1
|
Shi Q, Yang X, Greenhaw JJ, Salminen AT, Russotti GM, Salminen WF. Drug-Induced Liver Injury in Children: Clinical Observations, Animal Models, and Regulatory Status. Int J Toxicol 2017; 36:365-379. [PMID: 28820004 DOI: 10.1177/1091581817721675] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury in children (cDILI) accounts for about 1% of all reported adverse drug reactions throughout all age groups, less than 10% of all clinical DILI cases, and around 20% of all acute liver failure cases in children. The overall DILI susceptibility in children has been assumed to be lower than in adults. Nevertheless, controversial evidence is emerging about children's sensitivity to DILI, with children's relative susceptibility to DILI appearing to be highly drug-specific. The culprit drugs in cDILI are similar but not identical to DILI in adults (aDILI). This is demonstrated by recent findings that a drug frequently associated with aDILI (amoxicillin/clavulanate) was rarely associated with cDILI and that the drug basiliximab caused only cDILI but not aDILI. The fatality in reported cDILI studies ranged from 4% to 31%. According to the US Food and Drug Administration-approved drugs labels, valproic acid, dactinomycin, and ampicillin appear more likely to cause cDILI. In contrast, deferasirox, isoniazid, dantrolene, and levofloxacin appear more likely to cause aDILI. Animal models have been explored to mimic children's increased susceptibility to valproic acid hepatotoxicity or decreased susceptibility to acetaminophen or halothane hepatotoxicity. However, for most drugs, animal models are not readily available, and the underlying mechanisms for the differential reactions to DILI between children and adults remain highly hypothetical. Diagnosis tools for cDILI are not yet available. A critical need exists to fill the knowledge gaps in cDILI. This review article provides an overview of cDILI and specific drugs associated with cDILI.
Collapse
Affiliation(s)
- Qiang Shi
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Xi Yang
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - James J Greenhaw
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | | | | | | |
Collapse
|
2
|
Kim JW, Ryu SH, Kim S, Lee HW, Lim MS, Seong SJ, Kim S, Yoon YR, Kim KB. Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans. Anal Chem 2013; 85:11326-34. [PMID: 24127682 DOI: 10.1021/ac402390q] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug-induced liver injury (DILI) is currently an increasingly relevant health issue. However, available biomarkers do not reliably detect or quantify DILI risk. Therefore, the purpose of this study was to comparatively evaluate plasma and urinary biomarkers obtained from humans treated with acetaminophen (APAP) using a metabolomics approach and a proton nuclear magnetic resonance (NMR) platform. APAP (3 g/day, two 500 mg tablets every 8 h) was administered to 20 healthy Korean males (age, 20-29 years) for 7 days. Urine was collected daily before and during dosing and 6 days after the final dose. NMR spectra of these urine samples were analyzed using principal component analysis (PCA) and partial least-squares-discrimination analysis. Although the activities of aspartate aminotransferase and lactate dehydrogenase were significantly increased 7 days post-APAP treatment, serum biochemical parameters of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, γ-glutamyl transpeptidase, and lactate dehydrogenase were within normal range of hepatic function. However, urine and plasma (1)H NMR spectroscopy revealed different clustering between predosing and after APAP treatment for global metabolomic profiling through PCA. Urinary endogenous metabolites of trimethylamine-N-oxide, citrate, 3-chlorotyrosine, phenylalanine, glycine, hippurate, and glutarate as well as plasma endogenous metabolites such as lactate, glucose, 3-hydroxyisovalerate, isoleucine, acetylglycine, acetone, acetate, glutamine, ethanol, and isobutyrate responded significantly to APAP dosing in humans. Urinary and plasma endogenous metabolites were more sensitive than serum biochemical parameters. These results might be applied to predict or screen potential hepatotoxicity caused by other drugs using urinary and plasma (1)H NMR analyses.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Smart Food and Drug, Inje University , Obang-dong, Gimhae, Gyungnam 621-749, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
An J, Mehrhof F, Harms C, Lättig-Tünnemann G, Lee SLL, Endres M, Li M, Sellge G, Mandić AD, Trautwein C, Donath S. ARC is a novel therapeutic approach against acetaminophen-induced hepatocellular necrosis. J Hepatol 2013; 58:297-305. [PMID: 23046676 DOI: 10.1016/j.jhep.2012.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Acetaminophen (AAP) overdose is the most frequent cause of drug-induced liver failure. c-Jun N-terminal kinase (JNK) is thought to play a central role in AAP-induced hepatocellular necrosis. The apoptosis repressor with caspase recruitment domain (ARC) is a death repressor that inhibits death receptor and mitochondrial apoptotic signaling. Here, we investigated ARC's therapeutic effect and molecular mechanisms on AAP-induced hepatocellular necrosis. METHODS We tested the in vivo and in vitro effects of ARC fused with the transduction domain of HIV-1 (TAT-ARC) on murine AAP hepatotoxicity. RESULTS Treatment with TAT-ARC protein completely abrogated otherwise lethal liver failure induced by AAP overdose in C57BL/6 mice. AAP triggered caspase-independent necrosis, as evidenced by liver histology, elevated serum transaminases, and secreted HMGB1 that was inhibited by ARC. ARC-mediated hepatoprotection was not caused by an alteration of AAP metabolism, but resulted in reduced oxidative stress. AAP overdose led to induction of RIP-dependent signaling with subsequent JNK activation. Ectopic ARC inhibited JNK activation by specific interactions between ARC and JNK1 and JNK2. Importantly, survival of mice was even preserved when ARC therapy was initiated in a delayed manner after AAP administration. CONCLUSIONS This work identifies for the first time ARC-JNK-binding with subsequent inhibition of JNK signaling as a specific mechanism of ARC to interfere with AAP-dependent necrosis. Our data suggests that AAP-mediated induction of RIP signaling serves as a critical switch for hepatocellular necrosis. The efficacy of TAT-ARC protein transduction in murine AAP hepatotoxicity suggests its therapeutic potential for reversing AAP intoxication also in humans.
Collapse
Affiliation(s)
- Junfeng An
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang L. Pharmacogenomics: a systems approach. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2010; 2:3-22. [PMID: 20836007 PMCID: PMC3894835 DOI: 10.1002/wsbm.42] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pharmacogenetics and pharmacogenomics involve the study of the role of inheritance in individual variation in drug response, a phenotype that varies from potentially life-threatening adverse drug reactions to equally serious lack of therapeutic efficacy. Pharmacogenetics-pharmacogenomics represents a major component of the movement to 'individualized medicine'. Pharmacogenetic studies originally focused on monogenic traits, often involving genetic variation in drug metabolism. However, contemporary studies increasingly involve entire 'pathways' that include both pharmacokinetics (PKs)--factors that influence the concentration of a drug reaching its target(s)--and pharmacodynamics (PDs), factors associated with the drug target(s), as well as genome-wide approaches. The convergence of advances in pharmacogenetics with rapid developments in human genomics has resulted in the evolution of pharmacogenetics into pharmacogenomics. At the same time, studies of drug response are expanding beyond genomics to encompass pharmacotranscriptomics and pharmacometabolomics to become a systems-based discipline. This discipline is also increasingly moving across the 'translational interface' into the clinic and is being incorporated into the drug development process and governmental regulation of that process. The article will provide an overview of the development of pharmacogenetics-pharmacogenomics, the scientific advances that have contributed to the continuing evolution of this discipline, the incorporation of transcriptomic and metabolomic data into attempts to understand and predict variation in drug response phenotypes as well as challenges associated with the 'translation' of this important aspect of biomedical science into the clinic.
Collapse
Affiliation(s)
- Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 2008; 48:653-83. [PMID: 18184107 DOI: 10.1146/annurev.pharmtox.48.113006.094715] [Citation(s) in RCA: 478] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolomics is the study of metabolism at the global level. This rapidly developing new discipline has important potential implications for pharmacologic science. The concept that metabolic state is representative of the overall physiologic status of the organism lies at the heart of metabolomics. Metabolomic studies capture global biochemical events by assaying thousands of small molecules in cells, tissues, organs, or biological fluids-followed by the application of informatic techniques to define metabolomic signatures. Metabolomic studies can lead to enhanced understanding of disease mechanisms and to new diagnostic markers as well as enhanced understanding of mechanisms for drug or xenobiotic effect and increased ability to predict individual variation in drug response phenotypes (pharmacometabolomics). This review outlines the conceptual basis for metabolomics as well as analytical and informatic techniques used to study the metabolome and to define metabolomic signatures. It also highlights potential metabolomic applications to pharmacology and clinical pharmacology.
Collapse
Affiliation(s)
- Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
6
|
Wang T, Shankar K, Ronis MJ, Mehendale HM. Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit Rev Toxicol 2007; 37:413-59. [PMID: 17612954 DOI: 10.1080/10408440701215100] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase dincidences of hepatotoxicity have been observed in diabetic patients receiving drug therapies. Neither the mechanisms nor the predisposing factors underlying hepatotoxicity in diabetics are clearly understood. Animal studies designed to examine the mechanisms of diabetes-modulated hepatotoxicity have traditionally focused only on bioactivation/detoxification of drugs and toxicants. It is becoming clear that once injury is initiated, additional events determine the final outcome of liver injury. Foremost among them are two leading mechanisms: first, biochemical mechanisms that lead to progression or regression of injury; and second, whether or not timely and adequate liver tissue repair occurs to mitigate injury and restore liver function. The liver has a remarkable ability to repair and restore its structure and function after physical or chemical-induced damage. The dynamic interaction between biotransformation-based liver injury and compensatory tissue repair plays a pivotal role in determining the ultimate outcome of hepatotoxicity initiated by drugs or toxicants. In this review, mechanisms underlying altered hepatotoxicity in diabetes with emphasis on both altered bioactivation and liver tissue repair are discussed. Animal models of both marked sensitivity (diabetic rats) and equally marked protection (diabetic mice) from drug-induced hepatotoxicity are described. These examples represent a remarkable species difference. Availability of the rodent diabetic models offers a unique opportunity to uncover mechanisms of clinical interest in averting human diabetic sensitivity to drug-induced hepatotoxicities. While the rat diabetic models appear to be suitable, the diabetic mouse models might not be suitable in preclinical testing for potential hepatotoxic effects of drugs or toxicants, because regardless of type 1 or type2 diabetes, mice are resistant to acute drug-or toxicant-induced toxicities.
Collapse
Affiliation(s)
- T Wang
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
7
|
Abstract
BACKGROUND Chronic liver disease is becoming an increasingly frequent diagnosis for patients in the intensive care setting with such diagnoses as symptomatic ascites, spontaneous bacterial peritonitis, hepatorenal syndrome, or fulminant hepatic failure. OBJECTIVE To review frequent diagnoses for patients with chronic liver disease admitted to the intensive care unit and discuss current concepts in management and investigational modalities. RESULTS Patients with new-onset ascites in the intensive care setting should undergo immediate ultrasound to rule out acute thrombosis. A transjugular intrahepatic portosystemic shunt is indicated when control of the refractory ascites or hepatic hydrothorax is required. In patients with hepatorenal syndrome, hemodialysis can be used as a bridge to liver transplantation. Otherwise, hepatorenal syndrome carries a high mortality. When hepatic encephalopathy is present, a precipitating cause should be sought and treated, if identified. Although bioartificial support systems are under active investigation, standard treatment for hepatic encephalopathy is lactulose and alteration of gut flora. Patients with fulminant hepatic failure should be stabilized and transferred to the intensive care unit of a liver transplant center and supported with appropriate airway management, close neurologic evaluation, glucose monitoring, and correction of coagulopathy when there is overt bleeding or an invasive procedure is planned. Intracranial pressure monitoring is recommended to maintain an adequate cerebral perfusion pressure of >60 mm Hg. CONCLUSION Review of the literature demonstrates that certain critically ill patients with chronic liver disease may benefit from invasive modalities such as transjugular intrahepatic portosystemic shunting, hemodialysis, and in some cases, liver transplantation, which may be offered only at tertiary care centers.
Collapse
Affiliation(s)
- MeiLan King Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | | |
Collapse
|
8
|
Affiliation(s)
- Jorge Marrero
- Division of Gastroenterology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
9
|
Abstract
Fulminant hepatic failure is a rapidly progressive and often fatal syndrome, and the only definitive treatment is liver transplantation. However, given the scarcity of available grafts, the mainstay of therapy remains supportive care until there is spontaneous recovery or until a suitable donor liver becomes available. After initial assessment and stabilization, patients should be transferred to the nearest liver transplant center as soon as possible, as they can deteriorate rapidly. All patients with fulminant hepatic failure must be monitored closely and treated for hepatic encephalopathy, coagulopathy, gastrointestinal bleeding, renal failure, cerebral edema, and metabolic derangement.
Collapse
Affiliation(s)
- Albert J. Chang
- Division of Digestive Diseases, UCLA Medical Center, 44-138 CHS (MC 168417), 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
10
|
|