1
|
Foster T, Lim P, Jones M, Wagle SR, Kovacevic B, Ionescu CM, Wong EYM, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles for Inner Ear Targeted Trans Differentiation Gene Therapy. ChemMedChem 2024; 19:e202400038. [PMID: 38818625 DOI: 10.1002/cmdc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hearing loss is a significant disability that often goes under recognised, largely due to poor identification, prevention, and treatment. Steps are being made to amend these pitfalls in the investigation of hearing loss, however, the development of a cure to reverse advanced forms remains distant. This review details some current advances in the treatment of hearing loss, with a particular focus on genetic-based nanotechnology and how it may provide a useful avenue for further research. This review presents a broad background on the pathophysiology of hearing loss and some current interventions. We also highlight some potential genes that may be useful in the amelioration of hearing loss. Pathways of cellular differentiation from stem or supporting cell to functional hair cell are covered in detail, as this mechanism represents a key means of regenerating these cell types. Overall, we believe that polymer-based nanotechnology coupled with novel excipients represents a useful area of further research in the treatment of hearing loss, although further studies in this area are required.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
2
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
3
|
Abstract
Biologic therapies have the ability to fundamentally change the management of hearing loss; clinicians need to familiarize themselves with their prospective applications in practice. This article reviews the current application of 4 categories of biological therapeutics-growth factors, apoptosis inhibitors, monoclonal antibodies, and gene therapy-in otology and their potential future directions and applications.
Collapse
Affiliation(s)
- Steven A Gordon
- Otolaryngology-Head & Neck Surgery, University of Utah Health, 50 North Medical Drive 3C120 SOM, Salt Lake City, UT 84132, USA
| | - Richard K Gurgel
- Otolaryngology-Head & Neck Surgery, University of Utah Health, 50 North Medical Drive 3C120 SOM, Salt Lake City, UT 84132, USA.
| |
Collapse
|
4
|
Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020; 9:jcm9072309. [PMID: 32708116 PMCID: PMC7408650 DOI: 10.3390/jcm9072309] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans of all age groups, from children (1/500) to the elderly (more than 50% of the over-75 s). Over 50% of congenital deafness are hereditary in nature. The other major causes of deafness, which also may have genetic predisposition, are aging, acoustic trauma, ototoxic drugs such as aminoglycosides, and noise exposure. Over the last two decades, the study of inherited deafness forms and related animal models has been instrumental in deciphering the molecular, cellular, and physiological mechanisms of disease. However, there is still no curative treatment for sensorineural deafness. Hearing loss is currently palliated by rehabilitation methods: conventional hearing aids, and for more severe forms, cochlear implants. Efforts are continuing to improve these devices to help users to understand speech in noisy environments and to appreciate music. However, neither approach can mediate a full recovery of hearing sensitivity and/or restoration of the native inner ear sensory epithelia. New therapeutic approaches based on gene transfer and gene editing tools are being developed in animal models. In this review, we focus on the successful restoration of auditory and vestibular functions in certain inner ear conditions, paving the way for future clinical applications.
Collapse
|
5
|
Lin YC, Chen HC, Chen HK, Lin YY, Kuo CY, Wang H, Hung CL, Shih CP, Wang CH. Ultrastructural Changes Associated With the Enhanced Permeability of the Round Window Membrane Mediated by Ultrasound Microbubbles. Front Pharmacol 2020; 10:1580. [PMID: 32047431 PMCID: PMC6997169 DOI: 10.3389/fphar.2019.01580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
The round window membrane (RWM) is the most common entryway for local drug and gene delivery into the inner ear, but its permeability can change the treatment outcome. We previously demonstrated a feasible and highly efficient approach using ultrasound-aided microbubble (USMB) cavitation to enhance the permeability of the RWM. Here, we investigated the safety of USMB exposure and the association between temporal changes in RWM permeability and ultrastructure. Experimental guinea pigs were divided into two treatment groups: a control group receiving round window soaking (RWS) with MBs and treatment (USM) groups undergoing 3 (USM-3) or 5 (USM-5) consecutive USMB exposures (1 min/exposure) at an acoustic intensity of 3 W/cm2 and 1 MHz frequency. The trans-RWM delivery efficiency of biotin-fluorescein isothiocyanate conjugates, used as permeability tracers, revealed a greater than 7-fold higher delivery efficiency for the USM groups immediately after 3 or 5 exposures than for the RWS group. After 24 h, the delivery efficiency was 2.4-fold higher for the USM-3 group but was 6.6-fold higher for the USM-5 group (and 3.7-fold higher after 48 h), when compared to the RWS group. Scanning electron microscopy images of the RWM ultrastructure revealed USMB-induced sonoporation effects that could include the formation of heterogeneous pore-like openings with perforation diameters from 100 nm to several micrometers, disruption of the continuity of the outer epithelial surface layer, and loss of microvilli. These ultrastructural features were associated with differential permeability changes that depended on the USMB exposure course. Fourteen days after treatment, the pore-like openings had significantly decreased in number and the epithelial defects were healed either by cell expansion or by repair by newly migrated epithelial cells. The auditory brainstem response recordings of the animals following the 5-exposure USMB treatment indicated no deterioration in the hearing thresholds at a 2-month follow-up and no significant hair cell damage or apoptosis, based on scanning electron microscopy, surface preparations, and TUNEL assays. USMBs therefore appear to be safe and effective for inner ear drug delivery. The mechanism of enhanced permeability may involve a disruption of the continuity of the outer RWM epithelial layer, which controls transmembrane transport of various substances.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hang-Kang Chen
- Teaching and Research Section, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Yuan-Yung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hao Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lien Hung
- Teaching and Research Section, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Taichung Armed Forces General Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Pfannenstiel SC, Praetorius M, Brough DE, Staecker H. Hearing Preservation Following Repeated Adenovector Delivery. Anat Rec (Hoboken) 2020; 303:600-607. [DOI: 10.1002/ar.24347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Susanna C. Pfannenstiel
- Department of Otolaryngology Head and Neck SurgeryUniversity of Kansas School of Medicine Kansas City Kansas
| | - Mark Praetorius
- Department of Otolaryngology Head and Neck SurgeryUniversity of Kansas School of Medicine Kansas City Kansas
- Department of OtolaryngologyUniversity of Heidelberg Heidelberg Germany
| | | | - Hinrich Staecker
- Department of Otolaryngology Head and Neck SurgeryUniversity of Kansas School of Medicine Kansas City Kansas
| |
Collapse
|
7
|
Kitahara T, Okamoto H, Fukushima M, Sakagami M, Ito T, Yamashita A, Ota I, Yamanaka T. A Two-Year Randomized Trial of Interventions to Decrease Stress Hormone Vasopressin Production in Patients with Meniere's Disease-A Pilot Study. PLoS One 2016; 11:e0158309. [PMID: 27362705 PMCID: PMC4928871 DOI: 10.1371/journal.pone.0158309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Meniere's disease, a common inner ear condition, has an incidence of 15-50 per 100,000. Because mental/physical stress and subsequent increase in the stress hormone vasopressin supposedly trigger Meniere's disease, we set a pilot study to seek new therapeutic interventions, namely management of vasopressin secretion, to treat this disease. We enrolled 297 definite Meniere's patients from 2010 to 2012 in a randomized-controlled and open-label trial, assigning Group-I (control) traditional oral medication, Group-II abundant water intake, Group-III tympanic ventilation tubes and Group-IV sleeping in darkness. Two hundred sixty-three patients completed the planned 2-year-follow-up, which included assessment of vertigo, hearing, plasma vasopressin concentrations and changes in stress/psychological factors. At 2 years, vertigo was completely controlled in 54.3% of patients in Group-I, 81.4% in Group-II, 84.1% in Group-III, and 80.0% in Group-IV (statistically I < II = III = IV). Hearing was improved in 7.1% of patients in Group-I, 35.7% in Group-II, 34.9% in Group-III, and 31.7% in Group-IV (statistically I < II = III = IV). Plasma vasopressin concentrations decreased more in Groups-II, -III, and -IV than in Groups-I (statistically I < II = III = IV), although patients' stress/psychological factors had not changed. Physicians have focused on stress management for Meniere's disease. However, avoidance of stress is unrealistic for patients who live in demanding social environments. Our findings in this pilot study suggest that interventions to decrease vasopressin secretion by abundant water intake, tympanic ventilation tubes and sleeping in darkness is feasible in treating Meniere's disease, even though these therapies did not alter reported mental/physical stress levels. TRIAL REGISTRATION ClinicalTrials.gov NCT01099046.
Collapse
Affiliation(s)
- Tadashi Kitahara
- Department of Otolaryngology, Nara Medical University, Kashihara-city, Nara, Japan
- Department of Otolaryngology, Osaka Rosai Hospital, Sakai-city, Osaka, Japan
| | - Hidehiko Okamoto
- Department of Physiology, Okazaki Research Institute, Okazaki-city, Aichi, Japan
| | - Munehisa Fukushima
- Department of Otolaryngology, Osaka Rosai Hospital, Sakai-city, Osaka, Japan
| | - Masaharu Sakagami
- Department of Otolaryngology, Nara Medical University, Kashihara-city, Nara, Japan
| | - Taeko Ito
- Department of Otolaryngology, Nara Medical University, Kashihara-city, Nara, Japan
| | - Akinori Yamashita
- Department of Otolaryngology, Nara Medical University, Kashihara-city, Nara, Japan
| | - Ichiro Ota
- Department of Otolaryngology, Nara Medical University, Kashihara-city, Nara, Japan
| | - Toshiaki Yamanaka
- Department of Otolaryngology, Nara Medical University, Kashihara-city, Nara, Japan
| |
Collapse
|
8
|
Kurioka T, Mizutari K, Niwa K, Fukumori T, Inoue M, Hasegawa M, Shiotani A. Hyaluronic acid pretreatment for Sendai virus-mediated cochlear gene transfer. Gene Ther 2015; 23:187-95. [PMID: 26361273 DOI: 10.1038/gt.2015.94] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/19/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022]
Abstract
Gene therapy with viral vectors is one of the most promising strategies for sensorineural hearing loss. However, safe and effective administration of the viral vector into cochlear tissue is difficult because of the anatomical isolation of the cochlea. We investigated the efficiency and safety of round window membrane (RWM) application of Sendai virus, one of the most promising non-genotoxic vectors, after pretreatment with hyaluronic acid (HA) on the RWM to promote efficient viral translocation into the cochlea. Sendai virus expressing the green fluorescent protein reporter gene was detected throughout cochlear tissues following application combined with HA pretreatment. Quantitative analysis revealed that maximum expression was reached 3 days after treatment. The efficiency of transgene expression was several 100-fold greater with HA pretreatment than that without. Furthermore, unlike the conventional intracochlear delivery methods, this approach did not cause hearing loss. These findings reveal the potential utility of gene therapy with Sendai virus and HA for treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- T Kurioka
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - K Mizutari
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - K Niwa
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - T Fukumori
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - M Inoue
- DNAVEC Corporation, Ibaraki, Japan
| | | | - A Shiotani
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
9
|
Pritz CO, Dudás J, Rask-Andersen H, Schrott-Fischer A, Glueckert R. Nanomedicine strategies for drug delivery to the ear. Nanomedicine (Lond) 2014; 8:1155-72. [PMID: 23837855 DOI: 10.2217/nnm.13.104] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The highly compartmentalized anatomy of the ear aggravates drug delivery, which is used to combat hearing-related diseases. Novel nanosized drug vehicles are thought to overcome the limitations of classic approaches. In this article, we summarize the nanotechnology-based efforts involving nano-objects, such as liposomes, polymersomes, lipidic nanocapsules and poly(lactic-co-glycolic acid) nanoparticles, as well as nanocoatings of implants to provide an efficient means for drug transfer in the ear. Modern strategies do not only enhance drug delivery efficiency, in the inner ear these vector systems also aim for specific uptake into hair cells and spiral ganglion neurons. These novel peptide-mediated strategies for specific delivery are reviewed in this article. Finally, the biosafety of these vector systems is still an outstanding issue, since long-term application to the ear has not yet been assessed.
Collapse
Affiliation(s)
- Christian Oliver Pritz
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Anichstraße 35, Austria
| | | | | | | | | |
Collapse
|
10
|
XIA LI, YIN SHANKAI. Local gene transfection in the cochlea (Review). Mol Med Rep 2013; 8:3-10. [DOI: 10.3892/mmr.2013.1496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
|
11
|
Meyer H, Stöver T, Fouchet F, Bastiat G, Saulnier P, Bäumer W, Lenarz T, Scheper V. Lipidic nanocapsule drug delivery: neuronal protection for cochlear implant optimization. Int J Nanomedicine 2012; 7:2449-64. [PMID: 22654517 PMCID: PMC3363950 DOI: 10.2147/ijn.s29712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Sensorineural hearing loss leads to the progressive degeneration of spiral ganglion cells (SGC). Next to postoperative fibrous tissue growth, which should be suppressed to assure a close nerve–electrode interaction, the density of healthy SGC is one factor that influences the efficiency of cochlear implants (CI), the choice of treatment for affected patients. Rolipram, a phosphodiesterase-4 inhibitor, has proven neuroprotective and anti-inflammatory effects and might also reduce SGC degeneration and fibrosis, but it has to pass the cellular membrane to be biologically active. Methods Lipidic nanocapsules (LNC) can be used as biodegradable drug carriers to increase the efficacy of conventional application methods. We examined the biological effects of rolipram and LNC’s core encapsulated rolipram on SGC and dendritic cell (DC) tumor necrosis factor-α (TNF-α) production in vitro and on SGC survival in systemically-deafened guinea pigs in vivo. Results Our results prove that rolipram does not have a beneficial effect on cultured SGC. Incorporation of rolipram in LNC increased the survival of SGC significantly. In the DC study, rolipram significantly inhibited TNF-α in a dose-dependent manner. The rolipram-loaded LNC provided a significant cytokine inhibition as well. In vivo data do not confirm the in vitro results. Conclusion By transporting rolipram into the SGC cytoplasm, LNC enabled the neuroprotective effect of rolipram in vitro, but not in vivo. This might be due to dilution of test substances by perilymph or an inadequate release of rolipram based on differing in vivo and in vitro conditions. Nevertheless, based on in vitro results, proving a significantly increased neuronal survival when using LNC-rolipram compared to pure rolipram and pure LNC application, we believe that the combination of rolipram and LNC can potentially reduce neuronal degeneration and fibrosis after CI implantation. We conclude that rolipram is a promising drug that can be used in inner ear therapy and that LNC have potential as an inner ear drug-delivery system. Further experiments with modified conditions might reveal in vivo biological effects.
Collapse
Affiliation(s)
- Hartwig Meyer
- Department of Otolaryngology, Hannover Medical School, University of Veterinary Medicine Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sun H, Huang A, Cao S. Current status and prospects of gene therapy for the inner ear. Hum Gene Ther 2011; 22:1311-22. [PMID: 21338273 DOI: 10.1089/hum.2010.246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inner ear diseases are common and often result in hearing disability. Sensorineural hearing loss is the main cause of hearing disability. So far, no effective treatment is available although some patients may benefit from a hearing aid equipped with a hearing amplifier or from cochlear implantation. Inner ear gene therapy has become an emerging field of study for the treatment of hearing disability. Numerous new discoveries and tremendous advances have been made in inner ear gene therapy including gene vectors, routes of administration, and therapeutic genes and targets. Gene therapy may become a treatment option for inner ear diseases in the near future. In this review, we summarize the current state of inner ear gene therapy including gene vectors, delivery routes, and therapeutic genes and targets by examining and analyzing publications on inner ear gene therapy from the literature and patent documents, and identify promising patents, novel techniques, and vital research projects. We also discuss the progress and prospects of inner ear gene therapy, the advances and shortcomings, with possible solutions in this field of research.
Collapse
Affiliation(s)
- Hong Sun
- Department of Otolaryngology, Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | |
Collapse
|
13
|
Suzuki M, Kashio A, Sakamoto T, Yamasoba T. Effect of Burow's solution on the guinea pig inner ear. Ann Otol Rhinol Laryngol 2010; 119:495-500. [PMID: 20734973 DOI: 10.1177/000348941011900712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We examined the changes in the inner ear hair cells following intratympanic injection of Burow's solution. METHODS Thirty-one albino guinea pigs with a normal Preyer's reflex were used. Burow's solution was applied and allowed to remain on the round window membrane for 30 minutes (30-minute group), 1 hour (1-hour group), or 2 hours (2-hour group). Seven days later, the left temporal bone was removed. Auditory brain stem responses were recorded at 4, 8, and 20 kHz before application of Burow's solution and again immediately before decapitation. The cochlea and utricle were dissected, stained with rhodamine-phalloidin, and examined under a fluorescence microscope. RESULTS The postoperative auditory brain stem response thresholds at 20 kHz in the 1-hour group and those at 8 and 20 kHz in the 2-hour group were increased significantly compared to the baseline thresholds. Surface preparations of the organ of Corti revealed no hair cell loss in the 30-minute group, loss of outer hair cells in the lower half of the basal turn in half of the animals in the 1-hour group, and loss of outer hair cells in the basal turn in almost all animals in the 2-hour group. In the 2-hour group, the microthin sections of the round window membrane showed degeneration of the outer epithelium. CONCLUSIONS The retention of Burow's solution on the round window membrane for 2 hours induces degeneration of the outer epithelium and damage to the cochlear outer hair cells.
Collapse
Affiliation(s)
- Mitsuya Suzuki
- Department of Otolaryngology, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Scheper V, Wolf M, Scholl M, Kadlecova Z, Perrier T, Klok HA, Saulnier P, Lenarz T, Stöver T. Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules. Nanomedicine (Lond) 2009; 4:623-35. [DOI: 10.2217/nnm.09.41] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Treatment of sensorineural hearing loss could be advanced using novel drug carriers such as hyperbranched polylysine (HBPL) or lipid nanocapsules (LNCs). This study examined HBPL and LNCs for their cellular uptake and possible toxicity in vitro and in vivo as the first step in developing novel nanosized multifunctional carriers. Method: Having incubated HBPL and LNCs with fibroblasts, nanoparticle uptake and cell viability were determined by confocal laser scanning microscopy, fluorescence measurements and neutral red staining. In vivo, electrophysiology, confocal laser scanning microscopy and cytocochleograms were performed for nanoparticle detection and also toxicity studies after intracochlear application. Results: Both nanoparticles were detectable in the fibroblasts’ cytoplasm without causing cytotoxic effects. After in vivo application they were visualized in cochlear cells, which did not lead to a change in hearing threshold or loss of hair cells. Biocompatibility and traceability were demonstrated for HBPL and LNCs. Thus, they comply with the basic requirements for drug carriers for potential application in the inner ear.
Collapse
Affiliation(s)
- Verena Scheper
- Department of Otolaryngology, Medical University Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Melanie Wolf
- Department of Otolaryngology, Medical University Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Markus Scholl
- École Polytechnique Fédérale de Lausanne, Institut des Matériaux, Laboratoire des Polymères, MXD 135 (Bâtiment MX-D), Switzerland
| | - Zuzana Kadlecova
- École Polytechnique Fédérale de Lausanne, Institut des Matériaux, Laboratoire des Polymères, MXD 135 (Bâtiment MX-D), Switzerland
| | - Thomas Perrier
- Université Angers – INSERM U646, Laboratoires Annuaires Ingénierie de la Vectorisation Particulaire, France
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne, Institut des Matériaux, Laboratoire des Polymères, MXD 135 (Bâtiment MX-D), Switzerland
| | - Patrick Saulnier
- Université Angers – INSERM U646, Laboratoires Annuaires Ingénierie de la Vectorisation Particulaire, France
| | - Thomas Lenarz
- Department of Otolaryngology, Medical University Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Timo Stöver
- Department of Otolaryngology, Medical University Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
15
|
Maeda Y, Sheffield AM, Smith RJH. Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Otorhinolaryngol 2009; 66:13-36. [PMID: 19494570 DOI: 10.1159/000218205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeting and downregulating specific genes with antisense and decoy oligonucleotides, ribozymes or RNA interference (RNAi) offer the theoretical potential of altering a disease phenotype. Here we review the molecular mechanism behind the in vivo application of RNAi-mediated gene silencing, focusing on its application to the inner ear. RNAi is a physiological phenomenon in which small, double-stranded RNA molecules (small interfering RNA, siRNA) reduce expression of homologous genes. Notable for its exquisite sequence specificity, it is ideally applied to diseases caused by a gain-of-function mechanism of action. Types of deafness in which gain-of-function mutations are observed include DFNA2 (KCNQ4), DFNA3 (GJB2) and DFNA5 (DFNA5). Several strategies can be used to deliver siRNA into the inner ear, including cationic liposomes, adeno-associated and lentiviral vectors, and adenoviral vectors. Transduction efficiency with cationic liposomes is low and the effect is transient; with adeno-associated and lentiviral vectors, long-term transfection is possible using a small hairpin RNA expression cassette.
Collapse
|
16
|
Huang Y, Chi F, Han Z, Yang J, Gao W, Li Y. New ectopic vestibular hair cell-like cells induced by Math1 gene transfer in postnatal rats. Brain Res 2009; 1276:31-8. [PMID: 19397899 DOI: 10.1016/j.brainres.2009.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/07/2009] [Accepted: 04/13/2009] [Indexed: 11/26/2022]
Abstract
Overexpression of Math1 has been demonstrated to induce robust ectopic new hair cells in greater epithelial ridge (GER) and lesser epithelial ridge (LER) of the postnatal rats' cochlear in vitro. In spite of the similarities between cochlear and vestibular epithelia in origin and structure, no similar results have been reported in the non-sensory region of vestibular epithelia in vitro. In the study, the adenoviral vectors inserted with Math1 gene were constructed to examine their effect on vestibular epithelia in postnatal rats. In vivo, the adenovirus vectors administered in vestibular perilymphatic or endolymphatic space, their transduction efficiency and other indexes are different. We set up a culture construction to simulate and show the differences. In the study, we also developed a new dissection protocol to be quick to harvest the whole maculae and cristae. The new ectopic vestibular hair cell-like cells induced by overexpression of Math1, were found to appear in the non-sensory region of the postnatal rats' vestibular epithelia as observed in the cochlear, and the number of the new cells was different when a different virus administration was simulated in vestibular perilymphatic or endolymphatic space, suggesting that the cells found could have the capability to differentiate into new hair cells. Our study might pave the way for further in vivo studies on vestibular Math1 adenoviral vector gene transfer.
Collapse
Affiliation(s)
- Yibo Huang
- Department of Otorhinolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Richardson RT, Wise AK, Andrew JK, O'Leary SJ. Novel drug delivery systems for inner ear protection and regeneration after hearing loss. Expert Opin Drug Deliv 2009; 5:1059-76. [PMID: 18817513 DOI: 10.1517/17425247.5.10.1059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A cochlear implant, the only current treatment for restoring auditory perception after severe or profound sensorineural hearing loss (SNHL), works by electrically stimulating spiral ganglion neurons (SGNs). However, gradual degeneration of SGNs associated with SNHL can compromise the efficacy of the device. OBJECTIVE To review novel drug delivery systems for preserving and/or regenerating sensory cells in the cochlea after SNHL. METHODS The effectiveness of traditional cochlear drug delivery systems is compared to newer techniques such as cell, polymer and gene transfer technologies. Special requirements for local drug delivery to the cochlea are discussed, such as protecting residual hearing and site-specific drug delivery for cell preservation and regeneration. RESULTS/CONCLUSIONS Drug delivery systems with the potential for immediate clinical translation, as well as those that will contribute to the future of hearing preservation or cochlear cellular regeneration, are identified.
Collapse
Affiliation(s)
- Rachael T Richardson
- Bionic Ear Institute, 384 Albert Street, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
18
|
Konishi M, Kawamoto K, Izumikawa M, Kuriyama H, Yamashita T. Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J Gene Med 2008; 10:610-8. [PMID: 18338819 DOI: 10.1002/jgm.1189] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Several genes are candidates for treating inner ear diseases. For clinical applications, minimally invasive approaches to the inner ear are desirable along with minimal side-effects. METHODS Adeno-associated virus (AAV) was used as a vector into the guinea pig inner ear. Six AAV-cytomegalovirus hybrids (AAV-2/1, -2/2, -2/5, -2/7, -2/8 and -2/9) were infused into perilymph of the cochlea basal turn, an approach that could be used in cochlear implant surgery. At 7 days after injection, distribution of gene expression, hearing and morphology were evaluated. Adenoviral vector was also used to compare distributions of gene expression. Moreover, distribution of cell surface receptors of AAV in the cochlea was examined using immunohistochemistry. RESULTS Using the perilymphatic approach, adenovirus could be transferred to mesothelial cells lining the perilymph, but not sensory cells. Conversely, all AAV serotypes displayed tissue tropism to inner hair cells, with AAV-2/2 showing particularly efficient transfer to sensory cells. This tissue tropism of AAV could not be explained by the distribution of AAV receptors. Hearing and morphology were largely unaffected. CONCLUSIONS Our results indicate that AAV vector can be safely applied to the inner ear and AAV-2/2 offers a good tool for transferring transgenes into sensory cells of the inner ear efficiently without toxicity.
Collapse
Affiliation(s)
- Masaya Konishi
- Departments of Otolaryngology and Head-Neck Surgery, Kansai Medical University, Moriguchi, Osaka, Japan.
| | | | | | | | | |
Collapse
|
19
|
Iizuka T, Kanzaki S, Mochizuki H, Inoshita A, Narui Y, Furukawa M, Kusunoki T, Saji M, Ogawa K, Ikeda K. Noninvasive in vivo delivery of transgene via adeno-associated virus into supporting cells of the neonatal mouse cochlea. Hum Gene Ther 2008; 19:384-90. [PMID: 18439125 DOI: 10.1089/hum.2007.167] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are a number of genetic diseases that affect the cochlea early in life, which require normal gene transfer in the early developmental stage to prevent deafness. The delivery of adenovirus (AdV) and adeno-associated virus (AAV) was investigated to elucidate the efficiency and cellular specificity of transgene expression in the neonatal mouse cochlea. The extent of AdV transfection is comparable to that obtained with adult mice. AAV-directed gene transfer after injection into the scala media through a cochleostomy showed transgene expression in the supporting cells, inner hair cells (IHCs), and lateral wall with resulting hearing loss. On the other hand, gene expression was observed in Deiters cells, IHCs, and lateral wall without hearing loss after the application of AAV into the scala tympani through the round window. These findings indicate that injection of AAV into the scala tympani of the neonatal mouse cochlea therefore has the potential to efficiently and noninvasively introduce transgenes to the cochlear supporting cells, and this modality is thus considered to be a promising strategy to prevent hereditary prelingual deafness.
Collapse
Affiliation(s)
- Takashi Iizuka
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pettingill LN, Richardson RT, Wise AK, O'Leary SJ, Shepherd RK. Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system. IEEE Trans Biomed Eng 2007; 54:1138-48. [PMID: 17551571 PMCID: PMC1886005 DOI: 10.1109/tbme.2007.895375] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spiral ganglion neurons (SGNs) are the target cells of the cochlear implant, a neural prosthesis designed to provide important auditory cues to severely or profoundly deaf patients. The ongoing degeneration of SGNs that occurs following a sensorineural hearing loss is, therefore, considered a limiting factor in cochlear implant efficacy. We review neurobiological techniques aimed at preventing SGN degeneration using exogenous delivery of neurotrophic factors. Application of these proteins prevents SGN degeneration and can enhance neurite outgrowth. Furthermore, chronic electrical stimulation of SGNs increases neurotrophic factor-induced survival and is correlated with functional benefits. The application of neurotrophic factors has the potential to enhance the benefits that patients can derive from cochlear implants; moreover, these techniques may be relevant for use with neural prostheses in other neurological conditions.
Collapse
MESH Headings
- Animals
- Cell Survival/drug effects
- Cell Survival/physiology
- Cochlea/drug effects
- Cochlea/physiopathology
- Cochlear Implants/trends
- Combined Modality Therapy
- Disease Models, Animal
- Electric Stimulation Therapy/instrumentation
- Electric Stimulation Therapy/methods
- Electrodes, Implanted
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/therapy
- Membrane Potentials/physiology
- Nerve Degeneration/drug therapy
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Nerve Growth Factors/administration & dosage
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Spiral Ganglion/drug effects
- Spiral Ganglion/physiology
- Treatment Outcome
Collapse
|
21
|
Kopke RD, Wassel RA, Mondalek F, Grady B, Chen K, Liu J, Gibson D, Dormer KJ. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol Neurootol 2006; 11:123-33. [PMID: 16439835 DOI: 10.1159/000090685] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SNP) composed of magnetite (Fe(3)O(4)) were studied preliminarily as vehicles for therapeutic molecule delivery to the inner ear and as a middle ear implant capable of producing biomechanically relevant forces for auditory function. Magnetite SNP were synthesized, then encapsulated in either silica or poly (D,L,-Lactide-co-glycolide) or obtained commercially with coatings of oleic acid or dextran. Permanent magnetic fields generated forces sufficient to pull them across tissue in several round window membrane models (in vitrocell culture, in vivo rat and guinea pig, and human temporal bone) or to embed them in middle ear epithelia. Biocompatibility was investigated by light and electron microscopy, cell culture kinetics, and hair cell survival in organotypic cell culture and no measurable toxicity was found. A sinusoidal magnetic field applied to guinea pigs with SNP implanted in the middle ear resulted in displacements of the middle ear comparable to 90 dB SPL.
Collapse
|
22
|
Takemura K, Komeda M, Yagi M, Himeno C, Izumikawa M, Doi T, Kuriyama H, Miller JM, Yamashita T. Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig. Hear Res 2005; 196:58-68. [PMID: 15464302 DOI: 10.1016/j.heares.2004.06.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 06/16/2004] [Indexed: 02/01/2023]
Abstract
The protective effect of dexamethasone (DEX) against noise-induced trauma, as reflected in hair cell destruction and elevation in auditory brainstem response (ABR) sensitivity, was assessed in guinea pigs. The animals were administered DEX (1, 10, 100, and 1000 ng/ml) or artificial perilymph (AP) via a mini-osmotic pump directly into scala tympani and, on the fourth day after pump implantation, exposed to 120 dB SPL octave band noise, centered at 4 kHz, for 24 h. Animals receiving DEX demonstrated a dose-dependent reduction in noise-induced outer hair cell loss (significant at 1, 10 and 100 ng/ml DEX animals compared to AP control animals) and a similar attenuation of the noise-induced ABR threshold shifts, observed 7 days following exposure (significant at 100 ng/ml DEX animals compared to AP control animals). These physiological and morphological results indicate that direct infusion of DEX into the perilymphatic space has protective effects against noise-induced trauma in the guinea pig cochlea.
Collapse
Affiliation(s)
- Keiji Takemura
- Department of Otolaryngology, Kansai Medical University, Fumizono-cho 10-15, Moriguchi, Osaka 570-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|