1
|
Peng B, Hu J, Sun Y, Huang Y, Peng Q, Zhao W, Xu W, Zhu L. Tangeretin alleviates inflammation and oxidative response induced by spinal cord injury by activating the Sesn2/Keap1/Nrf2 pathway. Phytother Res 2024; 38:4555-4569. [PMID: 39054118 DOI: 10.1002/ptr.8294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/29/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling disease that is characterized by inflammation and oxidative reactions. Tangeretin has been shown to possess significant antioxidant and anti-inflammatory activities. The Keap1/Nrf2 pathway, downstream of the Sesn2 gene, is involved in regulating the inflammation and oxidative response. The main objective of this study was to investigate the effect of tangeretin on SCI and its possible mechanism through cell and animal models. A T9 clamp injury was used for the mouse model and the LPS-induced stimulation of BV-2 cells was used for the cell model. The improvement of motor function after SCI was assessed by open field, swimming, and footprint experiments. The morphological characteristics of mouse spinal cord tissue and the levels of INOS, Sesn2, TNF-α, Keap1, Nrf2, IL-10, and reactive oxygen species (ROS) in vivo and in vitro were measured by several methods including western blotting, qPCR, immunofluorescence, HE, and Nissl staining. In vivo data showed that tangeretin can improve motor function recovery and reduce neuron loss and injury size in mice with SCI. Simultaneously, the in vitro findings suggested that treatment of BV-2 cells with tangeretin after LPS stimulation reduced the production of inflammatory factors and ROS, and could convert BV-2 cells from the M1 to the M2 type. Furthermore, Sesn2 knockout suppressed Keap1/Nrf2, inflammatory factors, ROS levels, and the M1 to M2 transition. Tangeretin can alleviate the inflammation and oxidative response induced by SCI by activating the Sesn2/Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Birong Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinwei Hu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanfang Sun
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yating Huang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingshan Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwen Zhao
- Department of Orthopedics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan Province, China
| | - Wenning Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Li J, Li J, Ullah A, Shi X, Zhang X, Cui Z, Lyu Q, Kou G. Tangeretin Enhances Muscle Endurance and Aerobic Metabolism in Mice via Targeting AdipoR1 to Increase Oxidative Myofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16687-16699. [PMID: 38990695 DOI: 10.1021/acs.jafc.3c09386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Slow oxidative myofibers play an important role in improving muscle endurance performance and maintaining body energy homeostasis. However, the targets and means to regulate slow oxidative myofibers proportion remain unknown. Here, we show that tangeretin (TG), a natural polymethoxylated flavone, significantly activates slow oxidative myofibers-related gene expression and increases type I myofibers proportion, resulting in improved endurance performance and aerobic metabolism in mice. Proteomics, molecular dynamics, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) investigations revealed that TG can directly bind to adiponectin receptor 1 (AdipoR1). Using AdipoR1-knockdown C2C12 cells and muscle-specific AdipoR1-knockout mice, we found that the positive effect of TG on regulating slow oxidative myofiber related markers expression is mediated by AdipoR1 and its downstream AMPK/PGC-1α pathway. Together, our data uncover TG as a natural compound that regulates the identity of slow oxidative myofibers via targeting the AdipoR1 signaling pathway. These findings further unveil the new function of TG in increasing the proportion of slow oxidative myofibers and enhancing skeletal muscle performance.
Collapse
Affiliation(s)
- Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangtao Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Shi
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyuan Zhang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenwei Cui
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Wani I, Koppula S, Balda A, Thekkekkara D, Jamadagni A, Walse P, Manjula SN, Kopalli SR. An Update on the Potential of Tangeretin in the Management of Neuroinflammation-Mediated Neurodegenerative Disorders. Life (Basel) 2024; 14:504. [PMID: 38672774 PMCID: PMC11051149 DOI: 10.3390/life14040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation is the major cause of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Currently available drugs present relatively low efficacy and are not capable of modifying the course of the disease or delaying its progression. Identifying well-tolerated and brain-penetrant agents of plant origin could fulfil the pressing need for novel treatment techniques for neuroinflammation. Attention has been drawn to a large family of flavonoids in citrus fruits, which may function as strong nutraceuticals in slowing down the development and progression of neuroinflammation. This review is aimed at elucidating and summarizing the effects of the flavonoid tangeretin (TAN) in the management of neuroinflammation-mediated neurodegenerative disorders. A literature survey was performed using various resources, including ScienceDirect, PubMed, Google Scholar, Springer, and Web of Science. The data revealed that TAN exhibited immense neuroprotective effects in addition to its anti-oxidant, anti-diabetic, and peroxisome proliferator-activated receptor-γ agonistic effects. The effects of TAN are mainly mediated through the inhibition of oxidative and inflammatory pathways via regulating multiple signaling pathways, including c-Jun N-terminal kinase, phosphoinositide 3-kinase, mitogen-activated protein kinase, nuclear factor erythroid-2-related factor 2, extracellular-signal-regulated kinase, and CRE-dependent transcription. In conclusion, the citrus flavonoid TAN has the potential to prevent neuronal death mediated by neuroinflammatory pathways and can be developed as an auxiliary therapeutic agent in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Irshad Wani
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Sushruta Koppula
- College of Biomedical and Health Science, Konkuk University, Chungju-si 380-701, Republic of Korea;
| | - Aayushi Balda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ankush Jamadagni
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | - Prathamesh Walse
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | | | - Spandana Rajendra Kopalli
- Department of Integrated Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
4
|
Hamel R, Oyler R, Harms E, Bailey R, Rendeiro C, Jenkinson N. Dietary Cocoa Flavanols Do Not Alter Brain Excitability in Young Healthy Adults. Nutrients 2024; 16:969. [PMID: 38613003 PMCID: PMC11013095 DOI: 10.3390/nu16070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The ingestion of dietary cocoa flavanols acutely alters functions of the cerebral endothelium, but whether the effects of flavanols permeate beyond this to alter other brain functions remains unclear. Based on converging evidence, this work tested the hypothesis that cocoa flavanols would alter brain excitability in young healthy adults. In a randomised, cross-over, double-blinded, placebo-controlled design, transcranial magnetic stimulation was used to assess corticospinal and intracortical excitability before as well as 1 and 2 h post-ingestion of a beverage containing either high (695 mg flavanols, 150 mg (-)-epicatechin) or low levels (5 mg flavanols, 0 mg (-)-epicatechin) of cocoa flavanols. In addition to this acute intervention, the effects of a short-term chronic intervention where the same cocoa flavanol doses were ingested once a day for 5 consecutive days were also investigated. For both the acute and chronic interventions, the results revealed no robust alteration in corticospinal or intracortical excitability. One possibility is that cocoa flavanols yield no net effect on brain excitability, but predominantly alter functions of the cerebral endothelium in young healthy adults. Future studies should increase intervention durations to maximize the acute and chronic accumulation of flavanols in the brain, and further investigate if cocoa flavanols would be more effective at altering brain excitability in older adults and clinical populations than in younger adults.
Collapse
Affiliation(s)
- Raphael Hamel
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Rebecca Oyler
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Evie Harms
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rosamond Bailey
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Catarina Rendeiro
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Ned Jenkinson
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Varshney H, Siddique YH. Effect of Flavonoids against Parkinson's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:145-165. [PMID: 38305395 DOI: 10.2174/0118715249264078231214074107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the depletion of striatal dopamine content and aggregation of alphasynuclein in the substantia nigra (SN). It is possible to treat the symptoms of PD with a variety of medications, but they often result in complications and are not able to cure or stop the progression of the disease. Flavonoids (the phytocomponents present in almost all fruits and vegetables) are the class of secondary metabolites that have generated a peak of interest because of their medicinal properties, including a reduction in the risk of PD. Several flavonoids such as quercetin, kaempferol, hesperitin, anthocyanin and many more have been reported for their anti- Parkinson's effect. This review deals with the neuroprotective benefits of different classes of flavonoids against PD.
Collapse
Affiliation(s)
- Himanshi Varshney
- Department of Zoology, Laboratory of Alternative Animal Models, Aligarh Muslim University, Aligarh, Uttar Pradesh- 202002, India
| | - Yasir Hasan Siddique
- Department of Zoology, Laboratory of Alternative Animal Models, Aligarh Muslim University, Aligarh, Uttar Pradesh- 202002, India
| |
Collapse
|
6
|
Tandoro Y, Chen BK, Ali A, Wang CK. Review of Phytochemical Potency as a Natural Anti- Helicobacter pylori and Neuroprotective Agent. Molecules 2023; 28:7150. [PMID: 37894629 PMCID: PMC10609179 DOI: 10.3390/molecules28207150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Phytochemicals are plant secondary metabolites that show health benefits for humans due to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial activity and neuroprotection, several phytochemicals might have the potency to be used as natural therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which have become a global health concern nowadays. According to previous research, there are some connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer's disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative disease. An additional large-scale study is needed to establish the connection between H. pylori infection and neurodegenerative disease and how phytochemicals could improve this condition.
Collapse
Affiliation(s)
- Yohanes Tandoro
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
- Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Surabaya 60265, Indonesia
| | - Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Asif Ali
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| |
Collapse
|
7
|
Tsai PH, Wu PC, Li HR, Senthil Kumar KJ, Wang SY. Hirami lemon ( Citrus reticulata var. depressa) modulates the gut-brain axis in a chronic mild stress-induced depression mouse model. Food Funct 2023; 14:7535-7549. [PMID: 37526032 DOI: 10.1039/d3fo01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Citrus reticulata var. depressa, commonly known as Hirami lemon, is a native citrus species found in Taiwan and Okinawa islands of Japan. While several Citrus species are known to possess antidepressant activity by modulating the gut microbiota, the antidepressant effect of Hirami lemon and its underlying mechanisms have not been thoroughly investigated. In this study, we explored the potential antidepressant efficacy of the fruit extract (CD) and the essential oil (CDE) from Hirami lemon peel using a chronic mild stress (CMS)-induced mouse model and analyzed the association of gut microbiome changes. Our findings revealed that mice subjected to CMS exhibited anxiety- and depression-like behaviors as assessed by elevated plus-maze and forced swimming tests, respectively. Significantly, oral administration of CDE and CD notably reversed CMS-induced depression- and anxiety-like behaviors in CMS-induced mice. Moreover, compared to the non-stressed group, CMS significantly altered the gut microbiome, characterized by highly diverse bacterial communities, reduced Bacteroidetes, and increased Firmicutes. However, oral administration of CDE and CD restored gut microbiota dysbiosis. We also performed a qualitative analysis of CD and CDE using UPLC-MS and GC-MS, respectively. The CD contained 25 compounds, of which 3 were polymethoxy flavones and flavanones. Three major compounds, nobiletin, tangeretin and hesperidin, accounted for 56.88% of the total relative peak area. In contrast, the CDE contained 11 terpenoids, of which 8 were identified as major compounds, with D-limonene (45.71%) being the most abundant, followed by γ-terpinene (34.65%), linalool (6.46%), p-cymene (2.57%), α-terpineol (2.04%), α-pinene (1.89%), α-terpinolene (1.46%), and β-pinene (1.16%), accounting for 95.94% of the total oil. In conclusion, our study demonstrated the potential of Hirami lemon as a source of natural antidepressant agents for the prevention and treatment of major depressive disorders.
Collapse
Affiliation(s)
- Po-Heng Tsai
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan and Academia Sinica, Taipei, Taiwan.
| | - Pei-Chen Wu
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ru Li
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan and Academia Sinica, Taipei, Taiwan.
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Arora S, Santiago JA, Bernstein M, Potashkin JA. Diet and lifestyle impact the development and progression of Alzheimer's dementia. Front Nutr 2023; 10:1213223. [PMID: 37457976 PMCID: PMC10344607 DOI: 10.3389/fnut.2023.1213223] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Dementia is a growing public health concern, with an estimated prevalence of 57 million adults worldwide. Alzheimer's disease (AD) accounts for 60-80% of the cases. Clinical trials testing potential drugs and neuroprotective agents have proven futile, and currently approved drugs only provide symptomatic benefits. Emerging epidemiological and clinical studies suggest that lifestyle changes, including diet and physical activity, offer an alternative therapeutic route for slowing and preventing cognitive decline and dementia. Age is the single most common risk factor for dementia, and it is associated with slowing cellular bioenergetics and metabolic processes. Therefore, a nutrient-rich diet is critical for optimal brain health. Furthermore, type 2 diabetes (T2D) is a risk factor for AD, and diets that reduce the risk of T2D may confer neuroprotection. Foods predominant in Mediterranean, MIND, and DASH diets, including fruits, leafy green vegetables, fish, nuts, and olive oil, may prevent or slow cognitive decline. The mechanisms by which these nutrients promote brain health, however, are not yet completely understood. Other dietary approaches and eating regimes, including ketogenic and intermittent fasting, are also emerging as beneficial for brain health. This review summarizes the pathophysiology, associated risk factors, and the potential neuroprotective pathways activated by several diets and eating regimes that have shown promising results in promoting brain health and preventing dementia.
Collapse
Affiliation(s)
- Sarah Arora
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Discipline, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Melissa Bernstein
- Department of Nutrition, College of Health Professions, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Judith A. Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Discipline, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
9
|
Afifi SM, Gök R, Eikenberg I, Krygier D, Rottmann E, Stübler AS, Aganovic K, Hillebrand S, Esatbeyoglu T. Comparative flavonoid profile of orange ( Citrus sinensis) flavedo and albedo extracted by conventional and emerging techniques using UPLC-IMS-MS, chemometrics and antioxidant effects. Front Nutr 2023; 10:1158473. [PMID: 37346911 PMCID: PMC10279959 DOI: 10.3389/fnut.2023.1158473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Citrus fruits are one of the most frequently counterfeited processed products in the world. In the juice production alone, the peels, divided into flavedo and albedo, are the main waste product. The extracts of this by-product are enriched with many bioactive substances. Newer extraction techniques generally have milder extraction conditions with simultaneous improvement of the extraction process. Methods This study presents a combinatorial approach utilizing data-independent acquisition-based ion mobility spectrometry coupled to tandem mass spectrometry. Integrating orthogonal collision cross section (CCS) data matching simultaneously improves the confidence in metabolite identification in flavedo and albedo tissues from Citrus sinensis. Furthermore, four different extraction approaches [conventional, ultrasonic, High Hydrostatic Pressure (HHP) and Pulsed Electric Field (PEF)] with various optimized processing conditions were compared in terms of antioxidant effects and flavonoid profile particularly polymethoxy flavones (PMFs). Results A total number of 57 metabolites were identified, 15 of which were present in both flavedo and albedo, forming a good qualitative overlapping of distributed flavonoids. For flavedo samples, the antioxidant activity was higher for PEF and HHP treated samples compared to other extraction methods. However, ethyl acetate extract exhibited the highest antioxidant effects in albedo samples attributed to different qualitative composition content rather than various quantities of same metabolites. The optimum processing conditions for albedo extraction using HHP and PEF were 200 MPa and 15 kJ/kg at 10 kV, respectively. While, HHP at medium pressure (400 MPa) and PEF at 15 kJ/kg/3 kV were the optimum conditions for flavedo extraction. Conclusion Chemometric analysis of the dataset indicated that orange flavedo can be a valid source of soluble phenolic compounds especially PMFs. In order to achieve cross-application of production, future study should concentrate on how citrus PMFs correlate with biological engineering techniques such as breeding, genetic engineering, and fermentation engineering.
Collapse
Affiliation(s)
- Sherif M. Afifi
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Recep Gök
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Dennis Krygier
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| | | | | | - Kemal Aganovic
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
10
|
Qiu M, Wei W, Zhang J, Wang H, Bai Y, Guo DA. A Scientometric Study to a Critical Review on Promising Anticancer and Neuroprotective Compounds: Citrus Flavonoids. Antioxidants (Basel) 2023; 12:antiox12030669. [PMID: 36978916 PMCID: PMC10045114 DOI: 10.3390/antiox12030669] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Flavonoids derived from citrus plants are favored by phytomedicinal researchers due to their wide range of biological activities, and relevant studies have been sustained for 67 years (since the first paper published in 1955). In terms of a scientometric and critical review, the scientometrics of related papers, chemical structures, and pharmacological action of citrus flavonoids were comprehensively summarized. The modern pharmacological effects of citrus flavonoids are primarily focused on their anticancer activities (such as breast cancer, gastric cancer, lung cancer, and liver cancer), neuroprotective effects (such as anti-Alzheimer’s disease, Parkinson’s disease), and metabolic diseases. Furthermore, the therapeutic mechanism of cancers (including inducing apoptosis, inhibiting cell proliferation, and inhibiting cancer metastasis), neuroprotective effects (including antioxidant and anti-inflammatory), and metabolic diseases (such as non-alcoholic fatty liver disease, type 2 diabetes mellitus) were summarized and discussed. We anticipate that this review could provide an essential reference for anti-cancer and neuroprotective research of citrus flavonoids and provide researchers with a comprehensive understanding of citrus flavonoids.
Collapse
Affiliation(s)
- Mingyang Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanze Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuxin Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
11
|
Anti-Inflammatory Effects of Flavonoids in Common Neurological Disorders Associated with Aging. Int J Mol Sci 2023; 24:ijms24054297. [PMID: 36901731 PMCID: PMC10001833 DOI: 10.3390/ijms24054297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Aging reduces homeostasis and contributes to increasing the risk of brain diseases and death. Some of the principal characteristics are chronic and low-grade inflammation, a general increase in the secretion of proinflammatory cytokines, and inflammatory markers. Aging-related diseases include focal ischemic stroke and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are the most common class of polyphenols and are abundantly found in plant-based foods and beverages. A small group of individual flavonoid molecules (e.g., quercetin, epigallocatechin-3-gallate, and myricetin) has been used to explore the anti-inflammatory effect in vitro studies and in animal models of focal ischemic stroke and AD and PD, and the results show that these molecules reduce the activated neuroglia and several proinflammatory cytokines, and also, inactivate inflammation and inflammasome-related transcription factors. However, the evidence from human studies has been limited. In this review article, we highlight the evidence that individual natural molecules can modulate neuroinflammation in diverse studies from in vitro to animal models to clinical studies of focal ischemic stroke and AD and PD, and we discuss future areas of research that can help researchers to develop new therapeutic agents.
Collapse
|
12
|
Perdigão JM, Teixeira BJB, Baia-da-Silva DC, Nascimento PC, Lima RR, Rogez H. Analysis of phenolic compounds in Parkinson's disease: a bibliometric assessment of the 100 most cited papers. Front Aging Neurosci 2023; 15:1149143. [PMID: 37205057 PMCID: PMC10185771 DOI: 10.3389/fnagi.2023.1149143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Objective The aim of this study was to identify and characterize the 100 most cited articles on Parkinson's disease (PD) and phenolic compounds (PCs). Methods Articles were selected in the Web of Science Core Collection up to June 2022 based on predetermined inclusion criteria, and the following bibliometric parameters were extracted: the number of citations, title, keywords, authors, year, study design, tested PC and therapeutic target. MapChart was used to create worldwide networks, and VOSviewer software was used to create bibliometric networks. Descriptive statistical analysis was used to identify the most researched PCs and therapeutic targets in PD. Results The most cited article was also the oldest. The most recent article was published in 2020. Asia and China were the continent and the country with the most articles in the list (55 and 29%, respectively). In vitro studies were the most common experimental designs among the 100 most cited articles (46%). The most evaluated PC was epigallocatechin. Oxidative stress was the most studied therapeutic target. Conclusion Despite the demonstrations in laboratorial studies, the results obtained point to the need for clinical studies to better elucidate this association.
Collapse
Affiliation(s)
- José Messias Perdigão
- Centre for Valorization of Amazonian Bioactive Compounds, Federal University of Pará, Belém, Brazil
| | | | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Herve Rogez
- Centre for Valorization of Amazonian Bioactive Compounds, Federal University of Pará, Belém, Brazil
- *Correspondence: Herve Rogez,
| |
Collapse
|
13
|
Meng-zhen S, Ju L, Lan-chun Z, Cai-feng D, Shu-da Y, Hao-fei Y, Wei-yan H. Potential therapeutic use of plant flavonoids in AD and PD. Heliyon 2022; 8:e11440. [DOI: 10.1016/j.heliyon.2022.e11440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
14
|
Neuroprotective Potential of Thinned Peaches Extracts Obtained by Pressurized Liquid Extraction after Different Drying Processes. Foods 2022; 11:foods11162464. [PMID: 36010464 PMCID: PMC9407205 DOI: 10.3390/foods11162464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Genetic, environmental and nutritional factors are suggested as primary factors of Alzheimer’s disease (AD), and secondary metabolites such as polyphenols present in thinned peaches are considered as good candidates for AD prevention. Thinned peaches are usually dried to avoid putrefaction, but the effects of the drying method and the extraction process on the polyphenol composition and the neuroprotective potential have never been addressed. In this work, a pressurized liquid extraction (PLE) method was optimized and applied to thinned peaches dried under different conditions, and their neuroprotective potential was evaluated in vitro. In addition, the PLE extracts were characterized via HPLC-Q-TOF-MS/MS, and a permeability assay was performed to evaluate the ability of the identified metabolites to cross the blood–brain barrier (BBB). The PLE extracts obtained from freeze-dried (FD) samples with 50% ethanol in water at 180 °C showed the best neuroprotective potential. Finally, among the 81 metabolites identified, isoferulic acid, 4-methyldaphnetin, coniferyl aldehyde and 3,4-dihydroxyacetophenone were found at higher concentrations in FD extracts. These metabolites are able to cross the BBB and are positively correlated with the neuroprotective potential, suggesting FD together with PLE extraction as the best combination to exploit the neuroprotective capacity of thinned peaches.
Collapse
|
15
|
Akuamoa F, Hoogenboom RLAP, Weide Y, van der Weg G, Rietjens IMCM, Bovee TFH. Presence and risks of polycyclic aromatic hydrocarbons, dioxins and dioxin-like PCBs in dietary plant supplements as elucidated by a combined DR CALUX ® bioassay and GC-HRMS based approach. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1576-1590. [PMID: 35904509 DOI: 10.1080/19440049.2022.2094473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Plant-based dietary supplements may contain undesirable contaminants such as polycyclic aromatic hydrocarbons, dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) due to the sources of raw materials or processing methods used. The presence of these contaminants in a series of herbal supplements sold on the Ghanaian market for improving sexual performance was examined using the DR CALUX® bioassay in combination with GC-HRMS analysis. Overall, cell responses at 4 and 48 h exposure to extracts prepared without an acid-silica clean-up were relatively higher than the responses obtained from extracts prepared with an acid-silica clean-up. This indicated that the 40 supplements contained only low levels of stable aryl hydrocarbon receptor (AhR) agonists like polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dl-PCBs, while some contained substantial amounts of less stable AhR-agonists. Ten supplements selected for confirmation with GC-HRMS analysis contained PCDD/Fs and dl-PCBs at levels ranging from 0.01 to 0.19 pg toxic equivalent (TEQ)/g only, while the level of the sum of 4 polycyclic aromatic hydrocarbons (Σ4PAHs) representing less stable AhR agonists, ranged from not detected (ND) to 25.5 ng/g. These concentrations were in line with the responses observed in the DR CALUX® bioassay. The concentration of PCDD/Fs and dl-PCBs corresponded to estimated daily intakes (EDIs) ranging from 0.01 to 1.20 pg TEQ/day, or 0.001 to 0.12 pg TEQ/kg bw/week for a 70 kg bw consumer, which was below the established tolerable weekly intake (TWI) of 2 pg TEQ/kg bw/week, thus indicating low concern for consumers' health. Similarly, the EDIs based on the detected Σ4PAHs in supplements ranged from 7.2 to 111 ng/day, or 0.1 to 1.6 ng/kg bw/day, which corresponded to MOE values above 10,000, indicating a low health concern.
Collapse
Affiliation(s)
- Felicia Akuamoa
- Wageningen Food Safety Research, Wageningen, The Netherlands.,Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.,Applied Radiation Biology Centre, Ghana Atomic Energy Commission, Accra, Ghana
| | | | - Yoran Weide
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen, The Netherlands
| |
Collapse
|
16
|
Cyrcadian Rhythm, Mood, and Temporal Patterns of Eating Chocolate: A Scoping Review of Physiology, Findings, and Future Directions. Nutrients 2022; 14:nu14153113. [PMID: 35956290 PMCID: PMC9370573 DOI: 10.3390/nu14153113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
This paper discusses the effect of chrononutrition on the regulation of circadian rhythms; in particular, that of chocolate on the resynchronization of the human internal biological central and peripheral clocks with the main external synchronizers, light–dark cycle and nutrition-fasting cycle. The desynchronization of internal clocks with external synchronizers, which is so frequent in our modern society due to the tight rhythms imposed by work, social life, and technology, has a negative impact on our psycho-physical performance, well-being, and health. Taking small amounts of chocolate, in the morning at breakfast at the onset of the active phase, helps speed up resynchronization time. The high flavonoid contents in chocolate promote cardioprotection, metabolic regulation, neuroprotection, and neuromodulation with direct actions on brain function, neurogenesis, angiogenesis, and mood. Although the mechanisms of action of chocolate compounds on brain function and mood as well as on the regulation of circadian rhythms have yet to be fully understood, data from the literature currently available seem to agree in suggesting that chocolate intake, in compliance with chrononutrition, could be a strategy to reduce the negative effects of desynchronization. This strategy appears to be easily implemented in different age groups to improve work ability and daily life.
Collapse
|
17
|
Acıkara OB, Karatoprak GŞ, Yücel Ç, Akkol EK, Sobarzo-Sánchez E, Khayatkashani M, Kamal MA, Kashani HRK. A Critical Analysis of Quercetin as the Attractive Target for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:795-817. [PMID: 34872486 DOI: 10.2174/1871527320666211206122407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's Disease (PD) is a multifaceted disorder with various factors suggested to play a synergistic pathophysiological role, such as oxidative stress, autophagy, pro-inflammatory events, and neurotransmitter abnormalities. While it is crucial to discover new treatments in addition to preventing PD, recent studies have focused on determining whether nutraceuticals will exert neuroprotective actions and pharmacological functions in PD. Quercetin, a flavonol-type flavonoid, is found in many fruits and vegetables and is recognised as a complementary therapy for PD. The neuroprotective effect of quercetin is directly associated with its antioxidant activity, in addition to stimulating cellular defence against oxidative stress. Other related mechanisms are activating Sirtuins (SIRT1) and inducing autophagy, in addition to induction of Nrf2-ARE and Paraoxonase 2 (PON2). Quercetin, whose neuroprotective activity has been demonstrated in many studies, unfortunately, has a disadvantage because of its poor water solubility, chemical instability, and low oral bioavailability. It has been reported that the disadvantages of quercetin have been eliminated with nanocarriers loaded with quercetin. The role of nanotechnology and nanodelivery systems in reducing oxidative stress during PD provides an indisputable advantage. Accordingly, the present review aims to shed light on quercetin's beneficial effects and underlying mechanisms in neuroprotection. In addition, the contribution of nanodelivery systems to the neuroprotective effect of quercetin is also discussed.
Collapse
Affiliation(s)
- Ozlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Tandoğan, 06100 Ankara, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, Sydney, Australia
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
19
|
Castro SL, Tapias V, Gathagan R, Emes A, Brandon TE, Smith AD. Blueberry juice augments exercise-induced neuroprotection in a Parkinson's disease model through modulation of GDNF levels. IBRO Neurosci Rep 2022; 12:217-227. [PMID: 35321527 PMCID: PMC8935512 DOI: 10.1016/j.ibneur.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Exercise and consumption of plant-based foods rich in polyphenols are attractive therapeutic approaches for the prevention and treatment of Parkinson's disease (PD). Few studies, however, have examined the neuroprotective efficacy of combining these treatment modalities against PD. Therefore we investigated whether combining voluntary running and consumption of blueberry juice (BBJ) was more efficacious against 6-hydroxydopamine (6-OHDA) toxicity than either treatment alone. Four weeks of running before and after intrastriatal 6-OHDA reduced amphetamine-induced rotational behavior and loss of substantia nigra dopamine (DA) neurons. BBJ consumption alone had no ameliorative effects, but when combined with exercise, behavioral deficits and nigrostriatal DA neurodegeneration were reduced to a greater extent than exercise alone. The neuroprotection observed with exercise alone was associated with an increase in striatal glial cell-lined derived neurotrophic factor (GDNF), whereas combining exercise and BBJ was associated with an increase in nigral GDNF. These results suggest that polyphenols may potentiate the protective effects of exercise and that differential regulation of GDNF expression underlies protection observed with exercise alone versus combined treatment with consumption of BBJ.
Collapse
Affiliation(s)
- Sandra L Castro
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Victor Tapias
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - Consejo Superior de Investigaciones Científicas, Valladolid 47003, Spain
| | - Ronald Gathagan
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Alexandra Emes
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | | | - Amanda D Smith
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
20
|
Sun P, Huang R, Qin Z, Liu F. Influence of Tangeretin on the Exponential Regression of Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Nephropathy. Appl Biochem Biotechnol 2022; 194:3914-3929. [PMID: 35567707 DOI: 10.1007/s12010-022-03920-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 01/08/2023]
Abstract
Diabetes is an amalgamation of metabolic disorders marked by hyperglycemia. Over time diabetes brings up several other complications with it like cardiovascular disease, retinopathy, neuropathy, and nephropathy. among which diabetic nephropathy (DN) is the one we are concerned about in the present study. Diabetes management requires following a healthy lifestyle with proper medication. Most of the anti-diabetic drugs available at present come with adverse side effects. Nature has provided us with several components that are anti-diabetic in nature which has fewer or no side effects and tangeretin is one among them. Tangeretin is a natural flavonoid abundantly present in orange peel and tangerines. Our study is designed to evaluate tangeretin, as an anti-diabetic medication especially for patients suffering from diabetic nephropathy. The procured healthy rats were first divided into four groups: the group I was maintained as healthy control and the others were subjected to the induction of diabetes by i.p. injection of streptozotocin (STZ) at the concentration of 55mg/kg b.wt .Then, the diabetic rats were further divided into three groups: group II was used as the diabetic control rats and the group III and group IV were administered with tangeretin (25mg/kg b.wt) and positive control drug metformin (150mg/kg b.wt) for 8 weeks. The body weight, blood glucose, and serum insulin levels were estimated at week 0 and week 8. Reactive oxygen species (ROS) inhibitory effect, antioxidant, antilipidemic, nephroprotective, and anti-inflammatory effects of tangeretin on the diabetic-induced rats were evaluated at the end of week 8 in addition to the histopathological assessment of the sections of the kidneys of the experimental rats. All the test results concluded that tangeretin was able to significantly decelerate the progression of DN in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Pei Sun
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, Shandong, 250013, China
| | - Ran Huang
- Department of Kidney Disease Unit & Dialysis, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, Shandong, 250013, China
| | - Zifu Qin
- Department of Health, Vertigo Examination Room, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, Shandong, 250013, China
| | - Fang Liu
- Department of Kidney Disease Unit & Dialysis, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, Shandong, 250013, China.
| |
Collapse
|
21
|
Mossine VV, Waters JK, Gu Z, Sun GY, Mawhinney TP. Bidirectional Responses of Eight Neuroinflammation-Related Transcriptional Factors to 64 Flavonoids in Astrocytes with Transposable Insulated Signaling Pathway Reporters. ACS Chem Neurosci 2022; 13:613-623. [PMID: 35147416 DOI: 10.1021/acschemneuro.1c00750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is implicated in a variety of pathologies and is mechanistically linked to hyperactivation of glial cells in the central nervous system (CNS), predominantly in response to external stimuli. Multiple dietary factors were reported to alter neuroinflammation, but their actions on the relevant transcription factors in glia are not sufficiently understood. Here, an in vitro protocol employing cultured astroglial cells, which carry reporters of multiple signaling pathways associated with inflammation, was developed for screening environmental factors and synthetic drugs. Immortalized rat astrocyte line DI TNC1 was stably transfected with piggyBac transposon vectors containing a series of insulated reporters for the transcriptional activity of NF-κB, AP-1, signal transducer and activator of transcription 1 (STAT1), signal transducer and activator of transcription 3 (STAT3), aromatic hydrocarbon receptor (AhR), Nrf2, peroxisome proliferator-activated receptor γ (PPARγ), and HIF-1α, which is quantified via luciferase assay. Concatenated green fluorescent protein (GFP) expression was employed for simultaneous evaluation of cellular viability. Responses to a set of 64 natural and synthetic monomeric flavonoids representing six main structural classes (flavan-3-ols, flavanones, flavones, flavonols, isoflavones, and anthocyan(id)ins) were obtained at 10 and 50 μM concentrations. Except for HIF-1α, the activity of NF-κB and other transcription factors (TFs) in astrocytes was predominantly inhibited by flavan-3-ols and anthocyan(id)ins, while flavones and isoflavones generally activated these TFs. In addition, we obtained dose-response profiles for 11 flavonoids (apigenin, baicalein, catechin, cyanidin, epigallocatechin gallate, genistein, hesperetin, kaempferol, luteolin, naringenin, and quercetin) within the 1-100 μM range and in the presence of immune-stimulants and immune-suppressors. The flavonoid concentration profiles for TF-activation reveal biphasic response curves from the astrocytes. Apart from epigallocatechin gallate (EGCG), flavonoids failed to inhibit the NF-κB activation by proinflammatory agents [lipopolysaccharide (LPS), cytokines], but most of the tested polyphenols synergized with STAT3 inhibitors (stattic, ruxolitinib) against the activation of this TF in the astrocytes. We conclude that transposable insulated reporters of transcriptional activation represent a convenient neurochemistry tool in screening for activators/inhibitors of signaling pathways.
Collapse
Affiliation(s)
- Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - James K. Waters
- Agriculture Experiment Station Chemical Laboratories, University of Missouri, Columbia, Missouri 65211, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Child Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
22
|
Bao J, Liang Z, Gong X, Zhao Y, Wu M, Liu W, Tu C, Wang X, Shu X. Tangeretin Inhibits BACE1 Activity and Attenuates Cognitive Impairments in AD Model Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1536-1546. [PMID: 35084179 DOI: 10.1021/acs.jafc.1c07241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tangeretin (TAN) exhibits many bioactivities, including neuroprotective effects. However, the efficacy of TAN in Alzheimer's disease (AD) has not been sufficiently investigated. In the present study, we integrated behavioral tests, pathology assessment, and biochemical analyses to elucidate the antidementia activity of TAN in APPswe/PSEN1dE9 transgenic (Tg) mice. At supplementation levels of 100 mg/kg body weight per day, TAN significantly attenuated the cognitive impairment of Tg mice in behavioral tests. These effects were associated with less synaptic impairments and fewer β-amyloid accumulations after TAN administration. Furthermore, our study revealed that TAN possessed powerful inhibitory activity against β-secretase both in vitro and in vivo, which played a crucial role in the process of Aβ generation. These findings indicate that TAN is a potential drug for preventing AD pathology. The key mechanism underlying the antidementia effect of TAN may include its inhibitory activity against β-secretase.
Collapse
Affiliation(s)
- Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Zheng Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yanna Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Mengjuan Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chenyu Tu
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
23
|
Sriwastva MK, Deng Z, Wang B, Teng Y, Kumar A, Sundaram K, Mu J, Lei C, Dryden GW, Xu F, Zhang L, Yan J, Zhang X, Park JW, Merchant ML, Egilmez NK, Zhang H. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep 2022; 23:e53365. [PMID: 34994476 PMCID: PMC8892346 DOI: 10.15252/embr.202153365] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bark protects the tree against environmental insults. Here, we analyzed whether this defensive strategy could be utilized to broadly enhance protection against colitis. As a proof of concept, we show that exosome-like nanoparticles (MBELNs) derived from edible mulberry bark confer protection against colitis in a mouse model by promoting heat shock protein family A (Hsp70) member 8 (HSPA8)-mediated activation of the AhR signaling pathway. Activation of this pathway in intestinal epithelial cells leads to the induction of COP9 Constitutive Photomorphogenic Homolog Subunit 8 (COPS8). Utilizing a gut epithelium-specific knockout of COPS8, we demonstrate that COPS8 acts downstream of the AhR pathway and is required for the protective effect of MBELNs by inducing an array of anti-microbial peptides. Our results indicate that MBELNs represent an undescribed mode of inter-kingdom communication in the mammalian intestine through an AhR-COPS8-mediated anti-inflammatory pathway. These data suggest that inflammatory pathways in a microbiota-enriched intestinal environment are regulated by COPS8 and that edible plant-derived ELNs may hold the potential as new agents for the prevention and treatment of gut-related inflammatory disease.
Collapse
Affiliation(s)
- Mukesh K Sriwastva
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Zhong‐Bin Deng
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Bomei Wang
- Department of Translational OncologyGenentechSan FranciscoCaliforniaUSA
| | - Yun Teng
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Anil Kumar
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Kumaran Sundaram
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Jingyao Mu
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Chao Lei
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Gerald W Dryden
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Fangyi Xu
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Lifeng Zhang
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Jun Yan
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Xiang Zhang
- KBRIN Bioinformatics CoreUniversity of LouisvilleLouisvilleKYUSA
| | - Juw Won Park
- KBRIN Bioinformatics CoreUniversity of LouisvilleLouisvilleKYUSA
- Department of Computer Engineering and Computer ScienceUniversity of LouisvilleLouisvilleKYUSA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Nejat K Egilmez
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Huang‐Ge Zhang
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKYUSA
| |
Collapse
|
24
|
The Role of AhR in the Hallmarks of Brain Aging: Friend and Foe. Cells 2021; 10:cells10102729. [PMID: 34685709 PMCID: PMC8534784 DOI: 10.3390/cells10102729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered to be involved in aging phenotypes across several species. This receptor is a highly conserved biosensor that is activated by numerous exogenous and endogenous molecules, including microbiota metabolites, to mediate several physiological and toxicological functions. Brain aging hallmarks, which include glial cell activation and inflammation, increased oxidative stress, mitochondrial dysfunction, and cellular senescence, increase the vulnerability of humans to various neurodegenerative diseases. Interestingly, many studies have implicated AhR signaling pathways in the aging process and longevity across several species. This review provides an overview of the impact of AhR pathways on various aging hallmarks in the brain and the implications for AhR signaling as a mechanism in regulating aging-related diseases of the brain. We also explore how the nature of AhR ligands determines the outcomes of several signaling pathways in brain aging processes.
Collapse
|
25
|
Bielory L, Tabliago NRA. Flavonoid and cannabinoid impact on the ocular surface. Curr Opin Allergy Clin Immunol 2021; 20:482-492. [PMID: 32796166 DOI: 10.1097/aci.0000000000000673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To evaluate the impact of flavonoids and cannabinoids as anti-inflammatory and antiallergic treatments on the anterior surface of the eye. RECENT FINDINGS Allergic conjunctivitis and dry eye syndrome are common ocular surface diseases that have been treated with traditional pharmacological measures, e.g. corticosteroids, antihistamines. Given the side-effect profiles of these medications and the growing interest in complementary treatment modalities as part of integrative medical interventions, well known flavonoids, such as quercetin and catechin, are under investigation for topical and systemic application methods for relief. As flavonoid derivatives, pycnogenol and epigallocatechin gallate have alleviated dry eye symptoms, including lacrimal gland inflammation, tear secretion, and the stability of the tear film. Research on ocular cannabinoid receptors and response to synthetic cannabinoids are also being considered for therapy of anterior ocular disorders. The expansion of herbal formulations provides a framework for future treatment regimens for ocular surface disorders. SUMMARY Flavonoids and cannabinoids show promise as potential complementary treatment for allergic diseases because of their anti-inflammatory and antiallergic properties. Several studies implementing ocular and systemic application of these compounds show potential in becoming adjuvant treatment strategies for improving quality of life while also managing ocular surface disease processes.
Collapse
Affiliation(s)
- Leonard Bielory
- Professor of Medicine, Allergy, Immunology and Ophthalmology, Hackensack Meridian School of Medicine, Springfield
| | - Nikko Rowe A Tabliago
- Overlook Medical Center, Atlantic Health System, St. George's University Medical School, Summit, New Jersey, USA
| |
Collapse
|
26
|
Pharmacological Potentiality of Bioactive Flavonoid against Ketamine Induced Cell Death of PC 12 Cell Lines: An In Vitro Study. Antioxidants (Basel) 2021; 10:antiox10060934. [PMID: 34207728 PMCID: PMC8230239 DOI: 10.3390/antiox10060934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
During the past few years, there has been exponential growth in the field of ethnopharmacology in the treatment of different human ailments, including neurological disorders. In our previous study, we isolated, characterized, and reported a novel bioactive compound with therapeutic efficacy in vivo, which was used in the current study. This study was designed to investigate the pharmacological effect and therapeutic mechanism of the natural plant compound 3-(3,4-dimethoxy phenyl)-1-(4-methoxy phenyl)prop-2-en-1-one against ketamine-induced toxicity in PC 12 cell lines. Cell death was induced in PC 12 cell lines by incubating with ketamine, and the protection offered by the compound at different concentrations was studied during pretreatment. The therapeutic efficacy was screened through MTT assay, LDH assay, DCF-DA assay, clonogenic assay, RT-PCR, and densitometric analysis. The bioactive compound caused a significant elevation in cell viability up to approximately 80%, down-regulation of cell damage, reduction in free radical damage caused by intracellular reactive oxygen species, and up-regulation of cell survival ability, which was dysregulated during ketamine induction. In addition, RT-PCR analysis of DOPA-related genes suggests that the compound exerted significant inhibition in the expression of these genes, which were overexpressed during ketamine induction. The current findings provide new insight into the neuroprotective mediation of bioactive factors as a prospective therapy for neurological disorders.
Collapse
|
27
|
Alhamad DW, Elgendy SM, Al-Tel TH, Omar HA. Tangeretin as an adjuvant and chemotherapeutic sensitizer against various types of cancers: a comparative overview. J Pharm Pharmacol 2021; 73:601-610. [PMID: 33772294 DOI: 10.1093/jpp/rgab013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer is a leading cause of disabling morbidities and death worldwide. Although there are various strategies for the management of cancer, the severe adverse effects negatively impact the patient's quality of life. In addition, the development of resistance limits the efficacy of many chemotherapeutics. Many natural agents are capable of reducing the adverse effects associated with chemotherapy and improving the therapeutic outcome. Tangeretin, a polymethoxy flavone, is one of the promising natural anticancer agents. KEY FINDINGS Tangeretin not only targets various malignancies but also synergizes chemotherapeutic agents and reverses cancer resistance. Hence, the application of tangeretin as an adjuvant in cancer chemotherapy would be a promising strategy. SUMMARY This work critically highlighted the proposed anticancer activity of tangeretin and discussed its potential combination with various chemotherapeutic agents. Additionally, it shed light on tangeretin chemical derivatives with improved pharmacokinetic and pharmacodynamic activity. Finally, this review described flavonoid biosynthetic pathways and how bioengineering can be employed to enhance the production yield of tangeretin. Thus, this work paves the way for the rational clinical utilization of tangeretin as a safe and effective adjuvant in chemotherapeutic protocols.
Collapse
Affiliation(s)
- Dima W Alhamad
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sara M Elgendy
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
28
|
Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways. Adv Pharmacol Pharm Sci 2021; 2021:4709818. [PMID: 33748757 PMCID: PMC7954633 DOI: 10.1155/2021/4709818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chemotherapeutics can induce oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, and abnormalities in neurotransmitter metabolism leading to toxicity. Because there have been no therapeutic strategies developed to target inflammation and oxidative stress, there is a continuing need for new and improved therapy. As a result, there has been increasing interest in complementary and alternative medicine with anticancer potential. Studies have shown that the antioxidant activities and anti-inflammatory effects of citrus fruits are promising natural phytochemicals in the development of new anticancer agents. Tangeretin is a naturally polymethoxylated flavone compound extracted from the citrus peel that has shown significant intestinal absorption and adequate bioavailability, with the added benefit of promoting longevity. In addition, tangeretin is known to exhibit considerable selective toxicity to many types of cancer cell proliferation such as ovarian, brain, blood, and skin cancer. Evidence indicates that tangeretin acts through several mechanisms including growth inhibition, induction of apoptosis, autophagy, antiangiogenesis, and estrogenic-like effects. Furthermore, tangeretin works through mitigating levels of inflammatory mediators in the immune system. Using tangeretin in combination with clinically applied anticancer drugs could be a good strategy for increasing the efficiency of these agents and protecting noncancerous cells from damage caused by chemotherapy. The purpose of this review is to highlight the protective effects of a novel natural product, tangeretin against chemotherapeutic-induced toxicity. The development of chemoprevention strategies can lead to significant health care improvement in cancer survivors. Thus, study outcomes may attract more investigators to conduct tangeretin-related research and find out potentially significant impacts on health care of cancer patients and decreased health problems associated with chemotherapeutics-induced toxicity.
Collapse
|
29
|
Zhang M, Zhu S, Yang W, Huang Q, Ho CT. The biological fate and bioefficacy of citrus flavonoids: bioavailability, biotransformation, and delivery systems. Food Funct 2021; 12:3307-3323. [PMID: 33735339 DOI: 10.1039/d0fo03403g] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Citrus fruits are among the most popularly consumed fruits worldwide, including oranges, grapefruits, pomelos and lemons. Citrus flavonoids such as hesperidin, naringin and nobiletin have shown an array of health benefits in cell, animal and clinical studies, including antioxidative, anti-inflammatory, neuroprotective, anticancer, and anti-obesity activities. Citrus flavonoids have limited bioavailability after oral administration, leaving the major part unabsorbed and persisted in the colon. Recent studies have highlighted the important role of the gut microbiota and in vivo biotransformation on the bioactivity of citrus flavonoids. This article discusses the biological fate of citrus flavonoids from the viewpoint of their absorption, distribution, metabolism and excretion in vivo. Many delivery systems have been designed to enhance the oral bioavailability of citrus flavonoids, such as emulsions, self-emulsifying systems, nanoparticles and solid dispersions. The ultimate goal of these delivery systems is to enhance the bioefficacy of citrus flavonoids. Several studies have found that the increased bioavailability leads to enhanced bioefficacy of citrus flavonoids in specific animal models. Regarding the complex dynamics of citrus flavonoids and gut microbiota, the bioavailability-bioactivity relationship is an interesting but under-discussed area. Comprehensively understanding the biological fate and bioefficacy of citrus flavonoids would be helpful to develop functional foods with better health benefits.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, USA.
| | | | | | | | | |
Collapse
|
30
|
Furukawa Y. [Search for Neuroprotective Compounds -From 4-Methycatechol to Citrus Compounds]. YAKUGAKU ZASSHI 2021; 141:67-79. [PMID: 33390450 DOI: 10.1248/yakushi.20-00164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the 1980s, the authors developed the enzyme immunoassay (EIA) system for mouse nerve growth factor (NGF) to clarify its important physiological roles. Our EIA system was a new and powerful tool for measurement of extremely low levels of NGF in vitro and in vivo, and it contributed to investigation into the regulatory mechanism of NGF synthesis. After that, we demonstrated that the compounds with a low molecular weight, such as 4-methylcatechol, which elicit stimulatory activity toward NGF synthesis, were useful and practical for therapeutic purposes; as NGF has potent activity on neuronal degeneration in both the central nervous system (CNS) and the peripheral nervous system. Since 2008, we have been searching for and isolating neuroprotective component(s) from citrus peels. As a result, our study revealed that 1) 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) has neuroprotective ability in the CNS by inducing brain-derived neurotrophic factor (BDNF) and by suppressing inflammation; 2) auraptene (AUR) also has neuroprotective ability in the CNS by suppressing inflammation and by probably inducing neurotrophic factor(s). As the content of AUR in the peels of Kawachi Bankan is exceptionally high, 1) we found this peel powder to exert neuroprotective effects in the brain of various pathological model mice; 2) some of the AUR transited from the peel to the juice during the squeezing process to obtain the juice. Therefore, K. Bankan juice, which is enriched in AUR by adding peel paste to the raw juice, was shown to be practical for suppression of cognitive dysfunction of aged healthy volunteers.
Collapse
Affiliation(s)
- Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
31
|
Furukawa Y, Okuyama S, Amakura Y, Sawamoto A, Nakajima M, Yoshimura M, Igase M, Fukuda N, Tamai T, Yoshida T. Isolation and Characterization of Neuroprotective Components from Citrus Peel and Their Application as Functional Food. Chem Pharm Bull (Tokyo) 2021; 69:2-10. [PMID: 33390517 DOI: 10.1248/cpb.c20-00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elderly experience numerous physiological alterations. In the brain, aging causes degeneration or loss of distinct populations of neurons, resulting in declining cognitive function, locomotor capability, etc. The pathogenic factors of such neurodegeneration are oxidative stress, mitochondrial dysfunction, inflammation, reduced energy homeostatis, decreased levels of neurotrophic factor, etc. On the other hand, numerous studies have investigated various biologically active substances in fruit and vegetables. We focused on the peel of citrus fruit to search for neuroprotective components and found that: 1) 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) and auraptene (AUR) in the peel of Kawachi Bankan (Citrus kawachiensis) exert neuroprotective effects; 2) both HMF and AUR can pass through the blood-brain barrier, suggesting that they act directly in the brain; 3) the content of AUR in the peel of K. Bankan was exceptionally high, and consequently the oral administration of the dried peel powder of K. Bankan exerts neuroprotective effects; and 4) intake of K. Bankan juice, which was enriched in AUR by adding peel paste to the raw juice, contributed to the prevention of cognitive dysfunction in aged healthy volunteers. This review summarizes our studies in terms of the isolation/characterization of HMF and AUR in K. Bankan peel, analysis of their actions in the brain, mechanisms of their actions, and trials to develop food that retains their functions.
Collapse
Affiliation(s)
- Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Michiya Igase
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine
| | | | | | - Takashi Yoshida
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University.,Department of Pharmaceutical Sciences, Okayama University
| |
Collapse
|
32
|
Matsuzaki K, Ohizumi Y. Beneficial Effects of Citrus-Derived Polymethoxylated Flavones for Central Nervous System Disorders. Nutrients 2021; 13:E145. [PMID: 33406641 PMCID: PMC7824236 DOI: 10.3390/nu13010145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The number of patients with central nervous system disorders is increasing. Despite diligent laboratory and clinical research over the past 30 years, most pharmacologic options for the prevention and long-term treatment of central nervous system disorders and neurodegenerative disorders have been unsuccessful. Therefore, the development of drugs and/or functional foods to prevent the onset of neurodegenerative disorders is highly expected. Several reports have shown that polymethoxylated flavones (PMFs) derived from citrus fruit, such as nobiletin, tangeretin, and 3,3',4',5,6,7,8-heptamethoxyflavone, are promising molecules for the prevention of neurodegenerative and neurological disorders. In various animal models, PMFs have been shown to have a neuroprotective effect and improve cognitive dysfunction with regard to neurological disorders by exerting favorable effects against their pathological features, including oxidative stress, neuroinflammation, neurodegeneration, and synaptic dysfunction as well as its related mechanisms. In this review, we describe the profitable and ameliorating effects of citrus-derived PMFs on cognitive impairment and neural dysfunction in various rat and murine models or in several models of central nervous system disorders and identify their mechanisms of action.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| |
Collapse
|
33
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
34
|
Choudhary M, Malek G. The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21186777. [PMID: 32947781 PMCID: PMC7555571 DOI: 10.3390/ijms21186777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| |
Collapse
|
35
|
Chiangsaen P, Maneesai P, Kukongviriyapan U, Tong-un T, Ishida W, Prachaney P, Pakdeechote P. Tangeretin ameliorates erectile and testicular dysfunction in a rat model of hypertension. Reprod Toxicol 2020; 96:1-10. [DOI: 10.1016/j.reprotox.2020.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
|
36
|
Jo S, Kim S, Kim DY, Kim MS, Shin DH. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J Enzyme Inhib Med Chem 2020; 35:1539-1544. [PMID: 32746637 PMCID: PMC7470085 DOI: 10.1080/14756366.2020.1801672] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a pandemic disease of which the termination is not yet predictable. Currently, researches to develop vaccines and treatments is going on globally to cope with this disastrous disease. Main protease (3CLpro) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the good targets to find antiviral agents before vaccines are available. Some flavonoids are known to inhibit 3CLpro from SARS-CoV which causes SARS. Since their sequence identity is 96%, a similar approach was performed with a flavonoid library. Baicalin, herbacetin, and pectolinarin have been discovered to block the proteolytic activity of SARS-CoV-2 3CLpro. An in silico docking study showed that the binding modes of herbacetin and pectolinarin are similar to those obtained from the catalytic domain of SARS-CoV 3CLpro. However, their binding affinities are different due to the usage of whole SARS-CoV-2 3CLpro in this study. Baicalin showed an effective inhibitory activity against SARS-CoV-2 3CLpro and its docking mode is different from those of herbacetin and pectolinarin. This study suggests important scaffolds to design 3CLpro inhibitors to develop antiviral agents or health-foods and dietary supplements to cope with SARS-CoV-2.
Collapse
Affiliation(s)
- Seri Jo
- College of Pharmacy, Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Suwon Kim
- College of Pharmacy, Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Dae Yong Kim
- N-BIOTEK, Bucheon-Si, Gyeong-gi, Republic of Korea
| | - Mi-Sun Kim
- College of Pharmacy, Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Dong Hae Shin
- College of Pharmacy, Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Dey DK, Chang SN, Vadlamudi Y, Park JG, Kang SC. Synergistic therapy with tangeretin and 5-fluorouracil accelerates the ROS/JNK mediated apoptotic pathway in human colorectal cancer cell. Food Chem Toxicol 2020; 143:111529. [PMID: 32619557 DOI: 10.1016/j.fct.2020.111529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Synergistic therapy is emerging as a promising strategy for improving the chemotherapeutic efficacy of anticancer drugs. Addition of adjuvants with standard anticancer drugs has shown successful reduction of adverse side effects. The synthetic drug 5-Fluorouracil (5-FU) shows several side effects upon prolonged chemotherapy, thereby restricting its long-term clinical application. Several studies have reported anticancer potential and anti-inflammatory activity of tangeretin (TAN) towards mammalian cells. Therefore, we investigate whether the combination of TAN with 5-FU increases their anticancer potential against colorectal cancer. In this study, we examined the synergistic activity of TAN and 5-FU on the viability of several human cancer and normal cells. Several possible mechanistic pathways were screened, and found that co-exposure of TAN and 5-FU accelerates oxidative-stress and increases endogenous-ROS generation, which sequentially triggers the DNA damage response and activates the apoptotic pathway, by down-regulating autophagy and DNA repair system in HCT-116 cells. TAN and 5-FU co-treatment also remarkably reduces the mitochondrial membrane potential, and sequentially decreases ATPase activity. Collectively, results indicate that combination of TAN and 5-FU significantly accelerates apoptosis via JNK mediated pathway. To our knowledge gained from literature, this study is the first to describe synergistic activity of TAN and 5-FU against colorectal cancer cells.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | | | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea.
| |
Collapse
|
38
|
Nakajima A, Nemoto K, Ohizumi Y. An evaluation of the genotoxicity and subchronic toxicity of the peel extract of Ponkan cultivar 'Ohta ponkan' (Citrus reticulata Blanco) that is rich in nobiletin and tangeretin with anti-dementia activity. Regul Toxicol Pharmacol 2020; 114:104670. [PMID: 32371103 DOI: 10.1016/j.yrtph.2020.104670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 11/19/2022]
Abstract
Nobiletin and tangeretin are major components of polymethoxylated flavones in the peels of citrus fruits such as Citrus reticulata. Because nobiletin and tangeretin have attracted attention due to their beneficial health properties, citrus peel extracts, in which they are concentrated, have the potential to serve as a functional food ingredient to prevent diseases. In this study, a series of toxicological studies on the peel extract of Ponkan cultivar 'Ohta ponkan' (Citrus reticulata Blanco), was conducted. No mutagenic activity was observed in a bacterial reverse mutation test, whereas chromosomal aberrations were induced in an in vitro mammalian chromosomal aberration test. No genotoxicity was observed in an in vivo mammalian micronucleus test. In a 90-day study at daily doses of 54, 180, or 540 mg/kg body weight (bw)/day, hyaline droplet nephropathy, which specifically occurs in adult male rats, was observed in males of 540 mg/kg bw/day group. No other adverse effects were observed in the 90-day study. The no adverse effect level in the 90-day study was considered to be 540 mg/kg bw/day for female rats and less than 540 mg/kg bw/day for male rats.
Collapse
Affiliation(s)
- Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai, Miyagi, 989-3201, Japan.
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai, Miyagi, 989-3201, Japan.
| |
Collapse
|
39
|
Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int 2020; 132:109114. [PMID: 32331689 DOI: 10.1016/j.foodres.2020.109114] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Citrus peel (CP) forms around 40-50% of the total fruit mass but is generally thought to be a waste. However, it is a substantial source of naturally occurring health enhancing compounds, particularly phenolic compounds and carotenoids. Phenolic compounds in CP mainly comprise phenolic acids (primarily caffeic, p-coumaric, ferulic and sinapic acid), flavanones (generally naringin and hesperidin) and polymethoxylated flavones (notably nobiletin and tangeretin). It has also been noted that CP's contain more amounts of these compounds than corresponding edible parts of the fruits. Phenolic compounds present in CP act as antioxidants (by either donation of protons or electrons) and protect cells against free radical damage as well as help in reducing the risk of many chronic diseases. Owing to the more abundance of polyphenols in CP's, their antioxidant activity is also higher than other edible fruit parts. Therefore, peels from citrus fruits can be used as sources of functional compounds and preservatives for the development of newer food products, that are not only safe but also have health-promoting activities. The present review provides in-depth knowledge about the phenolic composition, antioxidant potential and health benefits of CP.
Collapse
|
40
|
Lamport DJ, Christodoulou E, Achilleos C. Beneficial Effects of Dark Chocolate for Episodic Memory in Healthy Young Adults: A Parallel-Groups Acute Intervention with a White Chocolate Control. Nutrients 2020; 12:nu12020483. [PMID: 32075015 PMCID: PMC7071338 DOI: 10.3390/nu12020483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
There is good evidence that cocoa flavonoids can acutely improve cognitive function in humans, possibly via mechanisms such as increased cerebral blood flow. To date, much of the evidence is based on measures of executive function with extracts and cocoa-based interventions with a high flavonoid content. The aim of the present study was to explore whether benefits to episodic verbal memory and mood are observed two hours post consumption of a commercially available dark chocolate (DC) bar relative to a 35 g white chocolate bar (WC). Ninety-eight healthy young adults (n = 57 females) aged 18–24 years consumed either a 35 g DC bar or a calorie-matched low flavonoid WC bar. Verbal episodic memory and mood were assessed pre consumption and 2 h post consumption. An ANOVA analysis showed that the DC was associated with better verbal memory performance for several outcome measures of the Rey Auditory Verbal Learning Test relative to the WC, however, there were no effects on mood. These findings lend support to the notion that everyday available portions of dark chocolate can confer benefits to the brain in healthy consumers.
Collapse
|
41
|
Wunpathe C, Maneesai P, Rattanakanokchai S, Bunbupha S, Kukongviriyapan U, Tong-un T, Pakdeechote P. Tangeretin mitigates l-NAME-induced ventricular dysfunction and remodeling through the AT1R/pERK1/2/pJNK signaling pathway in rats. Food Funct 2020; 11:1322-1333. [DOI: 10.1039/c9fo02365h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tangeretin alleviates ventricular alterations in l-NAME hypertensive rats.
Collapse
Affiliation(s)
- Chutamas Wunpathe
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Putcharawipa Maneesai
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Siwayu Rattanakanokchai
- Veterinary Teaching Hospital
- Faculty of Veterinary Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Sarawoot Bunbupha
- Faculty of Medicine
- Mahasarakham University
- Mahasarakham 44150
- Thailand
| | - Upa Kukongviriyapan
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Terdthai Tong-un
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Poungrat Pakdeechote
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| |
Collapse
|
42
|
Fatima A, Siddique YH. Role of Flavonoids in Neurodegenerative Disorders with Special Emphasis on Tangeritin. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:581-597. [DOI: 10.2174/1871527318666190916141934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
Flavonoids are naturally occurring plant polyphenols found universally in all fruits, vegetables
and medicinal plants. They have emerged as a promising candidate in the formulation of treatment
strategies for various neurodegenerative disorders. The use of flavonoid rich plant extracts and
food in dietary supplementation have shown favourable outcomes. The present review describes the
types, properties and metabolism of flavonoids. Neuroprotective role of various flavonoids and the
possible mechanism of action in the brain against the neurodegeneration have been described in detail
with special emphasis on the tangeritin.
Collapse
Affiliation(s)
- Ambreen Fatima
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
43
|
Cha SJ, Do HA, Choi HJ, Lee M, Kim K. The Drosophila Model: Exploring Novel Therapeutic Compounds against Neurodegenerative Diseases. Antioxidants (Basel) 2019; 8:antiox8120623. [PMID: 31817611 PMCID: PMC6943723 DOI: 10.3390/antiox8120623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Polyphenols are secondary metabolites of plants, fruits, and vegetables. They act as antioxidants against free radicals from UV light, pathogens, parasites, and oxidative stress. In Drosophila models, feeding with various polyphenols results in increased antioxidant capacity and prolonged lifespan. Therefore, dietary polyphenols have several health advantages for preventing many human diseases, including cardiovascular diseases, cancer, and neurodegenerative diseases. However, the exact role of polyphenols in neurodegenerative diseases is still yet to be completely defined. This review focuses on the most recent studies related to the therapeutic effect of polyphenols in neurodegenerative disease management and provides an overview of novel drug discovery from various polyphenols using the Drosophila model.
Collapse
Affiliation(s)
- Sun Joo Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (S.J.C.); (H.-J.C.); (M.L.)
| | - Hyeon-Ah Do
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
| | - Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (S.J.C.); (H.-J.C.); (M.L.)
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (S.J.C.); (H.-J.C.); (M.L.)
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
- Correspondence: ; Tel.: +82-41-413-5024; Fax: +82-41-413-5006
| |
Collapse
|
44
|
Kaurinovic B, Vastag D. Flavonoids and Phenolic Acids as Potential Natural Antioxidants. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.83731] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Bitter orange peel extract induces endoplasmic reticulum-mediated autophagy in human hepatoma cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
46
|
González-Barbosa E, García-Aguilar R, Vega L, Cabañas-Cortés MA, Gonzalez FJ, Segovia J, Morales-Lázaro SL, Cisneros B, Elizondo G. Parkin is transcriptionally regulated by the aryl hydrocarbon receptor: Impact on α-synuclein protein levels. Biochem Pharmacol 2019; 168:429-437. [PMID: 31404530 DOI: 10.1016/j.bcp.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
Parkin (PRKN) is a ubiquitin E3 ligase that catalyzes the ubiquitination of several proteins. Mutations in the human Parkin gene, PRKN, leads to degeneration of dopaminergic (DA) neurons, resulting in autosomal recessive early-onset parkinsonism and the loss of PRKN function is linked to sporadic Parkinson's disease (PD). Additionally, several in vitro studies have shown that overexpression of exogenous PRKN protects against the neurotoxic effects induced by a wide range of cellular stressors, emphasizing the need to study the mechanism(s) governing PRKN expression and induction. Here, Prkn was identified as a novel target gene of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor and member of the bHLH/PAS (basic helix-loop-helix/Per-Arnt-Sim) superfamily. AhR binds and transactivates the Prkn gene promoter. We also demonstrated that AhR is expressed in DA neurons and that its activation upregulates Prkn mRNA and protein levels in the mouse ventral midbrain. Additionally, the AhR-dependent increase in PRKN levels is associated with a decrease in the protein levels of its target substrate, α-synuclein, in an AhR-dependent manner, because this effect is not observed in Ahr-null mice. These results suggest that treatments designed to induce PRKN expression through the use of nontoxic AhR agonist ligands may be novel strategies to prevent and delay PD.
Collapse
Affiliation(s)
| | - Rosario García-Aguilar
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Libia Vega
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | | | - Frank J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico.
| |
Collapse
|
47
|
Ogunruku OO, Ogunyemi BO, Oboh G, Babatunde OO, Boligon AA. Modulation of dopamine metabolizing enzymes and antioxidant status by Capsicum annuum Lin in rotenone-intoxicated rat brain. Toxicol Rep 2019; 6:795-802. [PMID: 31440456 PMCID: PMC6700337 DOI: 10.1016/j.toxrep.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Rotenone is a natural pesticide and environmental neurotoxin which mimics key aspects of Parkinson's disease. This study evaluated the effect of ethyl acetate extract of Capsicum annuum L. (C. annuum) in rotenone-intoxicated rats. Oral doses of C. annuum extract (50, 100 & 200 mg kg-1) and rotenone (2 mg kg-1 i.p.) were co-administered for 25 days during which rearing behavior was monitored. Biochemical alterations in the levels of tyrosine hydroxylase (TH), monoamine oxidase (MAO), superoxide dismutase (SOD) as well as reduced and oxidized glutathione (GSH) were estimated. Decrease in rearing behavior resulting from rotenone exposure was ameliorated by 200 mg kg-1 of C. annuum. Furthermore, rotenone exposure significantly (P < 0.05) decreased TH and increased MAO levels respectively. Impaired brain antioxidant capacity, typified by significantly (P < 0.05) decreased GSH redox status and SOD levels were also observed in rotenone-treated rats. However, co-administration of C. annuum ameliorated rotenone-induced derangements and potentiated the effect of levodopa. These results taken together suggests that C. annuum protects against rotenone-induced neurotoxicity by modulating dopamine metabolism and GSH redox status in rat brain.
Collapse
Affiliation(s)
| | | | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | | | - Aline Augusti Boligon
- Program of Post-Graduation in Pharmaceutical Sciences, Federal University of Santa Maria, Campus Camobi, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
48
|
Cheng YP, Li S, Chuang WL, Li CH, Chen GJ, Chang CC, Or CHR, Lin PY, Chang CC. Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4'-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells. Int J Mol Sci 2019; 20:ijms20133366. [PMID: 31323961 PMCID: PMC6651290 DOI: 10.3390/ijms20133366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis, largely due to resistance to current radiotherapy and Temozolomide chemotherapy. The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is evidenced as a pivotal driver of GBM pathogenesis and therapy resistance, and hence, is a promising GBM drug target. 5-acetyloxy-6,7,8,4'-tetramethoxyflavone (5-AcTMF) is an acetylated derivative of Tangeretin which is known to exert anticancer effects on breast, colon, lung, and multiple myeloma; however, its effect on GBM remains elusive. Herein, we reported that 5-AcTMF suppressed the viability and clonogenicity along with inducing apoptosis in multiple human GBM cell lines. Mechanistic analyses further revealed that 5-AcTMF lowered the levels of Tyrosine 705-phosphorylated STAT3 (p-STAT3), a canonical marker of STAT3 activation, but also dampened p-STAT3 upregulation elicited by Interleukin-6. Notably, ectopic expression of dominant-active STAT3 impeded 5-AcTMF-induced suppression of viability and clonogenicity plus apoptosis induction in GBM cells, confirming the prerequisite of STAT3 blockage for the inhibitory action of 5-AcTMF on GBM cell survival and growth. Additionally, 5-AcTMF impaired the activation of STAT3 upstream kinase JAK2 but also downregulated antiapoptotic BCL-2 and BCL-xL in a STAT3-dependent manner. Moreover, the overexpression of either BCL-2 or BCL-xL abrogated 5-AcTMF-mediated viability reduction and apoptosis induction in GBM cells. Collectively, we, for the first time, revealed the anticancer effect of 5-AcTMF on GBM cells, which was executed via thwarting the JAK2-STAT3-BCL-2/BCL-xL signaling axis. Our findings further implicate the therapeutic potential of 5-AcTMF for GBM treatment.
Collapse
Affiliation(s)
- Yen-Po Cheng
- Division of Neurosurgery, Department of Surgery, Yuanlin Changhua Christian Hospital, Changhua 50006, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shiming Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Wan-Ling Chuang
- Transplant Medicine & Surgery Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chia-Hsuan Li
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Guan-Jun Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Chin Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chi-Hung R Or
- Department of Anesthesiology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
| | - Ping-Yi Lin
- Transplant Medicine & Surgery Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Life Sciences, The iEGG and Animal Biotechnology Research Center, Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
49
|
Liu S, Hu L, Jiang D, Xi W. Effect of Post-Harvest LED and UV Light Irradiation on the Accumulation of Flavonoids and Limonoids in the Segments of Newhall Navel Oranges ( Citrus sinensis Osbeck). Molecules 2019; 24:molecules24091755. [PMID: 31064149 PMCID: PMC6540038 DOI: 10.3390/molecules24091755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023] Open
Abstract
To investigate the effect of post-harvest light irradiation on the accumulation of flavonoids and limonoids, harvested Newhall navel oranges were continuously exposed to light-emitting diode (LED) and ultraviolet (UV) light irradiation for 6 days, and the composition and content of flavonoids and limonoids in the segments were determined using UPLC-qTOF-MS at 0, 6, and 15 days after harvest. In total, six polymethoxylated flavonoids (PMFs), five flavone-O/C-glycosides, seven flavanone-O-glycosides, and three limonoids were identified in the segments. The accumulation of these components was altered by light irradiation. Red and blue light resulted in higher levels of PMFs during exposure periods. The accumulation of PMFs was also significantly induced after white light, UVB and UVC irradiation were removed. Red and UVC irradiation induced the accumulation of flavone and flavanone glycosides throughout the entire experimental period. Single light induced limonoid accumulation during exposure periods, but limonoid levels decreased significantly when irradiation was removed. Principal component analysis showed a clear correlation between PMFs and white light, between flavonoid glycosides and red light and UVC, and between limonoids and UVC. These results suggest that the accumulation of flavonoids and limonoids in citrus is regulated by light irradiation. White light, red light and UVC irradiation might be a good potential method for improving the nutrition and flavor quality of post-harvest citrus.
Collapse
Affiliation(s)
- Shengyu Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Linping Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Dong Jiang
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
50
|
Fatima A, Rahul, Siddique YH. Role of tangeritin against cognitive impairments in transgenic Drosophila model of Parkinson's disease. Neurosci Lett 2019; 705:112-117. [PMID: 31039425 DOI: 10.1016/j.neulet.2019.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. As there is no permanent cure for the disease, the use of herbal compounds with antioxidant potential will be an effective approach for controlling the progression of disease. In this context the effect of tangeritin (a polymethoxy flavone concentrated in the peels of citrus fruits) was studied at final doses of 5, 10 and 20 μM on PD model flies. The doses were established in diet and the PD flies were allowed to feed on it for 24 days. The effect was studied on cognitive impairments. Immunostaining of brain sections for tyrosine hydroxylase was also performed. The docking studies were also carried out to give a plausible binding site of tangeritin on alpha synuclein molecule. The results of the study showed that tangeritin is effective in improving the cognitive impairments.
Collapse
Affiliation(s)
- Ambreen Fatima
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|