1
|
Xu W, Jiang T, Shen K, Zhao D, Zhang M, Zhu W, Liu Y, Xu C. GADD45B regulates the carcinogenesis process of chronic atrophic gastritis and the metabolic pathways of gastric cancer. Front Endocrinol (Lausanne) 2023; 14:1224832. [PMID: 37608794 PMCID: PMC10441793 DOI: 10.3389/fendo.2023.1224832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Background Gastric cancer continues to be a significant global healthcare challenge, and its burden remains substantial. The development of gastric cancer (GC) is closely linked to chronic atrophic gastritis (CAG), yet there is a scarcity of research exploring the underlying mechanisms of CAG-induced carcinogenesis. Methods In this study, we conducted a comprehensive investigation into the oncogenes involved in CAG using both bulk transcriptome and single-cell transcriptome data. Our approach employed hdWGCNA to identify pathogenic genes specific to CAG, with non-atrophic gastritis (NAG) serving as the control group. Additionally, we compared CAG with GC, using normal gastric tissue as the control group in the single-cell transcriptome analysis. By intersecting the identified pathogenic genes, we pinpointed key network molecules through protein interaction network analysis. To further refine the gene selection, we applied LASSO, SVM-RFE, and RF techniques, which resulted in a set of cancer-related genes (CRGs) associated with CAG. To identify CRGs potentially linked to gastric cancer progression, we performed a univariate COX regression analysis on the gene set. Subsequently, we explored the relationship between CRGs and immune infiltration, drug sensitivity, and clinical characteristics in gastric cancer patients. We employed GSVA to investigate how CRGs regulated signaling pathways in gastric cancer cells, while an analysis of cell communication shed light on the impact of CRGs on signal transmission within the gastric cancer tumor microenvironment. Lastly, we analyzed changes in metabolic pathways throughout the progression of gastric cancer. Results Using hdWGCNA, we have identified a total of 143 pathogenic genes that were shared by CAG and GC. To further investigate the underlying mechanisms, we conducted protein interaction network analysis and employed machine learning screening techniques. As a result, we have identified 15 oncogenes that are specifically associated with chronic atrophic gastritis. By performing ROC reanalysis and prognostic analysis, we have determined that GADD45B is the most significant gene involved in the carcinogenesis of CAG. Immunohistochemical staining and differential analysis have revealed that GADD45B expression was low in GC tissues while high in normal gastric tissues. Moreover, based on prognostic analysis, high expression of GADD45B has been correlated with poor prognosis in GC patients. Additionally, an analysis of immune infiltration has shown a relationship between GADD45B and the infiltration of various immune cells. By correlating GADD45B with clinical characteristics, we have found that it primarily affects the depth of invasion in GC. Through cell communication analysis, we have discovered that the CD99 signaling pathway network and the CDH signaling pathway network are the main communication pathways that significantly alter the microenvironment of gastric tissue during the development of chronic atrophic gastritis. Specifically, GADD45B-low GC cells were predominantly involved in the network communication of the CDH signaling pathway, while GADD45B-high GC cells played a crucial role in both signaling pathways. Furthermore, we have identified several metabolic pathways, including D-Glutamine and D-glutamate metabolism and N-Glycan biosynthesis, among others, that played important roles in the occurrence and progression of GC, in addition to the six other metabolic pathways. In summary, our study highlighted the discovery of 143 pathogenic genes shared by CAG and GC, with a specific focus on 15 oncogenes associated with CAG. We have identified GADD45B as the most important gene in the carcinogenesis of CAG, which exhibited differential expression in GC tissues compared to normal gastric tissues. Moreover, GADD45B expression was correlated with patient prognosis and is associated with immune cell infiltration. Our findings also emphasized the impact of the CD99 and CDH signaling pathway networks on the microenvironment of gastric tissue during the development of CAG. Additionally, we have identified key metabolic pathways involved in GC progression. Conclusion GADD45B, an oncogene implicated in chronic atrophic gastritis, played a critical role in GC development. Decreased expression of GADD45B was associated with the onset of GC. Moreover, GADD45B expression levels were closely tied to poor prognosis in GC patients, influencing the infiltration patterns of various cells within the tumor microenvironment, as well as impacting the metabolic pathways involved in GC progression.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianxiao Jiang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kanger Shen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Man Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxin Zhu
- Department of Gastroenterology, Kunshan Third People’s Hospital, Suzhou, Jiangsu, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Wang R, Qin Z, Luo H, Pan M, Liu M, Yang P, Shi T. Prognostic value of PNN in prostate cancer and its correlation with therapeutic significance. Front Genet 2022; 13:1056224. [PMID: 36468018 PMCID: PMC9708726 DOI: 10.3389/fgene.2022.1056224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 10/11/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy. New biomarkers are in demand to facilitate the management. The role of the pinin protein (encoded by PNN gene) in PCa has not been thoroughly explored yet. Using The Cancer Genome Atlas (TCGA-PCa) dataset validated with Gene Expression Omnibus (GEO) and protein expression data retrieved from the Human Protein Atlas, the prognostic and diagnostic values of PNN were studied. Highly co-expressed genes with PNN (HCEG) were constructed for pathway enrichment analysis and drug prediction. A prognostic signature based on methylation status using HCEG was constructed. Gene set enrichment analysis (GSEA) and the TISIDB database were utilised to analyse the associations between PNN and tumour-infiltrating immune cells. The upregulated PNN expression in PCa at both transcription and protein levels suggests its potential as an independent prognostic factor of PCa. Analyses of the PNN's co-expression network indicated that PNN plays a role in RNA splicing and spliceosomes. The prognostic methylation signature demonstrated good performance for progression-free survival. Finally, our results showed that the PNN gene was involved in splicing-related pathways in PCa and identified as a potential biomarker for PCa.
Collapse
Affiliation(s)
- Ruisong Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Changde, Hunan, China
| | - Ziyi Qin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Huiling Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Meisen Pan
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Changde, Hunan, China
- Medical College, Hunan University of Arts and Science, Changde, Hunan, China
| | - Mingyao Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
- Hunan Provincial Ley Laboratory for Molecular Immunity Techonology of Aquatic Animal Diseases, Changde, China
| | - Tieliu Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
| |
Collapse
|
3
|
Mikhailov A, Sankai Y. Cell penetrating caspase substrates promote survival of the transplanted cells. BMC Res Notes 2019; 12:440. [PMID: 31324261 PMCID: PMC6642484 DOI: 10.1186/s13104-019-4480-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Objective Cell survival in critical post-transplantation period is challenged by inflammation, lack of vascularization, and insufficient cell attachment anchoring. Temporally blocking cell death may increase cell survival, but it is important to possess no risks of sustained cell death signal blocking and possible malignant transformations. Regarding apoptotic cell death, multi-micromolar overloading the cell with competitive caspase substrates delays the effects of actual downstream enzyme activation processing. Later, when introduced substrate is consumed, and the caspase activation stimuli may still be present, the apoptotic cell death can proceed normally. Results Here we studied several synthetic peptides comprising from effector caspase activational cleavage sequences fused with various internalization motifs. Designed peptides showed rapid and efficient internalization into cultured neuroblast cells comparing to non-fused cleavage sequences as measured by cytofluorimetry and confirmed by mass spectrometry. Pretreatment with selected peptides protected the cells from several apoptogenic stimuli in vitro, as well as improved survival of syngeneic immortalized Schwann cells during transplantation in vivo.
Collapse
Affiliation(s)
- Andrey Mikhailov
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan.
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Fang S, Hou Y, Ling L, Wang D, Ismail M, Du Y, Zhang Y, Yao C, Li X. Dimeric camptothecin derived phospholipid assembled liposomes with high drug loading for cancer therapy. Colloids Surf B Biointerfaces 2018; 166:235-244. [DOI: 10.1016/j.colsurfb.2018.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
5
|
Harmse L, Dahan-Farkas N, Panayides JL, van Otterlo W, Penny C. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues. PLoS One 2015; 10:e0138607. [PMID: 26390405 PMCID: PMC4577089 DOI: 10.1371/journal.pone.0138607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05). Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05), with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.
Collapse
Affiliation(s)
- Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
- * E-mail:
| | - Nurit Dahan-Farkas
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Jenny-Lee Panayides
- Molecular Sciences Institute, School of Chemistry, Faculty of Science, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
| | - Willem van Otterlo
- Molecular Sciences Institute, School of Chemistry, Faculty of Science, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag XI, Matieland 7602, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| |
Collapse
|
6
|
Moela P, Choene MMS, Motadi LR. Silencing RBBP6 (Retinoblastoma Binding Protein 6) sensitises breast cancer cells MCF7 to staurosporine and camptothecin-induced cell death. Immunobiology 2014; 219:593-601. [PMID: 24703106 DOI: 10.1016/j.imbio.2014.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/27/2014] [Accepted: 03/12/2014] [Indexed: 12/23/2022]
Abstract
Retinoblastoma Binding Protein 6 (RBBP6) is a multi-domain protein that uses its ring finger domain to interact with p53 and pRb tumour suppressor genes. The mechanism by which RBBP6 uses to degrade p53 is still unknown; nonetheless it is well known that RBBP6 promotes cell proliferation in several cancers by negatively regulating p53 via its E3 ubiquitin ligase activity. Degradation of p53 by RBBP6 may compromise p53-mediated apoptosis in breast cancer. This study is intended to investigate, the potential applications of RNA interference (RNAi) to block RBBP6 expression, as well as its subsequent effect on cell growth and apoptosis. Our studies indicate that the knockdown of RBBP6 by siRNA modulates p53 gene expression involved in cell death pathways and apoptosis, showing statistically significant gene expression differences. RBBP6 siRNA significantly reduced cell growth compared to the control samples and inhibition of cellular proliferation was observed between 24 and 48h, as shown in the data obtained by real time cell analysis using the xCELLigence system. These results were further confirmed by flow cytometer which showed some apoptotic activity. About 20.7% increase in apoptosis was observed in cells co-treated with RBBP6 siRNA and camptothecin when compared to camptothecin-only whereas in siRBBP6 and staurosporine treated cells there was only an 8.8% increase in apoptosis. These findings suggest that silencing RBBP6 may be a novel strategy to promote camptothecin-induced apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Pontsho Moela
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Mpho M S Choene
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Lesetja R Motadi
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
7
|
Fei B, Chi AL, Weng Y. Hydroxycamptothecin induces apoptosis and inhibits tumor growth in colon cancer by the downregulation of survivin and XIAP expression. World J Surg Oncol 2013; 11:120. [PMID: 23721525 PMCID: PMC3679846 DOI: 10.1186/1477-7819-11-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/12/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND 10-Hydroxycamptothecin (10-HCPT), isolated from a Chinese tree Camptotheca acuminate, inhibits the activity of topoisomerase I and has a broad spectrum of anticancer activity in vitro and in vivo. It has been shown that HCPT is more active and less toxic than conventional camptothecins and can induce cancer cell apoptosis. However, the mechanisms of HCPT-induced apoptosis in colon cancer cells remain unclear. In this study, we investigated the effects of HCPT on apoptosis of colon cancer and underlying mechanism. METHODS Cell proliferation was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, and apoptosis was measured using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Expression of genes was detected using real-time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Tumor growth in vivo was evaluated using a nude mouse xenograft model. RESULTS HCPT could significantly inhibit cell proliferation and induce apoptosis in colon cancer SW1116 and Colo 205 cells in dose- and time-dependent manners. HCPT treatment activated the activities of caspase 3, 7, 8 and 9, downregulated the expression of survivin, survivinΔEx3, survivin-3B and XIAP, and upregulated expression of surviving 2B. Moreover, the combination of HCPT and 5-fluorouracial (5-FU) synergistically induced apoptosis and downregulated the expression of survivin and XIAP. Knockdown of survivin and XIAP by siRNA sensitized colon cancer to HCTP-induced apoptosis. Furthermore, HCPT treatment significantly inhibited SW1116 xenograft tumor growth. CONCLUSIONS Our results elucidate new mechanisms of HCPT antitumor by the downregulation of survivin and XIAP expression. The combination of HCPT with 5-FU or IAP inhibitors may be a potential strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Bojian Fei
- Department of Surgical Oncology, No.4 people’s hospital, Wuxi City 214062, PR China
| | | | | |
Collapse
|
8
|
Zhao X, Wu N, Ding L, Liu M, Liu H, Lin X. Zebrafish p53 protein enhances the translation of its own mRNA in response to UV irradiation and CPT treatment. FEBS Lett 2012; 586:1220-5. [PMID: 22575659 DOI: 10.1016/j.febslet.2012.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/29/2012] [Accepted: 03/12/2012] [Indexed: 12/20/2022]
Abstract
p53 protein is an important regulatory factor involved in cell growth and development. In our previous study, we demonstrated that recombined zebrafish p53 protein could specifically bind to its own mRNA in vitro. To determine if a similar interaction exists in zebrafish and if this interaction affects zebrafish development, in the present study, we investigated the interaction of p53 protein and its mRNA in zebrafish embryos. Our results revealed that expressed zebrafish p53 protein could bind with its own mRNA in zebrafish embryos. Furthermore, the endogenous activated or ectopically expressed p53 protein could enhance the relative activity of Renilla luciferase fused with p53 3'UTR in response to UV irradiation and CPT treatment, and retarded development of zebrafish embryos was observed.
Collapse
Affiliation(s)
- Xiangzhong Zhao
- Key Laboratory for Rare Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan 250062, China
| | | | | | | | | | | |
Collapse
|
9
|
Satelli A, Rao US. Galectin-1 is silenced by promoter hypermethylation and its re-expression induces apoptosis in human colorectal cancer cells. Cancer Lett 2010; 301:38-46. [PMID: 21122983 DOI: 10.1016/j.canlet.2010.10.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/29/2010] [Accepted: 10/31/2010] [Indexed: 12/15/2022]
Abstract
Galectin-1 (gal-1) is an important molecule secreted by many tumors, which induces apoptosis in activated T-cells and promotes tumor angiogenesis, both of which phenomena facilitate successful establishment of tumor in the body. However, little is known about the function of intracellular gal-1 or its transcriptional regulation in colorectal cancer (CRC). Here, we demonstrate that gal-1 expression is epigenetically regulated in CRC through promoter hypermethylation. Intracellular gal-1 induces cell cycle arrest and apoptosis in CRC cells with concomitant down-regulation of Wnt and NF-κB signaling pathways. Together, these data suggested that gal-1 silencing imparts CRC with the ability to proliferate and escape apoptosis.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | |
Collapse
|
10
|
Evaluation of multi-target and single-target liposomal drugs for the treatment of gastric cancer. Biosci Biotechnol Biochem 2008; 72:1586-94. [PMID: 18540096 DOI: 10.1271/bbb.80096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We studied the effects of multi- and single-target liposomal drugs on human gastric cancer cell AGS both in vitro and in vivo. The cytotoxic effect of dihydrotanshinone I was significantly enhanced by treatment with octreotide-polyethylene glycol(PEG)-liposome, Arg-Gly-Asp(RGD)-PEG-liposome, and RGD/octreotide-PEG-liposome encapsulated with 0.5 mug/ml of dihydrotanshinone I to AGS cell for 24 h, compared to control. Furthermore, the AGS cell survival rate for multi-target versus single target liposomal drugs was significantly suppressed. Microscopic examination revealed that significant cell death occurred in the multi- and single-target liposomal encapsulated drug groups. Significant suppression of tumor growth in AGS cell xenograft nude mice given octreotide-PEG-liposome, RGD/octreotide-PEG-liposome encapsulated drug, versus those given a free drug was noted after 13 d of experimentation with the multi-targeted liposome: up to 60.75% and 41.2% reduction of tumor volume as compared to dimethylsulfoxide (DMSO) control and the free drug groups respectively. The treated animals showed no gross signs of toxicity. The results have potential clinical application.
Collapse
|
11
|
Fu YR, Yi ZJ, Yan YR, Qiu ZY. Changes in the protein spectrum of mitochondria isolated from hydroxycamptothecin-treated hepatoma cells. Anticancer Drugs 2007; 18:1045-52. [PMID: 17704655 DOI: 10.1097/cad.0b013e3282520709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
As one of the most potent topoisomerase inhibitors, hydroxycamptothecin is more active and less toxic than conventional camptothecin. Recently, we found that hydroxycamptothecin can induce cell apoptosis via the mitochondrial pathway. This study was designed to investigate the mitochondrial protein profile in HCPT-treated cells using high-accuracy and high-sensitivity protein-identification technology. Of the 39 mitochondrial protein spots investigated, 25 displayed elevated and 14 suppressed abundance in hydroxycamptothecin-treated cells. The 25 spots were identified by mass spectrometry and they included proteins involved in many essential cellular functions. The potential role of these proteins in hydroxycamptothecin-mediated apoptosis is also discussed. This study has produced a short list of mitochondrial proteins that might hold the key to the mechanism by which hydroxycamptothecin induces mitochondrial dysfunction and cell apoptosis. It has laid the foundation for further elucidating the role of hydroxycamptothecin during apoptosis. Successful applications of multiple techniques including two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and Western blot analysis have demonstrated that proteomic analyses provide appropriate approaches for understanding of the roles of anticancer drugs.
Collapse
Affiliation(s)
- Yu-Rong Fu
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education, Chongqing University of Medical Science, Chongqing, PRC
| | | | | | | |
Collapse
|
12
|
Fu YR, Yi ZJ, Yan YR, Qiu ZY. Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway. Mitochondrion 2006; 6:211-7. [PMID: 16926123 DOI: 10.1016/j.mito.2006.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/20/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The camptothecin (CPT) derivative hydroxycamptothecin (HCPT) containing 10-hydroxy represents one of the most potent topoisomerase I inhibitors described. This anticancer agent, currently undergoing clinical trials on gastric tumours, has been shown more active and less toxic than conventional camptothecins. To shed light on the mechanism of action of HCPT at the cellular level, we examined cell growth, apoptosis, changes of mitochondrial membrane potential, cytochrome c and AIF translocation in cancer cells by exposing these cells to HCPT for indicated time. The effect of HCPT on cell proliferation was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid) assay and apoptosis was measured using flow cytometry, fluorescence microscopy and electron microscopy. Changes of mitochondrial membrane potential were monitored by fluorescence microscope. Western blot analysis was used to evaluate the release of mitochondrial cytochrome c and AIF; On the other hand, translocation of cytochrome c and AIF from mitochondria to cytosol during apoptosis were confirmed by confocal microscopy. HCPT could noticeably inhibit the proliferation of SMMC-7721cells and the IC(50) dose was about 0.22 microM; SMMC-7721 cells treated with HCPT showed typical characteristics of apoptosis rather than necrotic including phosphatidylserine (PS) exposed from the inner to the outer leaflet of the plasma membrane, abnormal cell morphology, chromatin condensation and nuclear fragmentation; On the other hand, during process of cell apoptosis, mitochondrial transmembrane potential was reduced; Compared with the control group, the mRNA and protein expression of cytochrome c and AIF in treated and untreated SMMC-7721 cells were not significantly changed (not shown). However, when cells were treated with HCPT, the massive translocation of cytochrome c and AIF to the nucleus was evident. Our results indicate that HCPT can inhibit proliferation and induce apoptosis of human hepatoma SMMC-7721 cells. Mitochondrial pathway of apoptosis, especially for cytochrome c and AIF translocation, may play an important role in apoptosis induced by HCPT.
Collapse
Affiliation(s)
- Yu-Rong Fu
- Department of laboratory medicine, Chongqing University of Medical Science, Chongqing 400016, China
| | | | | | | |
Collapse
|
13
|
Belkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai W. Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res 2005; 65:6583-92. [PMID: 16061638 DOI: 10.1158/0008-5472.can-05-1433] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We show the molecular mechanisms involved in Darpp-32 overexpression and its biological role in upper gastrointestinal adenocarcinomas (UGC). A tumor tissue array of 377 samples was developed and used to detect DARPP-32 DNA amplification and protein overexpression, which occurred in 32% and 60% of UGCs, respectively. Concomitant overexpression of mRNA for Darpp-32 and its truncated isoform t-Darpp was observed in 68% of tumors (P < 0.001). When Darpp-32 and t-Darpp were overexpressed in AGS and RKO gastrointestinal cells, up to a 4-fold reduction in the apoptosis rate was observed (terminal deoxynucleotidyl transferase-mediated nick-end labeling and Annexin V assays) in response to camptothecin, sodium butyrate, and ceramide. However, the introduction of mutations in phosphorylation sites abrogated this effect. Expression of Darpp-32 and t-Darpp preserved the mitochondrial transmembrane potential and was associated with increased levels of Bcl2 protein. A reversal of Bcl2 protein level was obtained using small interfering RNAs for Darpp-32 and t-Darpp. Luciferase assays using the p53 and p21 reporter plasmids and probing of immunoblots with antibodies specific for p53 transcriptional targets, such as Hdm2 and p21, indicated that neither Darpp-32 nor t-Darpp interfere with p53 function. Altogether, we show more frequent mRNA and protein overexpression of Darpp-32 than DNA amplification, suggesting that, in addition to amplification, transcriptional or posttranscriptional mechanisms may play an important role. The expression of Darpp-32 and t-Darpp is associated with a potent antiapoptotic advantage for cancer cells through a p53-independent mechanism that involves preservation of mitochondrial potential and increased Bcl2 levels.
Collapse
Affiliation(s)
- Abbes Belkhiri
- Digestive Health Center of Excellence and Department of Pathology, University of Virginia Health System, Charlottesville, Virginia 22908-0708, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yoshitake Y, Nakatsura T, Monji M, Senju S, Matsuyoshi H, Tsukamoto H, Hosaka S, Komori H, Fukuma D, Ikuta Y, Katagiri T, Furukawa Y, Ito H, Shinohara M, Nakamura Y, Nishimura Y. Proliferation Potential-Related Protein, an Ideal Esophageal Cancer Antigen for Immunotherapy, Identified Using Complementary DNA Microarray Analysis. Clin Cancer Res 2004; 10:6437-48. [PMID: 15475430 DOI: 10.1158/1078-0432.ccr-04-0841] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: To establish effective antitumor immunotherapy for esophageal cancer, we tried to identify an useful target antigen of esophageal cancer.
Experimental Design: We did cDNA microarray analysis to find a novel candidate antigen, proliferation potential-related protein (PP-RP). We examined cytotoxicity against tumor cells in vitro and in vivo of CTLs specific to PP-RP established from esophageal cancer patients.
Results: In 26 esophageal cancer tissues, an average of relative ratio of the expression of the PP-RP mRNA in cancer cells versus adjacent normal esophageal tissues was 396.2. Immunohistochemical analysis revealed that, in 20 of the 22 esophageal cancer tissues, PP-RP protein was strongly expressed only in the cancer cells and not so in normal esophageal epithelial cells. PP-RP protein contains 10 epitopes recognized by HLA-A24–restricted CTLs. These CTLs, generated from HLA-A24–positive esophageal cancer patients, had cytotoxic activity against cancer cell lines positive for both PP-RP and HLA-A24. Furthermore, adoptive transfer of the PP-RP–specific CTL line inhibited the growth of a human esophageal cancer cell line engrafted in nude mice.
Conclusions: The expression of PP-RP in esophageal cancer cells was significantly higher than in normal cells, and the CTLs recognizing PP-RP killed tumor cells in vitro and also showed tumor rejection effects in a xenograft model. Therefore, PP-RP may prove to be an ideal tumor antigen useful for diagnosis and immunotherapy for patients with esophageal cancer. cDNA microarray analysis is a useful method to identify ideal tumor-associated antigens.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/pharmacology
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/pharmacology
- Cell Line, Tumor
- Cytotoxicity Tests, Immunologic/methods
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/pharmacology
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/pathology
- Esophageal Neoplasms/therapy
- Female
- Gene Expression Regulation, Neoplastic
- HLA-A Antigens/immunology
- HLA-A24 Antigen
- Humans
- Immunotherapy/methods
- Immunotherapy, Adoptive/methods
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Neoplasm, Residual/genetics
- Neoplasm, Residual/pathology
- Placenta/metabolism
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Survival Analysis
- T-Lymphocytes, Cytotoxic/immunology
- Testis/metabolism
- Ubiquitin-Protein Ligases
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yoshihiro Yoshitake
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tu LC, Melendy T, Beerman TA. DNA damage responses triggered by a highly cytotoxic monofunctional DNA alkylator, hedamycin, a pluramycin antitumor antibiotic. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.577.3.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Long-term exposure (72 h) to hedamycin, a monofunctional DNA alkylator of the pluramycin class of antitumor antibiotics, decreased growth of mammalian cells by 50% at subnanomolar concentrations. Short-term treatment (4 h) rapidly reduced DNA synthesis by 50% also at subnanomolar concentrations, but substantially higher levels were needed to block RNA synthesis while protein synthesis even at very high hedamycin concentrations remained unaffected. Hedamycin treatment at concentrations below its growth IC50 induced only a transient and temporary accumulation of cells in G2. Somewhat higher concentrations resulted in substantial S-phase arrest, and at increasing concentrations, complete cell cycle arrest in G1 was observed without the appearance of a sub-G1 cell population. Neither inhibition of cell growth nor cell cycle arrest appeared to be dependent on ataxia and Rad-related kinase expression. DNA damage checkpoint proteins including p53, chk1, and chk2 were differentially activated by hedamycin depending on the concentration and duration of treatment. The level of downstream cell cycle regulators such as cdc25A, E2F1, cyclin E, and p21 were also altered under conditions that induced cell cycle arrest, but atypically, p21 overexpression was observed only in S-phase-arrested cells. Apoptotic indicators were only observed at moderate hedamycin concentrations associated with S-phase arrest, while increasing concentrations, when cells were arrested in G1, resulted in a reduction of these signals. Taken together, the responses of cells to hedamycin are distinct with regard to its effect on cell cycle but also in the unusual concentration-dependent manner of activation of DNA damage and cell cycle checkpoint proteins as well as the induction of apoptotic-associated events.
Collapse
Affiliation(s)
- Lan Chun Tu
- 1Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York and
| | - Thomas Melendy
- 2Witebsky Center for Microbial Pathogenesis and Immunology and Departments of Microbiology and Biochemistry, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Terry A. Beerman
- 1Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York and
| |
Collapse
|
16
|
Abstract
Zebrafish is recognized as one of the most important vertebrate model organisms; however, its value in pharmacological studies has not been extensively explored and exploited. In this review, I summarize significant findings about the effects of drugs and medicines on important physiological processes in zebrafish. Our experiments have shown that cardiovascular, anti-angiogenic and anti-cancer drugs elicit comparable responses in zebrafish embryos to those in mammalian systems. Similar observations have been reported by other laboratories, exposing zebrafish to a variety of pharmaceutical active compounds affecting a range of different processes. All the data summarized indicate that zebrafish represents a very valuable organism for different kinds of pharmacological studies, such as screenings of chemical libraries, lead validation and optimization, mode-of-action studies, analysis of gene function, predictive toxicology and teratogenicity, pharmacogenomics and toxicogenomics. Zebrafish pharmacological assays have specific advantages compared to in vitro cell culture studies and in vivo experiments using mice, complementing these assays to give valuable guides for future tests of new drugs for human therapy.
Collapse
|
17
|
Kodani I, Osaki M, Shomori K, Araki K, Goto E, Ryoke K, Ito H. Minichromosome maintenance 2 expression is correlated with mode of invasion and prognosis in oral squamous cell carcinomas. J Oral Pathol Med 2003; 32:468-74. [PMID: 12901728 DOI: 10.1034/j.1600-0714.2003.00116.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND This study examined the immunohistochemical expression of cell-cycle related molecules as well as cell proliferation and pathologic findings in oral squamous cell carcinoma (SCC) in order to clarify their pathobiologic and prognostic significance. METHODS A total of 46 oral SCC specimens were analyzed using Ki-67, minichromosome maintenance 2 (MCM2), p53, p27, p21, and TUNEL. Aspects including tumor differentiation, mode of carcinoma invasion, tumor metastasis, and patient prognosis were compared among the specimens. RESULTS A significantly higher MCM2 labeling index (LI) was observed in the moderately differentiated SCCs when compared to the well-differentiated SCCs (P<0.05). The higher MCM2 LI was correlated with mode of invasion Grade 4 (infiltrative growth) and patient prognosis. In contrast, the LIs of Ki-67, TUNEL-signal, p53, p27, and p21 were not correlated with patient prognosis. CONCLUSION Higher MCM2 LI provides useful information for patient prognosis in oral SCCs.
Collapse
Affiliation(s)
- Isamu Kodani
- First Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Langheinrich U, Hennen E, Stott G, Vacun G. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 2002; 12:2023-8. [PMID: 12477391 DOI: 10.1016/s0960-9822(02)01319-2] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
p53 and its main negative regulator, Mdm2, are key players in mammalian cancer development. Activation of the transcription factor p53 through DNA damage or other stresses can result in cell cycle arrest, apoptosis, or both. Because of the absence of characterized p53 signaling in zebrafish (Danio rerio), we have studied the roles of Mdm2 and p53 in zebrafish by generating early embryonic knockdowns and examined the involvement of p53 in DNA damage-induced apoptosis. p53-deficient embryos, induced by injection of antisense morpholinos, were morphologically indistinguishable from control embryos, when unperturbed, whereas Mdm2 knockdown embryos were severely apoptotic and arrested very early in development. Double knockdowns showed that p53 deficiency rescued Mdm2-deficient embryos completely, similar to observations in mice. p53 deficiency also markedly decreased DNA damage-induced apoptosis, elicited by ultraviolet irradiation or by the anti-cancer compound camptothecin. p21/Waf/Cip-1 appeared to be a downstream target of zebrafish p53, as revealed relative p21 mRNA levels determined via TaqMan analysis. In contrast to mammals, zebrafish may regulate p53 activity by using an internal polyA signal site. We conclude that zebrafish represents a promising model organism for future compound-based and genetic screens and believe that it will help to identify and characterize new anticancer drugs and new targets for cancer treatment.
Collapse
|
19
|
Bocca C, Gabriel L, Miglietta A. Cytoskeleton-interacting activity of geiparvarin, diethylstilbestrol and conjugates. Chem Biol Interact 2001; 137:285-305. [PMID: 11566295 DOI: 10.1016/s0009-2797(01)00261-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Geiparvarin, a natural compound isolated from the leaves of Geijera parviflora, inhibits the growth of various tumor cell lines with a mode of action which may be attributed to its anti-microtubular activity. Our previous findings indicated that geiparvarin is able to inhibit the in vitro polymerization of tubulin and to derange the microtubular network in fibroblasts more effectively in the presence of paclitaxel. To further explore its biological activity here we have studied the effects exerted on the other components of the cytoskeleton by geiparvarin and two derivatives obtained by conjugating the 3(2H)-furanone ring of geiparvarin with diethylstilbestrol (DES). Firstly, observations by electron microscopy confirmed anti-microtubular properties, a near-total absence of microtubules is detected when tubulin is incubated with drugs in the presence of paclitaxel, whereas microtubule formation is not inhibited by drugs when assembly is induced by guanosine 5'-triphosphate (GTP). Immunofluorescence assays demonstrated that geiparvarin and DES act in a vinblastine-like fashion, causing a marked depletion of intermediate filaments while the network of microfilaments is not affected. Both the conjugates alter the 'stress fibers' organization of actin and disrupt the vimentin pattern; generally they derange cytoskeleton more markedly than the parent compounds. The cell growth inhibiting effects of geiparvarin and derivatives are dose-dependent; they vary according to the cell line used, when compounds were administered either alone or simultaneously with paclitaxel. Unlike other anti-microtubule agents, they do not exhibit cell-cycle compartment specificity and do not influence thymidine uptake in the cell.
Collapse
Affiliation(s)
- C Bocca
- Department of Experimental Medicine and Oncology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | | | | |
Collapse
|
20
|
Bojarski C, Gitter AH, Bendfeldt K, Mankertz J, Schmitz H, Wagner S, Fromm M, Schulzke JD. Permeability of human HT-29/B6 colonic epithelium as a function of apoptosis. J Physiol 2001; 535:541-52. [PMID: 11533143 PMCID: PMC2278785 DOI: 10.1111/j.1469-7793.2001.00541.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
1. The barrier function of colonic epithelia is challenged by apoptotic loss of enterocytes. In monolayers of human colonic HT-29/B6 cells, apoptosis induced by camptothecin was assessed by poly-(ADP-ribose)-polymerase (PARP) cleavage, histone ELISA and DNA-specific fluorochrome staining (with 4',6'-diamidino-2'-phenylindoladihydrochloride (DAPI)). Epithelial barrier function was studied in Ussing chambers by measuring transepithelial conductivity and unidirectional tracer fluxes. The ion permeability associated with single cell apoptoses was investigated with the conductance scanning technique. 2. The spontaneous rate of apoptotic cells was 3.5 +/- 0.3 % with an overall epithelial conductivity of 3.2 +/- 0.1 mS cm(-2). Camptothecin induced a time- and dose-dependent increase of apoptosis and permeability. With 20 microg ml(-1) of camptothecin for 48 h, apoptosis increased 4.1-fold to 14.3 +/- 1.5 % and the conductivity doubled to 6.4 +/- 1.0 mS cm(-2). 3. While 3H-mannitol flux increased 3.8-fold and 3H-lactulose flux increased 2.6-fold, the flux of 3H-polyethylene glycol 4000 remained unchanged. Hence, the higher permeability was limited to molecules < 4000 Da. 4. The local epithelial conductivity was higher at the sites of apoptosis than in non-apoptotic areas. With camptothecin the leaks associated with apoptosis became more numerous and more conductive, while in non-apoptotic areas the conductivity remained at control level. Hence, the camptothecin-induced increase in epithelial conductivity reflected the opening of apoptotic leaks and thus the results described, for the first time, epithelial permeability as a function of apoptosis only. 5. The conductivity of apoptotic leaks contributed 5.5 % to the epithelial conductivity of controls and 60 % to the conductivity of monolayers treated with 20 microg ml(-1) of camptothecin. Thus apoptosis increased the contribution of paracellular pathways to the overall epithelial permeability. Under control conditions the paracellular conductivity (G(para)) was smaller than the transcellular (G(trans)), but with 12 % apoptosis, G(para) exceeded G(trans). By definition, the epithelium became 'leaky'.
Collapse
Affiliation(s)
- C Bojarski
- Department of Gastroenterology, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, 12200 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|