1
|
Gilbert G, Kadur Nagaraju C, Duelen R, Amoni M, Bobin P, Eschenhagen T, Roderick HL, Sampaolesi M, Sipido KR. Incomplete Assembly of the Dystrophin-Associated Protein Complex in 2D and 3D-Cultured Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2021; 9:737840. [PMID: 34805146 PMCID: PMC8599983 DOI: 10.3389/fcell.2021.737840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) are increasingly used to study genetic diseases on a human background. However, the lack of a fully mature adult cardiomyocyte phenotype of hiPSC-CM may be limiting the scope of these studies. Muscular dystrophies and concomitant cardiomyopathies result from mutations in genes encoding proteins of the dystrophin-associated protein complex (DAPC), which is a multi-protein membrane-spanning complex. We examined the expression of DAPC components in hiPSC-CM, which underwent maturation in 2D and 3D culture protocols. The results were compared with human adult cardiac tissue and isolated cardiomyocytes. We found that similarly to adult cardiomyocytes, hiPSC-CM express dystrophin, in line with previous studies on Duchenne’s disease. β-dystroglycan was also expressed, but, contrary to findings in adult cardiomyocytes, none of the sarcoglycans nor α-dystroglycan were, despite the presence of their mRNA. In conclusion, despite the robust expression of dystrophin, the absence of several other DAPC protein components cautions for reliance on commonly used protocols for hiPSC-CM maturation for functional assessment of the complete DAPC.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Chandan Kadur Nagaraju
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Matthew Amoni
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pierre Bobin
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22168954. [PMID: 34445659 PMCID: PMC8396646 DOI: 10.3390/ijms22168954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also be efficiently targeted within the heart in the widest patient population. New perspectives are clearly required to effectively address the unanswered questions concerning the identification of authentic and effectual readouts of DAC occurrence and severity. A potential way forward to achieve further therapy breakthroughs lies in combining multiomic analysis with advanced preclinical precision models. This review presents the fundamental discoveries made using relevant models of DAC and how omics approaches have been incorporated to date.
Collapse
|
3
|
Kalra S, Montanaro F, Denning C. Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? J Neuromuscul Dis 2018; 3:309-332. [PMID: 27854224 PMCID: PMC5123622 DOI: 10.3233/jnd-150133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mortality. Careful monitoring of cardiac issues is necessary but current management of cardiac involvement does not effectively protect from disease progression and cardiac failure. There is a critical need to gain new knowledge on the diverse molecular underpinnings of cardiac disease in MDs in order to guide cardiac treatment development and assist in reaching a clearer consensus on cardiac disease management in the clinic. Animal models are available for the majority of MDs and have been invaluable tools in probing disease mechanisms and in pre-clinical screens. However, there are recognized genetic, physiological, and structural differences between human and animal hearts that impact disease progression, manifestation, and response to pharmacological interventions. Therefore, there is a need to develop parallel human systems to model cardiac disease in MDs. This review discusses the current status of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC) to model cardiac disease, with a focus on Duchenne muscular dystrophy (DMD) and myotonic dystrophy (DM1). We seek to provide a balanced view of opportunities and limitations offered by this system in elucidating disease mechanisms pertinent to human cardiac physiology and as a platform for treatment development or refinement.
Collapse
Affiliation(s)
- Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Department of Molecular Neurosciences, University College London - Institute of Child Health, London, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
4
|
Alpha-Dystrobrevin and its associated proteins in human promyelocytic leukemia cells induced to apoptosis. J Proteomics 2012; 75:3291-303. [PMID: 22507200 DOI: 10.1016/j.jprot.2012.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 12/13/2022]
Abstract
Dystrobrevin is a dystrophin-related component of the dystrophin-associated protein complex (DAPC). Using alpha-dystrobrevin as indicator, we aimed to elucidate the interaction network of the DAPC with other proteins during apoptosis of promyelocytic HL-60 cells. The precise role(s) of DBs are not known, but we and others have shown that they play a role in intracellular signal transduction and cellular organization. Apoptosis was induced with etoposide in the absence or presence of Z-VAD to block caspase activity, and we then followed the cellular distribution of α-DB and its association with other proteins, using confocal imaging and cell fractions analyses after immune-precipitation with anti-α-DB and mass spectrometry. Confocal imaging revealed distinct spatial relocalizations of α-DB between the cell membrane, cytosol and nucleus after induction of apoptosis. The expression levels of the identified proteins were evaluated with computer-assisted image analysis of the gels. We thus identified associations with structural and transport proteins (tropomyosin, myosin), membrane (ADAM21, syntrophin), ER-Golgi (TGN51, eIF38) and nuclear (Lamins, ribonucleoprotein C1/C2) proteins. These results suggest that apoptosis-induction in HL-60 cells involves not only classical markers of apoptosis but also a network α-DB-associated proteins at the cell membrane, the cytoplasm and nucleus, affecting key cellular transport processes and cellular structure.
Collapse
|
5
|
Cardiac electrophysiological characteristics of the mdx 5cv mouse model of Duchenne muscular dystrophy. J Interv Card Electrophysiol 2007; 20:1-7. [DOI: 10.1007/s10840-007-9168-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
|
6
|
Mechanisms of idiopathic dilated cardiomyopathies. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000244643.62599.9e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Towbin JA. Inflammatory cardiomyopathy: there is a specific matrix destruction in the course of the disease. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:219-50. [PMID: 16329665 DOI: 10.1007/3-540-30822-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cardiomyopathies are responsible for a high proportion of cases of congestive heart failure and sudden death, as well as for the need for transplantation. Understanding of the causes of these disorders has been sought in earnest over the past decade. We hypothesized that DCM is a disease of the cytoskeleton/sarcolemma, which affects the sarcomere. Evaluation of the sarcolemma in DCM and other forms of systolic heart failure demonstrates membrane disruption; and, secondarily, the extracellular matrix architecture is also affected. Disruption of the links from the sarcolemma to ECM at the dystrophin C-terminus and those to the sarcomere and nucleus via N-terminal dystrophin interactions could lead to a "domino effect" disruption of systolic function and development of arrhythmias. We also have suggested that dystrophin mutations play a role in idiopathic DCM in males. The T-cap/MLP/alpha-actinin/titin complex appears to stabilize Z-disc function via mechanical stretch sensing. Loss of elasticity results in the primary defect in the endogenous cardiac muscle stretch sensor machinery. The over-stretching of individual myocytes leads to activation of cell death pathways, at a time when stretch-regulated survival cues are diminished due to defective stretch sensing, leading to progression of heart failure. Genetic DCM and the acquired disorder viral myocarditis have the same clinical features including heart failure, arrhythmias, and conduction block, and also similar mechanisms of disease based on the proteins targeted. In dilated cardiomyopathy, the process of progressive ventricular dilation and changes of the shape of the ventricle to a more spherical shape, associated with changes in ventricular function and/or hypertrophy, occurs without known initiating disturbance. In those cases in which resolution of cardiac dysfunction does not occur, chronic DCM results. It has been unclear what the underlying etiology of this long-term sequela could be, but viral persistence and autoimmunity have been widely speculated.
Collapse
Affiliation(s)
- J A Towbin
- Baylor College of Medicine, Texas Children's Hospital, Houston 77030, USA.
| |
Collapse
|
8
|
Abstract
In this review, we draw attention to the multiple mechanisms responsible for the pathogenesis of cardiomyopathies in patients with muscular dystrophies. More than one single mechanism is likely to be involved in the development of skeletal and cardiac muscle pathology even when there is a single protein defect. The best example is dystrophin deficiency, in which increased sarcolemmal permeability following eccentric exercise, reduced force generation, and abnormal signaling are all likely to contribute to the progressive muscle damage observed. In other conditions, such as the sarcoglycanopathies, a protein deficiency both in the striated cardiomyocte and the vascular smooth muscle appears to play a significant role. An entirely different mechanism of disease is likely in defects of nuclear envelope proteins, although the precise pathogenesis of this group of conditions is still not clear. Differences between the organization of skeletal and cardiac muscle protein complex are also only starting to emerge and will very likely be the focus of future research.
Collapse
Affiliation(s)
- Fiona C Goodwin
- Dubowitz Neuromuscular Centre, Imperial College London, Hammersmith Hospital Campus, UK
| | | |
Collapse
|
9
|
Allikian MJ, Hack AA, Mewborn S, Mayer U, McNally EM. Genetic compensation for sarcoglycan loss by integrin α7β1 in muscle. J Cell Sci 2004; 117:3821-30. [PMID: 15252120 DOI: 10.1242/jcs.01234] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disruption of the sarcoglycan complex leads to muscle membrane instability and muscular dystrophy in humans and mice. Through the dystrophin glycoprotein complex, sarcoglycan participates in connecting the internal cytoskeleton to the membrane and the extracellular matrix. Integrin α7β1 is also a transmembrane protein of skeletal and cardiac muscle that similarly links the cytoskeleton to the extracellular matrix. Mice lacking integrin α7 develop mild muscle degeneration, while sarcoglycan mutant mice display overt muscle degeneration and muscular dystrophy. In sarcoglycan-deficient muscle, integrin α7 protein was upregulated at the plasma membrane. To ascertain whether integrin α7 upregulation compensates for the loss of the transmembrane sarcoglycan linkage in sarcoglycan-deficient muscle, we generated mice lacking both integrin α7 and γ-sarcoglycan (gxi). These double-mutant gxi mice exhibit profound, rapid muscle degeneration leading to death before one month of age consistent with a weakened cellular attachment to the extracellular matrix. The regenerative capacity of gxi muscle was intact with increased embryonic myosin heavy chain expression, myofiber central nucleation and normal in vivo myoblast differentiation. Therefore, upregulation of integrin α7β1 compensates as a transmembrane muscle cell attachment for sarcoglycan consistent with overlapping roles for sarcoglycan and integrins in mediating cytoskeletal-membrane-extracellular matrix interaction.
Collapse
Affiliation(s)
- Michael J Allikian
- Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
10
|
Wheeler MT, Korcarz CE, Collins KA, Lapidos KA, Hack AA, Lyons MR, Zarnegar S, Earley JU, Lang RM, McNally EM. Secondary coronary artery vasospasm promotes cardiomyopathy progression. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1063-71. [PMID: 14982859 PMCID: PMC1614719 DOI: 10.1016/s0002-9440(10)63193-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genetic defects in the plasma membrane-associated sarcoglycan complex produce cardiomyopathy characterized by focal degeneration. The infarct-like pattern of cardiac degeneration has led to the hypothesis that coronary artery vasospasm underlies cardiomyopathy in this disorder. We evaluated the coronary vasculature of gamma-sarcoglycan mutant mice and found microvascular filling defects consistent with arterial vasospasm. However, the vascular smooth muscle sarcoglycan complex was intact in the coronary arteries of gamma-sarcoglycan hearts with perturbation of the sarcoglycan complex only within the adjacent myocytes. Thus, in this model, coronary artery vasospasm derives from a vascular smooth muscle-cell extrinsic process. To reduce this secondary vasospasm, we treated gamma-sarcoglycan-deficient mice with the calcium channel antagonist verapamil. Verapamil treatment eliminated evidence of vasospasm and ameliorated histological and functional evidence of cardiomyopathic progression. Echocardiography of verapamil-treated, gamma-sarcoglycan-null mice showed an improvement in left ventricular fractional shortening (44.3 +/- 13.3% treated versus 37.4 +/- 15.3% untreated), maximal velocity at the aortic outflow tract (114.9 +/- 27.9 cm/second versus 92.8 +/- 22.7 cm/second), and cardiac index (1.06 +/- 0.30 ml/minute/g versus 0.67 +/- 0.16 ml/minute/g, P < 0.05). These data indicate that secondary vasospasm contributes to the development of cardiomyopathy and is an important therapeutic target to limit cardiomyopathy progression.
Collapse
Affiliation(s)
- Matthew T Wheeler
- Department of Molecular Genetics and Cell Biology, Section of Cardiology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhu X, Wheeler MT, Hadhazy M, Lam MYJ, McNally EM. Cardiomyopathy is independent of skeletal muscle disease in muscular dystrophy. FASEB J 2002; 16:1096-8. [PMID: 12039854 DOI: 10.1096/fj.01-0954fje] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dystrophin and its associated proteins, the sarcoglycans, are normally expressed in heart and skeletal muscle. Mutations that alter the expression of these membrane-associated proteins lead to muscular dystrophy (MD) and cardiomyopathy in humans. Because of the timing and nature of the accompanying cardiomyopathy, it has been suggested that cardiomyopathy develops as a secondary consequence of skeletal muscle dysfunction in the muscular dystrophies. To determine whether skeletal muscle dystrophy contributes to the development of sarcoglycan-mediated cardiomyopathy, we used mice lacking gamma-sarcoglycan and inserted a transgene that "rescued" gamma-sarcoglycan expression only in skeletal muscle. Gamma-sarcoglycan was expressed in skeletal muscle under the control of the skeletal muscle-specific myosin light chain 1/3 promoter. Gamma-sarcoglycan-null mice expressing this transgene fully restore gamma-sarcoglycan expression. Furthermore, the transgene-rescued mice lack the focal necrosis and membrane permeability defects that are a hallmark of MD. Despite correction of the skeletal muscle disease, focal degeneration and membrane permeability abnormalities persisted in cardiac muscle, and notably persisted in the right ventricle. Therefore, heart and skeletal muscle defects are independent processes in sarcoglycan-mediated muscular dystrophies and, as such, therapy should target both skeletal and cardiac muscle correction to prevent sudden death due to cardiomyopathy in the muscular dystrophies.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Cardiomyopathies are disorders affecting heart muscle that usually result in inadequate pumping of the heart. They are the most common cause of heart failure and each year kill more than 10,000 people in the United States. In recent years, there have been breakthroughs in understanding the molecular mechanisms involved in this group of conditions, with knowledge of the genetic basis for cardiomyopathies perhaps seeing the largest advance, enabling clinicians to devise improved diagnostic strategies and preparing the stage for new therapies.
Collapse
Affiliation(s)
- J A Towbin
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|