clinic, Barcelona, Spain.
| | - Jordi Vila
- Department of Clinical Microbiology, School of Medicine, and Barcelona Centre for International Health Research, (CRESIB) Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,University of Barcelona, Barcelona, Spain.
| | - Miguel Ferrer
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain.
| | - Antoni Torres
- Pulmonary and Critical Care Unit, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Mallorca, Spain. .,University of Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Tracheal tube obstruction in mechanically ventilated patients assessed by high-resolution computed tomography. Anesthesiology 2015; 121:1226-35. [PMID: 25254903 DOI: 10.1097/aln.0000000000000455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Tracheal intubation compromises mucus clearance and secretions accumulate inside the tracheal tube (TT). The aim of this study was to evaluate with a novel methodology TT luminal obstruction in critically ill patients. METHODS This was a three-phase study: (1) the authors collected 20 TTs at extubation. High-resolution computed tomography (CT) was performed to determine cross-sectional area (CSA) and mucus distribution within the TT; (2) five TTs partially filled with silicone were used to correlate high-resolution CT results and increased airflow resistance; and (3) 20 chest CT scans of intubated patients were reviewed for detection of secretions in ventilated patients' TT. RESULTS Postextubation TTs showed a maximum CSA reduction of (mean±SD) 24.9±3.9% (range 3.3 to 71.2%) after a median intubation of 4.5 (interquartile range 2.5 to 6.5) days. CSA progressively decreased from oral to lung end of used TTs. The luminal volume of air was different between used and new TTs for all internal diameters (P<0.01 for new vs. used TTs for all studied internal diameters). The relationship between pressure drop and increasing airflow rates was nonlinear and depended on minimum CSA available to ventilation. Weak correlation was found between TT occlusion and days of intubation (R²=0.352, P=0.006). With standard clinical chest CT scans, 6 of 20 TTs showed measurable secretions with a CSA reduction of 24.0±3.9%. CONCLUSIONS TT luminal narrowing is a common finding and correlates with increased airflow resistance. The authors propose high-resolution CT as a novel technique to visualize and quantify secretions collected within the TT lumen.
Collapse
|
25
|
Loo CY, Lee WH, Young PM, Cavaliere R, Whitchurch CB, Rohanizadeh R. Implications and emerging control strategies for ventilator-associated infections. Expert Rev Anti Infect Ther 2015; 13:379-93. [DOI: 10.1586/14787210.2015.1007045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Shorr AF, Zilberberg MD, Kollef M. Cost-Effectiveness Analysis of a Silver-Coated Endotracheal Tube to Reduce the Incidence of Ventilator-Associated Pneumonia. Infect Control Hosp Epidemiol 2015; 30:759-63. [DOI: 10.1086/599005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective.To conduct a cost-effectiveness analysis of the economic outcomes of ventilator-associated pneumonia (VAP) prevention associated with silver-coated endotracheal tubes versus uncoated endotracheal tubes.Design.We used a simple decision model based on a hypothetical 1,000-patient cohort intubated with silver-coated or uncoated endotracheal tubes. The primary end point was marginal hospital savings per case of VAP prevented (savings from using silver-coated endotracheal tubes minus acquisition cost divided by number of VAP cases prevented).Methods.We followed each branch of the decision model to VAP or no VAP and conducted Monte Carlo simulations and sensitivity analyses. Inputs for VAP incidence, relative risk reduction, and hospital costs were derived from publicly available sources. Relative risk reduction was derived from the pivotal study of the silver-coated endotracheal tube.Results.In the base-case analysis, we reduced the pivotal study relative risk in incidence of microbiologically confirmed VAP in patients intubated ≥24 hours from 35.9% to 24%. Thus, 23 of 97 expected cases of VAP could be prevented with silver-coated endotracheal tubes. The savings per case of VAP prevented was $12,840 in the base case, with assumed marginal VAP cost of $16,620 and costs of $90.00 for coated and $2.00 for uncoated endotracheal tubes. Estimates were most sensitive to assumptions regarding VAP cost and relative risk reduction with silver-coated endotracheal tubes. Nonetheless, in multivariate sensitivity analyses, the silver-coated endotracheal tubes yielded persistent savings (95% confidence interval, $9,630-$16,356) per case of VAP prevented. With other base-case inputs held constant, breakeven cost for silver-coated endotracheal tubes was $388.Conclusions.The silver-coated endotracheal tube represents a strategy for preventing VAP that may yield hospital savings.
Collapse
|
27
|
Effect of mechanical cleaning of endotracheal tubes with sterile urethral catheters to reduce biofilm formation in ventilator patients. Pediatr Crit Care Med 2013; 14:e338-43. [PMID: 23897241 DOI: 10.1097/pcc.0b013e31828aa5d6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the effectiveness of mechanical cleaning with sterile urethral catheters to prevent formation of biofilms on endotracheal tubes. METHODS Forty-five children were randomized in equal numbers to endotracheal tube cleaning group for three times a day (group A), twice daily (group B), or to a control group with no endotracheal tube cleaning (group C). Bacterial studies and confocal laser scanning microscopy were performed to assess bacterial colonization and biofilm thickness on the internal surface of the endotracheal tube. RESULTS In group B, the quantities of viable bacteria adhering to the endotracheal tube after 1 day of ventilation were similar to the control group but were significantly less by 3 days (p < 0.05). The quantities of viable bacteria adhering to the endotracheal tube in group A were significantly lower than group C from day 1 to day 7 (p < 0.05). The numbers of culture-positive endotracheal tube and lower respiratory tract secretions were both reduced in groups A and B compared with group C. Confocal laser scanning microscopy showed progressive development of mature biofilms in group C. Scattered bacteria were seen in group A with no biofilm formation. In group B, a small amount of extracellular polymeric substance was seen, with more bacterial cells than in group A. The biofilms in group B were significantly thinner than those in group C (p < 0.05). The occurrence of ventilator-associated pneumonia was significantly reduced by endotracheal tube cleaning. CONCLUSION Mechanical cleaning with sterile urethral catheters reduced bacterial colonization, prevented formation of endotracheal tube biofilm, and reduced the occurrence of ventilator-associated pneumonia.
Collapse
|
28
|
Respiratory therapy device modifications to prevent ventilator-associated pneumonia. Curr Opin Infect Dis 2013; 26:175-83. [PMID: 23286937 DOI: 10.1097/qco.0b013e32835d3349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Ventilator-associated pneumonia (VAP) is a controversial entity in the field of critical care. After years of research and significant efforts from regulatory agencies and hospitals, this complication is still frequently affecting mechanically ventilated patients, making VAP an active battleground for research. As a result, several preventive measures have recently been tested in experimental and clinical trials. Our interest is focused on those innovations related to the endotracheal tube (ETT). RECENT FINDINGS Four ETT-related VAP causative mechanisms are reviewed, together with different associated potential solutions. Technologies such as the subglottic secretion drainage and the Mucus Slurper have been studied to eliminate subglottic secretion pooling. Novel designs for the cuff and the management of its pressure may avoid leakage. Antimicrobial coatings can prevent endoluminal biofilm formation, whereas using an ETT cleaning device may also be beneficial. Finally, preserving the tracheal ciliary function will keep our best physiologic protection active. SUMMARY VAP prevention strategies are a continuously evolving field. Being able to identify the most valuable ideas needs a deep understanding of the disease pathophysiology. The role of the ETT is crucial and there is need for our standards of care to improve. This may soon be possible with newer technologies becoming increasingly available to clinicians.
Collapse
|
29
|
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356. [PMID: 25437038 PMCID: PMC4235718 DOI: 10.3390/pathogens2020288] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
30
|
Boyer A, Clouzeau B, Bui HN, Vargas F, Hilbert G, Gruson D. Nouvelles techniques pour lutter contre le biofilm de la sonde d’intubation. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-013-0689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Ferrer MCC, Hickok NJ, Eckmann DM, Composto RJ. Antibacterial Biomimetic Hybrid Films. SOFT MATTER 2013; 8:2423-2431. [PMID: 23807896 PMCID: PMC3691068 DOI: 10.1039/c2sm06969e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, we present a novel method to prepare a hybrid coating based on dextran grafted to a substrate and embedded with silver nanoparticles (Ag NPs). First, the Ag NPs are synthesized in situ in the presence of oxidized dextran in solution. Second, the oxidized dextran is exposed to an amine functionalized surface resulting in the simultaneous grafting of dextran and the trapping of Ag NPs within the layer. The NP loading is controlled by the concentration of silver nitrate, which is 2 mM (DEX-Ag2) and 5 mM (DEX-Ag5). The dried film thickness increases with silver nitrate concentration from 2 nm for dextran to 7 nm and 12 nm for DEX-Ag2 and DEX-Ag5, respectively. The grafted dextran film displays features with a diameter and height of ~ 50 nm and 2 nm, respectively. For the DEX-Ag2 and DEX-Ag5, the dextran features as well as individual Ag NPs (~ 5 nm) and aggregates of Ag NPs are observed. Larger and more irregular aggregates are observed for DEX-Ag5. Overall, the Ag NPs are embedded in the dextran film as suggested by AFM and UVO studies. In terms of its antimicrobial activity, DEX-Ag2 resists bacterial adhesion to a greater extent than DEX-Ag5, which in turn is better than dextran and silicon. Because these antibacterial hybrid coatings can be grafted to a variety of surfaces, many biomedical applications can be envisioned, ranging from coating implants to catheters.
Collapse
Affiliation(s)
- M. Carme Coll Ferrer
- The Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, US
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, US
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, US
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, US
- Russell J. Composto Phone: (215)-898-4451; Fax: (215)-573-2128; ; David M. Eckmann Phone: (215)-349-5348; Fax: (215)-349-5078;
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, US
- Russell J. Composto Phone: (215)-898-4451; Fax: (215)-573-2128; ; David M. Eckmann Phone: (215)-349-5348; Fax: (215)-349-5078;
| |
Collapse
|
32
|
Fernandez JF, Levine SM, Restrepo MI. Technologic advances in endotracheal tubes for prevention of ventilator-associated pneumonia. Chest 2012; 142:231-238. [PMID: 22796845 DOI: 10.1378/chest.11-2420] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is associated with high morbidity, mortality, and costs. Interventions to prevent VAP are a high priority in the care of critically ill patients requiring mechanical ventilation (MV). Multiple interventions are recommended by evidence-based practice guidelines to prevent VAP, but there is a growing interest in those related to the endotracheal tube (ETT) as the main target linked to VAP. Microaspiration and biofilm formation are the two most important mechanisms implicated in the colonization of the tracheal bronchial tree and the development of VAP. Microaspiration occurs when there is distal migration of microorganisms present in the secretions accumulated above the ETT cuff. Biofilm formation has been described as the development of a network of secretions and attached microorganisms that migrate along the ETT cuff polymer and inside the lumen, facilitating the transfer to the sterile bronchial tree. Therefore, our objective was to review the literature related to recent advances in ETT technologies regarding their impact on the control of microaspiration and biofilm formation in patients on MV, and the subsequent impact on VAP.
Collapse
Affiliation(s)
- Juan F Fernandez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Stephanie M Levine
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Marcos I Restrepo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX; Veterans Evidence Based Research Dissemination and Implementation Center (VERDICT), Audie L. Murphy VA Hospital, San Antonio, TX.
| |
Collapse
|
33
|
Gil-Perotin S, Ramirez P, Marti V, Sahuquillo JM, Gonzalez E, Calleja I, Menendez R, Bonastre J. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R93. [PMID: 22621676 PMCID: PMC3580639 DOI: 10.1186/cc11357] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/23/2012] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Biofilm in endotracheal tubes (ETT) of ventilated patients has been suggested to play a role in the development of ventilator-associated pneumonia (VAP). Our purpose was to analyze the formation of ETT biofilm and its implication in the response and relapse of VAP. METHODS We performed a prospective, observational study in a medical intensive care unit. Patients mechanically ventilated for more than 24 hours were consecutively included. We obtained surveillance endotracheal aspirates (ETA) twice weekly and, at extubation, ETTs were processed for microbiological assessment and scanning electron microscopy. RESULTS Eighty-seven percent of the patients were colonized based on ETA cultures. Biofilm was found in 95% of the ETTs. In 56% of the cases, the same microorganism grew in ETA and biofilm. In both samples the most frequent bacteria isolated were Acinetobacter baumannii and Pseudomonas aeruginosa. Nineteen percent of the patients developed VAP (N = 14), and etiology was predicted by ETA in 100% of the cases. Despite appropriate antibiotic treatment, bacteria involved in VAP were found in biofilm (50%). In this situation, microbial persistence and impaired response to treatment (treatment failure and relapse) were more frequent (100% vs 29%, P = 0.021; 57% vs 14%, P = 0.133). CONCLUSIONS Airway bacterial colonization and biofilm formation on ETTs are early and frequent events in ventilated patients. There is microbiological continuity between airway colonization, biofilm formation and VAP development. Biofilm stands as a pathogenic mechanism for microbial persistence, and impaired response to treatment in VAP.
Collapse
|
34
|
Ventilator-associated Pneumonia: The Potential Critical Role of Emergency Medicine in Prevention. J Emerg Med 2012; 42:353-62. [DOI: 10.1016/j.jemermed.2010.05.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/11/2009] [Accepted: 05/09/2010] [Indexed: 02/07/2023]
|
35
|
Li X, Yuan Q, Wang L, Du L, Deng L. Silver-coated endotracheal tube versus non-coated endotracheal tube for preventing ventilator-associated pneumonia among adults: a systematic review of randomized controlled trials. J Evid Based Med 2012; 5:25-30. [PMID: 23528117 DOI: 10.1111/j.1756-5391.2012.01165.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To compare the effects of using silver-coated endotracheal tube (ETT) versus non-coated ETT on the incidence of ventilator-associated pneumonia (VAP) and mortality in adult patients. METHOD We searched MEDLINE, the Cochrane Library, EMBASE, and the Chinese Biomedical Literature Database from inception to June 30, 2011. We also retrieved the reference lists of included studies and reviews. Randomized controlled trials (RCTs) comparing silver-coated ETTs versus non-coated ETTs were included. We pooled the results using a random-effect model and conducted subgroup analyses and sensitivity analyses to address the heterogeneity between studies. RESULTS We identified two eligible RCTs with a total of 1630 participants. The studies were of high quality according to Cochrane Collaboration's tool for assessing risk of bias. Compared with non-coated ETTs, silver-coated ETTs resulted in lower incidence of VAP (RR=0.64, 95% CI 0.43 to 0.96), device-related adverse events (RR=0.53, 95% CI 0.32 to 0.88), and microbiologic burden (≥10,000 CFU/mL: 0.64, 0.48 to 0.86; ≥100,000 CFU/mL: 0.62, 0.43 to 0.89). However, there was no significant difference in total mortality (RR=1.14, 95% CI 0.99 to 1.30). CONCLUSION The limited evidence from meta-analysis of two RCTs showed that using silver-coated ETTs reduced the incidence of VAP, microbiologic burden, and device-related adverse events among adult patients. Additional rigorous randomized trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Xiao Li
- Chinese Cochrane Centre/ Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
36
|
Berra L, Coppadoro A, Bittner EA, Kolobow T, Laquerriere P, Pohlmann JR, Bramati S, Moss J, Pesenti A. A clinical assessment of the Mucus Shaver: a device to keep the endotracheal tube free from secretions. Crit Care Med 2012; 40:119-24. [PMID: 21926595 PMCID: PMC3405906 DOI: 10.1097/ccm.0b013e31822e9fe3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE : We evaluated a new device designed to clean the endotracheal tube in mechanically ventilated patients, the Mucus Shaver. DESIGN : Prospective, randomized trial. SETTING : University hospital intensive care unit. PATIENTS : We enrolled 24 patients expected to remain ventilated for >72 hrs. INTERVENTIONS : The Mucus Shaver is a concentric inflatable catheter for the removal of mucus and secretions from the interior surface of the endotracheal tube. The Mucus Shaver is advanced to the distal endotracheal tube tip, inflated, and subsequently withdrawn over a period of 3-5 secs. Patients were prospectively randomized within 2 hrs of intubation to receive standard endotracheal tube suctioning treatment or standard suctioning plus Mucus Shaver use until extubation. MEASUREMENTS AND MAIN RESULTS : During the study period, demographic data, recent medical history, adverse events, and staff evaluation of the Mucus Shaver were recorded. At extubation, each endotracheal tube was removed, cultured, and analyzed by scanning electron microscopy. Twelve patients were assigned to the study group and 12 were assigned to the control group. No adverse events related to the use of the Mucus Shaver were observed. At extubation, only one endotracheal tube from the Mucus Shaver group was colonized, whereas in the control group ten endotracheal tubes were colonized (8% vs. 83%; p < .001). Scanning electron microscopy showed little secretions on the endotracheal tubes from the study group, whereas thick bacterial deposits were present on all the endotracheal tubes from the control group (p < .001 by Fisher exact test, using a maximum biofilm thickness of 30 μm as cut-off). The nursing staff was satisfied by the overall safety, feasibility, and efficacy of the Mucus Shaver. CONCLUSIONS : The Mucus Shaver is a safe, feasible, and efficient device for endotracheal tube cleaning in the clinical setting. The Mucus Shaver is helpful in preventing endotracheal tube colonization by potentially harmful microorganisms.
Collapse
Affiliation(s)
- Lorenzo Berra
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Clinical and economic burden of postoperative pulmonary complications: Patient safety summit on definition, risk-reducing interventions, and preventive strategies*. Crit Care Med 2011; 39:2163-72. [DOI: 10.1097/ccm.0b013e31821f0522] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Tokmaji G, Vermeulen H, Müller MCA, Kwakman PHS, Schultz MJ, Zaat SAJ. Silver coated endotracheal tubes for prevention of ventilator-associated pneumonia in critically ill patients. Cochrane Database Syst Rev 2011. [DOI: 10.1002/14651858.cd009201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Abstract
PURPOSE OF REVIEW The endotracheal tube (ETT) is the main avenue leading to airway contamination and subsequent ventilator-associated pneumonia (VAP) during mechanical ventilation. A number of modifications to the ETT are available, aimed at reducing the incidence of VAP. We review here available systems and devices, and clinical data regarding their efficacy. RECENT FINDINGS Three main modifications of ETTs have been developed: coating with antimicrobials, adding a suction channel for the removal of oro-pharyngeal secretions, and modifying the design of the cuff. Each of these interventions has been shown to limit bacterial colonization of the distal airways and to decrease the incidence of VAP. Data on their ultimate effect on related clinical outcomes are still lacking. SUMMARY Modifications of ETTs aimed at decreasing the onset of VAP show promising results. However, the lack of a significant effect on outcomes prompts us to use caution before recommending their widespread use.
Collapse
|
40
|
Cairns S, Thomas JG, Hooper SJ, Wise MP, Frost PJ, Wilson MJ, Lewis MAO, Williams DW. Molecular analysis of microbial communities in endotracheal tube biofilms. PLoS One 2011; 6:e14759. [PMID: 21423727 PMCID: PMC3056660 DOI: 10.1371/journal.pone.0014759] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 10/30/2010] [Indexed: 11/22/2022] Open
Abstract
Background Ventilator-associated pneumonia is the most prevalent acquired infection of patients on intensive care units and is associated with considerable morbidity and mortality. Evidence suggests that an improved understanding of the composition of the biofilm communities that form on endotracheal tubes may result in the development of improved preventative strategies for ventilator-associated pneumonia. Methodology/Principal Findings The aim of this study was to characterise microbial biofilms on the inner luminal surface of extubated endotracheal tubes from ICU patients using PCR and molecular profiling. Twenty-four endotracheal tubes were obtained from twenty mechanically ventilated patients. Denaturing gradient gel electrophoresis (DGGE) profiling of 16S rRNA gene amplicons was used to assess the diversity of the bacterial population, together with species specific PCR of key marker oral microorganisms and a quantitative assessment of culturable aerobic bacteria. Analysis of culturable aerobic bacteria revealed a range of colonisation from no growth to 2.1×108 colony forming units (cfu)/cm2 of endotracheal tube (mean 1.4×107 cfu/cm2). PCR targeting of specific bacterial species detected the oral bacteria Streptococcus mutans (n = 5) and Porphyromonas gingivalis (n = 5). DGGE profiling of the endotracheal biofilms revealed complex banding patterns containing between 3 and 22 (mean 6) bands per tube, thus demonstrating the marked complexity of the constituent biofilms. Significant inter-patient diversity was evident. The number of DGGE bands detected was not related to total viable microbial counts or the duration of intubation. Conclusions/Significance Molecular profiling using DGGE demonstrated considerable biofilm compositional complexity and inter-patient diversity and provides a rapid method for the further study of biofilm composition in longitudinal and interventional studies. The presence of oral microorganisms in endotracheal tube biofilms suggests that these may be important in biofilm development and may provide a therapeutic target for the prevention of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Scott Cairns
- University Hospital of Wales, Cardiff, United Kingdom
| | - John Gilbert Thomas
- West Virginia University, Morgantown, West Virginia, United States of America
| | | | | | | | | | | | | |
Collapse
|
41
|
Raad II, Mohamed JA, Reitzel RA, Jiang Y, Dvorak TL, Ghannoum MA, Hachem RY, Chaftari AM. The prevention of biofilm colonization by multidrug-resistant pathogens that cause ventilator-associated pneumonia with antimicrobial-coated endotracheal tubes. Biomaterials 2011; 32:2689-94. [PMID: 21295343 DOI: 10.1016/j.biomaterials.2010.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
Abstract
Ventilator-associated pneumonia (VAP) continues to be the nosocomial infection associated with the highest mortality in critically ill patients. Since silver-coated endotracheal tubes (ETT) was shown in a multicenter prospective randomized trials to decrease the risk of VAP, we compared the efficacy of two antiseptic agents such as gardine- and gendine-coated ETTs with that of silver-coated ETTs in preventing biofilm. The ETTs were tested for their ability to prevent the biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, and Candida albicans. Scanning electron microscopy studies revealed a heavy biofilm on uncoated and silver-coated ETT but not on the gardine-coated ETT. The gardine and gendine ETTs completely inhibited the formation of biofilms by all organisms tested and were more effective in preventing biofilm growth than the silver ETTs (p < 0.001). The gardine- and gendine-coated ETTs were more durable against MRSA than either the silver-coated or uncoated ETTs for up to 2 weeks (p < 0.0001). We have therefore shown that gardine- and gendine-coated ETTs are superior to silver-coated ETTs in preventing biofilm. Future animal and clinical studies are warranted to determine whether the gardine- and gendine-coated ETTs can significantly reduce the risk of VAP.
Collapse
Affiliation(s)
- Issam I Raad
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Perkins SD, Woeltje KF, Angenent LT. Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. Int J Med Microbiol 2010; 300:503-11. [PMID: 20510651 DOI: 10.1016/j.ijmm.2010.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/09/2010] [Accepted: 02/20/2010] [Indexed: 02/07/2023] Open
Abstract
Endotracheal (ET) tubes accumulate a biofilm during use, which can harbor potentially pathogenic microorganisms. The enrichment of pathogenic strains in the biofilm may lead to ventilator-associated pneumonia (VAP) with an increased morbidity rate in intensive care units. We used quantitative PCR (qPCR) and gene surveys targeting 16S rRNA genes to quantify and identify the bacterial community to detect fastidious/nonculturable organisms present among extubated ET tubes. We collected eight ET tubes with intubation periods between 12 h and 23 d from different patients in a surgical and a medical intensive care unit. Our qPCR data showed that ET tubes were colonized within 24 h. However, the variation between patients was too high to find a positive correlation between the bacterial load and intubation period. We obtained 1263 near full-length 16S rRNA gene sequences from the diverse bacterial communities. Over 70% of these sequences were associated with genera of typical oral flora, while only 6% were associated with gastrointestinal flora. The most common genus identified was Streptococcus (348/1263), followed by Prevotella (179/1263), and Neisseria (143/1263) with the highest relative concentrations for ET tubes with short intubation periods, indicating oral inoculation of the ET tubes. Our study also shows that even though potentially pathogenic bacteria existed in ET tube biofilms within 24 h of intubation, a longer intubation period increases the opportunity for these organisms to proliferate. In the ET tube that was in place for 23 d, 95% of the sequences belonged to Pseudomonas aeruginosa, which is a bacterial pathogen that is known to out compete commensal bacteria in biofilms, especially during periods of antibiotic treatment. Harboring such pathogens in ET biofilms may increase the chance of VAP, and should be aggressively monitored and prevented.
Collapse
Affiliation(s)
- Sarah D Perkins
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
43
|
Lorente L, Blot S, Rello J. New issues and controversies in the prevention of ventilator-associated pneumonia. Am J Respir Crit Care Med 2010; 182:870-6. [PMID: 20448095 DOI: 10.1164/rccm.201001-0081ci] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the past 2 years, American, Canadian, and European scientific societies have published their new evidence-based guidelines for ventilator-associated pneumonia (VAP) prevention. However, these guidelines did not review some potentially useful strategies, such as the use of an endotracheal tube with an ultrathin cuff membrane, an endotracheal tube with a low-volume/low-pressure cuff, a device for continuous monitoring of the endotracheal tube cuff pressure, a device to remove biofilm from the inner site of the endotracheal tube, and saline instillation before tracheal suctioning. Only a few guidelines analyze the time of tracheostomy, and so no firm recommendations can be made regarding its importance. In addition, the guidelines diverge on the use of heat and moisture exchangers or heated humidifiers and on the use of an endotracheal tube coated with antimicrobial agents. The current review focuses on measures of VAP prevention for which there is no clear recommendation, or the use of which is controversial. A review of the literature suggests that the use of an endotracheal tube with an ultrathin and tapered-shape cuff membrane and coated in antimicrobial agents may reduce the risk of VAP. These features offer an attractive way to optimize the VAP prevention capacity of endotracheal tubes with a lumen for subglottic secretion drainage. We believe that early tracheostomy should be considered, based on the length reduction of mechanical ventilation and intensive care unit stay, reduction of mortality, and on patient comfort, although early tracheostomy has not yet been shown to favorably impact the incidence of VAP. We believed that heat and moisture exchangers should be considered based on the benefits in terms of cost savings. More research is necessary to clarify the role of continuous cuff pressure monitoring, removal of biofilm formation in the endotracheal tubes, and routine saline instillation before tracheal suctioning.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | | | | |
Collapse
|
44
|
Afessa B, Shorr AF, Anzueto AR, Craven DE, Schinner R, Kollef MH. Association Between a Silver-Coated Endotracheal Tube and Reduced Mortality in Patients With Ventilator-Associated Pneumonia. Chest 2010; 137:1015-21. [DOI: 10.1378/chest.09-0391] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
45
|
Activity of a silver-coated endotracheal tube in preclinical models of ventilator-associated pneumonia and a study after extubation*. Crit Care Med 2010; 38:1135-40. [DOI: 10.1097/ccm.0b013e3181cd12b8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Novel Therapies in the Prevention of Ventilator-associated Pneumonia. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-77383-4_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Coffin SE, Klompas M, Classen D, Arias KM, Podgorny K, Anderson DJ, Burstin H, Calfee DP, Dubberke ER, Fraser V, Gerding DN, Griffin FA, Gross P, Kaye KS, Lo E, Marschall J, Mermel LA, Nicolle L, Pegues DA, Perl TM, Saint S, Salgado CD, Weinstein RA, Wise R, Yokoe DS. Strategies to prevent ventilator-associated pneumonia in acute care hospitals. Infect Control Hosp Epidemiol 2009; 29 Suppl 1:S31-40. [PMID: 18840087 DOI: 10.1086/591062] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections. The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals in implementing and prioritizing their ventilator-associated pneumonia (VAP) prevention efforts. Refer to the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America “Compendium of Strategies to Prevent Healthcare-Associated Infections” Executive Summary and Introduction and accompanying editorial for additional discussion.1. Occurrence of VAP in acute care facilities.a. VAP is one of the most common infections acquired by adults and children in intensive care units (ICUs).i. In early studies, it was reported that 10%-20% of patients undergoing ventilation developed VAP. More-recent publications report rates of VAP that range from 1 to 4 cases per 1,000 ventilator-days, but rates may exceed 10 cases per 1,000 ventilator-days in some neonatal and surgical patient populations. The results of recent quality improvement initiatives, however, suggest that many cases of VAP might be prevented by careful attention to the process of care.2. Outcomes associated with VAPa. VAP is a cause of significant patient morbidity and mortality, increased utilization of healthcare resources, and excess cost.i. The mortality attributable to VAP may exceed 10%.ii. Patients with VAP require prolonged periods of mechanical ventilation, extended hospitalizations, excess use of antimicrobial medications, and increased direct medical costs.
Collapse
Affiliation(s)
- Susan E Coffin
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med 2008; 35:9-29. [DOI: 10.1007/s00134-008-1336-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 10/06/2008] [Indexed: 01/15/2023]
|
49
|
Lisboa T, Kollef MH, Rello J. Prevention of VAP: the whole is more than the sum of its parts. Intensive Care Med 2008; 34:985-7. [DOI: 10.1007/s00134-008-1101-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
50
|
Internally coated endotracheal tubes with silver sulfadiazine in polyurethane to prevent bacterial colonization: a clinical trial. Intensive Care Med 2008; 34:1030-7. [PMID: 18418571 DOI: 10.1007/s00134-008-1100-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Coated medical devices have been shown to reduce catheter-related infections. We coated endotracheal tubes (ETT) with silver sulfadiazine (SSD), and tested them in a clinical study to assess the feasibility, safety, and efficacy of preventing bacterial colonization. DESIGN A prospective, randomized clinical trial, phase I-II. SETTING Academic intensive care unit (ICU). PARTICIPANTS Forty-six adult patients expected to need 12-24 h of intubation were randomized into two groups. INTERVENTIONS Patients were randomized to be intubated with a standard non-coated ETT (St-ETT, n=23; control group), or with a SSD-coated ETT (SSD-ETT, n=23). MEASUREMENTS AND RESULTS Coating with SSD prevented bacterial colonization of the ETT (frequency of colonization: SSD-ETT 0/23, St-ETT 8/23; p<0.01). No organized bacterial biofilm could be identified on the lumen of any ETT; however, SSD was associated with a thinner mucus layer (in the SSD-ETT secretion deposits ranged from 0 to 200 microm; in the St-ETT deposits ranged between 50 and 700 microm). No difference was observed between the two groups in the tracheobronchial brush samples (frequency of colonization: SSD-ETT 0/23, St-ETT 2/23; p=0.48). No adverse reactions were observed with the implementation of the novel device. CONCLUSION SSD-ETT can be safely used in preventing bacterial colonization and narrowing of the ETT in patients intubated for up to 24 h (mean intubation time 16 h).
Collapse
|