1
|
Talib WH, Abed I, Raad D, Alomari RK, Jamal A, Jabbar R, Alhasan EOA, Alshaeri HK, Alasmari MM, Law D. Targeting Cancer Hallmarks Using Selected Food Bioactive Compounds: Potentials for Preventive and Therapeutic Strategies. Foods 2024; 13:2687. [PMID: 39272454 PMCID: PMC11395675 DOI: 10.3390/foods13172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer continues to be a prominent issue in healthcare systems, resulting in approximately 9.9 million fatalities in 2020. It is the second most common cause of death after cardiovascular diseases. Although there are difficulties in treating cancer at both the genetic and phenotypic levels, many cancer patients seek supplementary and alternative medicines to cope with their illness, relieve symptoms, and reduce the side effects of cytotoxic drug therapy. Consequently, there is an increasing emphasis on studying natural products that have the potential to prevent or treat cancer. Cancer cells depend on multiple hallmarks to secure survival. These hallmarks include sustained proliferation, apoptosis inactivation, stimulation of angiogenesis, immune evasion, and altered metabolism. Several natural products from food were reported to target multiple cancer hallmarks and can be used as adjuvant interventions to augment conventional therapies. This review summarizes the main active ingredients in food that have anticancer activities with a comprehensive discussion of the mechanisms of action. Thymoquinone, allicin, resveratrol, parthenolide, Epigallocatechin gallate, and piperine are promising anticancer bioactive ingredients in food. Natural products discussed in this review provide a solid ground for researchers to provide effective anticancer functional food.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ilia Abed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Daniah Raad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Raghad K Alomari
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Ayah Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rand Jabbar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eman Omar Amin Alhasan
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
2
|
Sheikhnia F, Rashidi V, Maghsoudi H, Majidinia M. Potential anticancer properties and mechanisms of thymoquinone in colorectal cancer. Cancer Cell Int 2023; 23:320. [PMID: 38087345 PMCID: PMC10717210 DOI: 10.1186/s12935-023-03174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/04/2023] [Indexed: 10/14/2024] Open
Abstract
Colorectal neoplasms are one of the deadliest diseases among all cancers worldwide. Thymoquinone (TQ) is a natural compound of Nigella sativa that has been used in traditional medicine against a variety of acute/chronic diseases such as asthma, bronchitis, rheumatism, headache, back pain, anorexia, amenorrhea, paralysis, inflammation, mental disability, eczema, obesity, infections, depression, dysentery, hypertension, gastrointestinal, cardiovascular, hepatic, and renal disorders. This review aims to present a detailed report on the studies conducted on the anti-cancer properties of TQ against colorectal cancer, both in vitro and in vivo. TQ stands as a promising natural therapeutic agent that can enhance the efficacy of existing cancer treatments while minimizing the associated adverse effects. The combination of TQ with other anti-neoplastic agents promoted the efficacy of existing cancer treatments. Further research is needed to acquire a more comprehensive understanding of its exact molecular targets and pathways and maximize its clinical usefulness. These investigations may potentially aid in the development of novel techniques to combat drug resistance and surmount the obstacles presented by chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Abstract
Targeted protein degradation (TPD) has emerged as the most promising approach for the specific knockdown of disease-associated proteins and is achieved by exploiting the cellular quality control machinery. TPD technologies are highly advantageous in overcoming drug resistance as they degrade the whole target protein. Microtubules play important roles in many cellular processes and are among the oldest and most well-established targets for tumor chemotherapy. However, the development of drug resistance, risk of hypersensitivity reactions, and intolerable toxicities severely restrict the clinical applications of microtubule-targeting agents (MTAs). Microtubule degradation agents (MDgAs) operate via completely different mechanisms compared with traditional MTAs and are capable of overcoming drug resistance. The emergence of MDgAs has expanded the scope of TPD and provided new avenues for the discovery of tubulin-targeted drugs. Herein, we summarized the development of MDgAs, and discussed their degradation mechanisms, mechanisms of action on the binding sites, potential opportunities, and challenges.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
4
|
El-Shehawy AA, Elmetwalli A, El-Far AH, Mosallam SAER, Salama AF, Babalghith AO, Mahmoud MA, Mohany H, Gaber M, El-Sewedy T. Thymoquinone, piperine, and sorafenib combinations attenuate liver and breast cancers progression: epigenetic and molecular docking approaches. BMC Complement Med Ther 2023; 23:69. [PMID: 36870998 PMCID: PMC9985300 DOI: 10.1186/s12906-023-03872-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Traditional herbal medicine has been used for centuries to cure many pathological disorders, including cancer. Thymoquinone (TQ) and piperine (PIP) are major bioactive constituents of the black seed (Nigella sativa) and black pepper (Piper nigrum), respectively. The current study aimed to explore the potential chemo-modulatory effects, mechanisms of action, molecular targets, and binding interactions after TQ and PIP treatments and their combination with sorafenib (SOR) against human triple-negative breast cancer (MDA-MB-231) and liver cancer (HepG2) cells. METHODS We determined drug cytotoxicity by MTT assay, cell cycle, and death mechanism by flow cytometry. Besides, the potential effect of TQ, PIP, and SOR treatment on genome methylation and acetylation by determination of DNA methyltransferase (DNMT3B), histone deacetylase (HDAC3) and miRNA-29c expression levels. Finally, a molecular docking study was performed to propose potential mechanisms of action and binding affinity of TQ, PIP, and SOR with DNMT3B and HDAC3. RESULTS Collectively, our data show that combinations of TQ and/or PIP with SOR have significantly enhanced the SOR anti-proliferative and cytotoxic effects depending on the dose and cell line by enhancing G2/M phase arrest, inducing apoptosis, downregulation of DNMT3B and HDAC3 expression and upregulation of the tumor suppressor, miRNA-29c. Finally, the molecular docking study has identified strong interactions between SOR, PIP, and TQ with DNMT3B and HDAC3, inhibiting their normal oncogenic activities and leading to growth arrest and cell death. CONCLUSION This study reported TQ and PIP as enhancers of the antiproliferative and cytotoxic effects of SOR and addressed the mechanisms, and identified molecular targets involved in their action.
Collapse
Affiliation(s)
- Ashraf A El-Shehawy
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | | | - Afrah Fatthi Salama
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A Mahmoud
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Hany Mohany
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Abdualmjid RJ, Sergi CM. Mitochondrial Dysfunction and Induction of Apoptosis in Hepatocellular Carcinoma and Cholangiocarcinoma Cell Lines by Thymoquinone. Int J Mol Sci 2022; 23:ijms232314669. [PMID: 36498999 PMCID: PMC9737800 DOI: 10.3390/ijms232314669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Thymoquinone (TQ), a plant-based bioactive constituent derived from the volatile oil of Nigella sativa, has been shown to possess some anti-neoplastic activities. The present study aimed to investigate the mitochondria and apoptosis observed when TQ is applied against hepatocellular carcinoma (HepG2) and cholangiocarcinoma (HuCCT1) cells, two of the most common primary tumors of the liver. All cell lines were treated with increasing concentrations of TQ for varying durations. The anti-proliferative effect of TQ was measured using the methoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and resulted in dose- and time-dependent growth inhibition in both cell lines. Cell cycle, apoptosis, and assessment of mitochondria viability by morphology assessment and evaluation of the mitochondrial membrane potential were investigated. The present study confirms that TQ caused cell cycle arrest at different phases and induced apoptosis in both cell lines. A systematic review of rodent animal models was also carried out. Overall, our data seem to represent the most robust results, suggesting that TQ possesses promising therapeutic potential as an anti-tumor agent for the treatment of hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Reem J. Abdualmjid
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Consolato M. Sergi
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: ; Tel.: +1-613-737-7600 (ext. 2427); Fax: +1-613-738-4837
| |
Collapse
|
6
|
Shariare MH, Khan MA, Al-Masum A, Khan JH, Uddin J, Kazi M. Development of Stable Liposomal Drug Delivery System of Thymoquinone and Its In Vitro Anticancer Studies Using Breast Cancer and Cervical Cancer Cell Lines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196744. [PMID: 36235288 PMCID: PMC9571792 DOI: 10.3390/molecules27196744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Thymoquinone, a well-known phytoconstituent derived from the seeds of Nigella sativa, exhibits unique pharmacological activities However, despite the various medicinal properties of thymoquinone, its administration in vivo remains challenging due to poor aqueous solubility, bioavailability, and stability. Therefore, an advanced drugdelivery system is required to improve the therapeutic outcome of thymoquinone by enhancing its solubility and stability in biological systems. Therefore, this study is mainly focused on preparing thymoquinone-loaded liposomes to improve its physicochemical stability in gastric media and its performance in different cancer cell line studies. Liposomes were prepared using phospholipid extracted from egg yolk. The liposomal nano preparations were evaluated in terms of hydrodynamic diameter, zeta potential, microscopic analysis, and entrapment efficiency. Cell-viability measurements were conducted using breast and cervical cancer cell lines. Optimized liposomal preparation exhibited polygonal, globule-like shape with a hydrodynamic diameter of less than 260 nm, PDI of 0.6, and zeta potential values of -23.0 mV. Solid-state characterizations performed using DSC and XRPD showed that the freeze-dried liposomal preparations were amorphous in nature. Gastric pH stability data showed no physical changes (precipitation, degradation) or significant growth in the average size of blank and thymoquinone-loaded liposomes after 24 h. Cell line studies exhibited better performance for thymoquinone-loaded liposomal drug delivery system compared with the thymoquinone-only solution; this finding can play a critical role in improving breast and cervical cancer treatment management.
Collapse
Affiliation(s)
- Mohammad Hossain Shariare
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
- Correspondence: (M.H.S.); (M.K.); Tel.: +880-1716620012 (M.H.S.); 966-114-677-372 (M.K.)
| | - Md Asaduzzaman Khan
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Abdullah Al-Masum
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Junayet Hossain Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, MD 21216, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (M.H.S.); (M.K.); Tel.: +880-1716620012 (M.H.S.); 966-114-677-372 (M.K.)
| |
Collapse
|
7
|
Alam M, Hasan GM, Ansari MM, Sharma R, Yadav DK, Hassan MI. Therapeutic implications and clinical manifestations of thymoquinone. PHYTOCHEMISTRY 2022; 200:113213. [PMID: 35472482 DOI: 10.1016/j.phytochem.2022.113213] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Thymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action. Additionally, TQ exhibited antitumor activity via the modulation of multiple pathways and molecular targets, including Akt, ERK1/2, STAT3, and NF-κB. The present review highlighted the anticancer potential of TQ . We summarize the anti-cancer, anti-oxidant, and anti-inflammatory properties of TQ, focusing on its molecular targets and its promising action in cancer therapy. We further described the molecular mechanisms by which TQ prevents signaling pathways that mediate cancer progression, invasion, and metastasis.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, 160062, India
| | - Rishi Sharma
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
8
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
9
|
Jehan S, Huang J, Farooq U, Basheer I, Zhou W. Combinatorial effect of thymoquinone with chemo agents for tumor therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153936. [PMID: 35114449 DOI: 10.1016/j.phymed.2022.153936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Most chemotherapeutics used in cancer therapies exhibit considerable side effects to the patients. Thus, developing new chemo agents to treat cancer patients with minimal toxic and side effects is urgently needed. Recently, the combination of different chemotherapeutics has become a promising strategy to treat malignancies. Thymoquinone (TQ) is a primary bioactive compound derived from the folk medicinal plant Nigella sativa, which has been found an antitumor, chemopreventive and chemopotentiating agent against human neoplastic diseases. PURPOSE We briefly summarize the current research of the biomolecular mechanisms of TQ and evaluate the existing literature on TQ adjuvant therapies against various cancers. METHOD The data in this review were gathered by several search engines including, Google Scholar, PubMed and ScienceDirect. We highlighted and classified the outcomes of both in vitro and in vivo experiments of TQ adjuvant therapies against human cancers and their chemopreventive activities on vital organs. RESULTS Several studies have shown that TQ synergistically potentiated the antitumor activity of numerous chemo agents against human neoplastic disease, including lung, breast, liver, colorectal, skin, prostate, stomach, bone and blood cancers. TQ also acted as a chemopreventive agent and reduced the toxicity of many chemo agents to vital organs, such as the heart, liver, kidneys and lungs. CONCLUSION In summary, we highly recommend an advanced evaluation of TQ adjuvant therapies at the level of preclinical and clinical trials, which could lead to a novel combinatorial therapy for cancer treatment with low or tolerable adverse effects on patients.
Collapse
Affiliation(s)
- Shah Jehan
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China
| | - Umar Farooq
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Irum Basheer
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China.
| |
Collapse
|
10
|
Alhakamy NA, Okbazghi SZ, A. Alfaleh M, H. Abdulaal W, Bakhaidar RB, Alselami MO, Zahrani MAL, Alqarni HM, F. Alghaith A, Alshehri S, Badr-Eldin SM, Aldawsari HM, Al-hejaili OD, Aldhabi BM, Mahdi WA. Wasp venom peptide improves the proapoptotic activity of alendronate sodium in A549 lung cancer cells. PLoS One 2022; 17:e0264093. [PMID: 35202419 PMCID: PMC8872391 DOI: 10.1371/journal.pone.0264093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lung cancer in men and women is considered the leading cause for cancer-related mortality worldwide. Anti-cancer peptides represent a potential untapped reservoir of effective cancer therapy. METHODOLOGY Box-Behnken response surface design was applied for formulating Alendronate sodium (ALS)-mastoparan peptide (MP) nanoconjugates using Design-Expert software. The optimization process aimed at minimizing the size of the prepared ALS-MP nanoconjugates. ALS-MP nanoconjugates' particle size, encapsulation efficiency and the release profile were determined. Cytotoxicity, cell cycle, annexin V staining and caspase 3 analyses on A549 cells were carried out for the optimized formula. RESULTS The results revealed that the optimized formula was of 134.91±5.1 nm particle size. The novel ALS-MP demonstrated the lowest IC50 (1.3 ± 0.34 μM) in comparison to ALS-Raw (37.6 ± 1.79 μM). Thus, the results indicated that when optimized ALS-MP nanoconjugate was used, the IC50 of ALS was also reduced by half. Cell cycle analysis demonstrated a significantly higher percentage of cells in the G2-M phase following the treatment with optimized ALS-MP nanoconjugates. CONCLUSION The optimized ALS-MP formula had significantly improved the parameters related to the cytotoxic activity towards A549 cells, compared to control, MP and ALS-Raw.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Solomon Z. Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, Connecticut, United States of America
| | - Mohamed A. Alfaleh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed O. Alselami
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed AL Zahrani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani M. Alqarni
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Ad Diriyah, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar D. Al-hejaili
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bander M. Aldhabi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers (Basel) 2022; 14:cancers14051100. [PMID: 35267408 PMCID: PMC8909202 DOI: 10.3390/cancers14051100] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents.
Collapse
|
12
|
Taysi S, Algburi FS, Mohammed Z, Ali OA, Taysi ME. Thymoquinone: A Review of Pharmacological Importance, Oxidative Stress, COVID-19, and Radiotherapy. Mini Rev Med Chem 2022; 22:1847-1875. [PMID: 34983346 DOI: 10.2174/1389557522666220104151225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Widely consumed worldwide, Nigella sativa (NS) is a medicinal herb commonly used in various alternative medicine systems such as Unani and Tibb, Ayurveda, and Siddha. Recommended for regular use in Tibb-e-Nabwi (Prophetic Medicine), NS is considered one of the most notable forms of healing medicine in Islamic literature. Thymoquinone (TQ), the main component of the essential oil of NS, has been reported to have many properties such as antioxidant, anti-inflammatory, antiviral, and antineoplastic. Its chemical structure indicates antiviral potential against many viruses, including the hepatitis C virus, human immunodeficiency virus, and other coronavirus diseases. Interestingly, molecular docking studies have demonstrated that TQ can potentially inhibit the development of the coronavirus disease 2019 (COVID-19) by binding to the receptor site on the transmembrane serine proteinase 2 (the activator enzyme that attaches the virus to the cell). In addition, TQ has been shown to be effective against cancer cells due to its inhibitory effect by binding to the different regions of MDM2, according to the proposed molecular docking study. Detailed in this review is the origin of TQ, its significance in alternative medicine, pharmacological value, potential as a cancer anti-proliferative agent, use against the coronavirus disease 2019 (COVID-19), and treatment of other diseases.
Collapse
Affiliation(s)
- Seyithan Taysi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
| | - Firas Shawqi Algburi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
- Department of Biology, College of Science, Tikrit University, Iraq
| | - Zaid Mohammed
- Department of Biochemistry and Technology, Gaziantep University, Gaziantep
| | - Omeed Akbar Ali
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
| | - Muhammed Enes Taysi
- Department of Emergency Medicine, Medical School, Bolu Izzet Baysal University- Bolu-Turkey
| |
Collapse
|
13
|
Asfour HZ, Fahmy UA, Alharbi WS, Almehmady AM, Alamoudi AJ, Tima S, Mansouri RA, Omar UM, Ahmed OAA, Zakai SA, Aldarmahi AA, Bagalagel A, Diri R, Alhakamy NA. Phyto-Phospholipid Conjugated Scorpion Venom Nanovesicles as Promising Carrier That Improves Efficacy of Thymoquinone against Adenocarcinoma Human Alveolar Basal Epithelial Cells. Pharmaceutics 2021; 13:2144. [PMID: 34959424 PMCID: PMC8709205 DOI: 10.3390/pharmaceutics13122144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess THQ's cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (S.A.Z.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.M.); (U.M.O.)
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.M.); (U.M.O.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadi A. Zakai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (S.A.Z.)
| | - Ahmed A. Aldarmahi
- College of Sciences and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.B.); (R.D.)
| | - Reem Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.B.); (R.D.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Alam S, Mohammad T, Padder RA, Hassan MI, Husain M. Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade. J Cell Biochem 2021; 123:259-274. [PMID: 34636440 DOI: 10.1002/jcb.30162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
The treatments available for non-small cell lung cancer exert various side effects in patients, and the burden of treatment cost is high. Therefore, exploring the alternative system of medicines, including therapies based on natural compounds, has become inevitable in developing anticancer therapeutics. This study used an integrated approach involving in-silico and in-vitro methods to explore natural compounds targeting Bax and Bcl2 for their apoptotic potential. Molecular docking followed by molecular dynamics (MD) simulation of thymoquinone (Tq) and quercetin (Qu) with Bax and Bcl2 were carried out to explore their interactions and stability under explicit solvent conditions. Tq and Qu showed appreciable binding affinities toward Bax (-6.2 and -7.1 kcal/mol, respectively) and Bcl2 (-5.6 and -6.4 kcal/mol, respectively) with well-organized conformational fitting compatibility. The MD simulation results revealed the development of stable complexes maintained by various noncovalent interactions that were preserved throughout the 100 ns trajectories. Further studies with these compounds were carried out using various in-vitro experimental approaches like MTT assay, apoptotic assay, and Western blot. IC50 values of Tq and Qu alone in A549 cells were found to be 45.78 and 35.69 µM, while in combination, it comes down to 22.49 µM, which is quite impressive. Similarly, in apoptosis assay, a combination of Tq and Qu shows 50.9% early apoptosis compared to Tq (40.6%) and Qu (33.3%) when taken alone. These assays signify their apoptotic induction potential, whereas both compounds significantly reduce the expression of antiapoptotic protein Bcl2 and induce proapoptotic Bax, suggestive of sensitizing NSCLS cells toward apoptosis.
Collapse
Affiliation(s)
- Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rayees A Padder
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Raut PK, Lee HS, Joo SH, Chun KS. Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells. Food Chem Toxicol 2021; 157:112604. [PMID: 34627931 DOI: 10.1016/j.fct.2021.112604] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
Melanoma is a highly aggressive and treatment-resistant cancer, and the incidence and mortality rates are increasing worldwide. Thymoquinone (TQ) is the active component of Nigella sativa seed extracts and exerts anticancer effects in various cancer cells. However, the anticancer effects of TQ on melanoma and the underlying molecular mechanisms remain elusive. In this study, TQ treatment induced apoptosis in SK-MEL-28 cells. Interestingly, constitutive phosphorylation of Janus kinase 2 (Jak2) and signal transducer and activator of transcription 3 (STAT3) was markedly decreased following TQ treatment. Furthermore, TQ treatment downregulated STAT3-dependent genes including cyclin D1, D2, and D3 and survivin. Moreover, inhibition of Jak2/STAT3 using AG490, an inhibitor of Jak2 or genetic ablation of STAT3, abrogated the expression of target genes. TQ increased the levels of reactive oxygen species (ROS), whereas pretreatment with N-acetyl cysteine (NAC), a ROS scavenger, prevented the suppressive effect of TQ on Jak2/STAT3 activation and protected SK-MEL-28 cells from TQ-induced apoptosis. TQ administration further attenuated the growth of SK-MEL-28 tumor xenografts. Taken together, TQ induced apoptosis of SK-MEL-28 by hindering the Jak2/STAT3 signaling pathway through ROS generation. Our results support further development of TQ as a potential anticancer therapeutic agent for treating melanoma.
Collapse
Affiliation(s)
- Pawan Kumar Raut
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Hui Seong Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongbuk, 38430, South Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
16
|
Hassan R, Mohi-Ud-Din R, Dar MO, Shah AJ, Mir PA, Shaikh M, Pottoo FH. Bioactive Heterocyclic Compounds as Potential Therapeutics in the Treatment of Gliomas: A Review. Anticancer Agents Med Chem 2021; 22:551-565. [PMID: 34488596 DOI: 10.2174/1871520621666210901112954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most alarming diseases, with an estimation of 9.6 million deaths in 2018. Glioma occurs in glial cells surrounding nerve cells. The majority of the patients with gliomas have a terminal prognosis, and the ailment has significant sway on patients and their families, be it physical, psychological, or economic wellbeing. As Glioma exhibits, both intra and inter tumour heterogeneity with multidrug resistance and current therapies are ineffective. So the development of safer anti gliomas agents is the need of hour. Bioactive heterocyclic compounds, eithernatural or synthetic,are of potential interest since they have been active against different targets with a wide range of biological activities, including anticancer activities. In addition, they can cross the biological barriers and thus interfere with various signalling pathways to induce cancer cell death. All these advantages make bioactive natural compounds prospective candidates in the management of glioma. In this review, we assessed various bioactive heterocyclic compounds, such as jaceosidin, hispudlin, luteolin, silibinin, cannabidiol, tetrahydrocannabinol, didemnin B, thymoquinone, paclitaxel, doxorubicin, and cucurbitacins for their potential anti-glioma activity. Also, different kinds of chemical reactions to obtain various heterocyclic derivatives, e.g. indole, indazole, benzimidazole, benzoquinone, quinoline, quinazoline, pyrimidine, and triazine, are listed.
Collapse
Affiliation(s)
- Reyaz Hassan
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir. India
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir. India
| | - Mohammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Science and Research (NIPER), S.A.S. Nagar, Mohali, Punjab-160062. India
| | - Abdul Jalil Shah
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir. India
| | - Prince Ahad Mir
- Amritsar Pharmacy College, 12 KM stone Amritsar Jalandhar GT Road, Mandwala-143001. India
| | - Majeed Shaikh
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam. Saudi Arabia
| |
Collapse
|
17
|
Nigella sativa callus treated with sodium azide exhibit augmented antioxidant activity and DNA damage inhibition. Sci Rep 2021; 11:13954. [PMID: 34230566 PMCID: PMC8260798 DOI: 10.1038/s41598-021-93370-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Nigella sativa L. (NS) is an herbaceous plant, possessing phytochemicals of therapeutic importance. Thymoquinone is one of the active phytochemicals of NS that confers noteworthy antioxidant properties. Sodium azide, an agent of abiotic stress, can modulates antioxidant system in plants. In the present investigation, sodium azide (0, 5 µM, 10 µM, 20 µM, 50 µM, 100 µM and 200 µM) doses administered to the in vitro NS callus cultures for production/modification of secondary metabolites with augmented activity. 200 µM sodium azide treated NS callus exhibited maximum peroxidase activity (1.286 ± 0.101 nanokatal mg-1 protein) and polyphenol oxidase activity (1.590 ± 0.110 nanokatal mg-1 protein), while 100 µM sodium azide treated NS callus for optimum catalase activity (1.250 ± 0.105 nanokatal mg-1 protein). Further, 200 µM sodium azide treated NS callus obtained significantly the highest phenolics (3.666 ± 0.475 mg g-1 callus fresh weight), 20 µM sodium azide treated NS callus, the highest flavonoids (1.308 ± 0.082 mg g-1 callus fresh weight) and 100 µM sodium azide treated NS callus, the highest carotenes (1.273 ± 0.066 mg g-1 callus fresh weight). However, NS callus exhibited a decrease in thymoquinone yield/content vis-à-vis possible emergence of its analog with 5.3 min retention time and an increase in antioxidant property. Treatment with 200 µM sodium azide registered significantly the lowest percent yield of callus extract (4.6 ± 0.36 mg g-1 callus fresh weight) and thymoquinone yield (16.65 ± 2.52 µg g-1 callus fresh weight) and content (0.36 ± 0.07 mg g-1 callus dry weight) and the highest antioxidant activity (3.873 ± 0.402%), signifying a negative correlation of the former with the latter. DNA damage inhibition (24.3 ± 1.7%) was recorded significantly maximum at 200 µM sodium azide treatment. Sodium azide treated callus also recorded emergence of a new peak at 5.3 min retention time (possibly an analog of thymoquinone with augmented antioxidant activity) whose area exhibits significantly negative correlation with callus extract yield and thymoquinone yield/content and positive correlation with antioxidant activity and in vitro DNA damage inhibition. Thus, sodium azide treatment to NS callus confers possible production of secondary metabolites or thymoquinone analog (s) responsible for elevated antioxidant property and inhibition to DNA damage. The formation of potent antioxidants through sodium azide treatment to NS could be worthy for nutraceutical and pharmaceutical industries.
Collapse
|
18
|
Abdullah O, Omran Z, Hosawi S, Hamiche A, Bronner C, Alhosin M. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. Genes (Basel) 2021; 12:genes12050622. [PMID: 33922029 PMCID: PMC8143546 DOI: 10.3390/genes12050622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-597-959-354
| |
Collapse
|
19
|
Omran Z, H. Dalhat M, Abdullah O, Kaleem M, Hosawi S, A Al-Abbasi F, Wu W, Choudhry H, Alhosin M. Targeting Post-Translational Modifications of the p73 Protein: A Promising Therapeutic Strategy for Tumors. Cancers (Basel) 2021; 13:cancers13081916. [PMID: 33921128 PMCID: PMC8071514 DOI: 10.3390/cancers13081916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor p73 is a member of the p53 family and is expressed as different isoforms with opposing properties. The TAp73 isoforms act as tumor suppressors and have pro-apoptotic effects, whereas the ΔNp73 isoforms lack the N-terminus transactivation domain and behave as oncogenes. The TAp73 protein has a high degree of similarity with both p53 function and structure, and it induces the regulation of various genes involved in the cell cycle and apoptosis. Unlike those of the p53 gene, the mutations in the p73 gene are very rare in tumors. Cancer cells have developed several mechanisms to inhibit the activity and/or expression of p73, from the hypermethylation of its promoter to the modulation of the ratio between its pro- and anti-apoptotic isoforms. The p73 protein is also decorated by a panel of post-translational modifications, including phosphorylation, acetylation, ubiquitin proteasomal pathway modifications, and small ubiquitin-related modifier (SUMO)ylation, that regulate its transcriptional activity, subcellular localization, and stability. These modifications orchestrate the multiple anti-proliferative and pro-apoptotic functions of TAp73, thereby offering multiple promising candidates for targeted anti-cancer therapies. In this review, we summarize the current knowledge of the different pathways implicated in the regulation of TAp73 at the post-translational level. This review also highlights the growing importance of targeting the post-translational modifications of TAp73 as a promising antitumor strategy, regardless of p53 status.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mahmood H. Dalhat
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mohammed Kaleem
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Salman Hosawi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Fahd A Al-Abbasi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Hani Choudhry
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Mahmoud Alhosin
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
- Correspondence: ; Tel.: +96-65-9795-9354
| |
Collapse
|
20
|
|
21
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
22
|
Liu L, Li J, He Y. Multifunctional epiberberine mediates multi-therapeutic effects. Fitoterapia 2020; 147:104771. [DOI: 10.1016/j.fitote.2020.104771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
23
|
Gomathinayagam R, Ha JH, Jayaraman M, Song YS, Isidoro C, Dhanasekaran DN. Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets. J Cancer Prev 2020; 25:136-151. [PMID: 33033708 PMCID: PMC7523033 DOI: 10.15430/jcp.2020.25.3.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Thymoquinone (TQ) is a bioactive component derived from the seeds of Nigella sativa that are commonly as black cumin. Evidences indicate that the medicinal properties of TQ have been recognized for more than 2000 years. TQ has been shown to possess potent chemopreventive properties that include anti-inflammatory and anti-neoplastic activities. Recent studies have unraveled the multiple mechanisms through which TQ exerts its chemopreventive and anticancer activity in different cancer cells in a contextual manner. The present review aims to provide a brief compendium on the molecular mechanisms through which TQ inhibits signaling pathways underlying cancer genesis, progression, and metastasis.
Collapse
Affiliation(s)
- Rohini Gomathinayagam
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ji Hee Ha
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
24
|
Alhosin M, Razvi SSI, Sheikh RA, Khan JA, Zamzami MA, Choudhry H. Thymoquinone and Difluoromethylornithine (DFMO) Synergistically Induce Apoptosis of Human Acute T Lymphoblastic Leukemia Jurkat Cells Through the Modulation of Epigenetic Pathways. Technol Cancer Res Treat 2020; 19:1533033820947489. [PMID: 32912061 PMCID: PMC7488875 DOI: 10.1177/1533033820947489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thymoquinone (TQ), a natural anticancer agent exerts cytotoxic effects on several tumors by targeting multiple pathways, including apoptosis. Difluoromethylornithine (DFMO), an irreversible inhibitor of the ornithine decarboxylase (ODC) enzyme, has shown promising inhibitory activities in many cancers including leukemia by decreasing the biosynthesis of the intracellular polyamines. The present study aimed to investigate the combinatorial cytotoxic effects of TQ and DFMO on human acute T lymphoblastic leukemia Jurkat cells and to determine the underlying mechanisms. Here, we show that the combination of DFMO and TQ significantly reduced cell viability and resulted in significant synergistic effects on apoptosis when compared to either DFMO or TQ alone. RNA-sequencing showed that many key epigenetic players including Ubiquitin-like containing PHD and Ring finger 1 (UHRF1) and its 2 partners DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1) were down-regulated in DFMO-treated Jurkat cells. The combination of DFMO and TQ dramatically decreased the expression of UHRF1, DNMT1 and HDAC1 genes compared to either DFMO or TQ alone. UHRF1 knockdown led to a decrease in Jurkat cell viability. In conclusion, these results suggest that the combination of DFMO and TQ could be a promising new strategy for the treatment of human acute T lymphoblastic leukemia by targeting the epigenetic code.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Shoeb I Razvi
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Math and Science Department, 441417Community College of Qatar, Doha, Qatar
| | - Ryan A Sheikh
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jalaluddin A Khan
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Alhakamy NA, Badr-Eldin SM, Fahmy UA, Alruwaili NK, Awan ZA, Caruso G, Alfaleh MA, Alaofi AL, Arif FO, Ahmed OAA, Alghaith AF. Thymoquinone-Loaded Soy-Phospholipid-Based Phytosomes Exhibit Anticancer Potential against Human Lung Cancer Cells. Pharmaceutics 2020; 12:E761. [PMID: 32806507 PMCID: PMC7463966 DOI: 10.3390/pharmaceutics12080761] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Thymoquinone (TQ), a natural polyphenol, has been associated with various pharmacological responses; however, low bioavailability of TQ limits its clinical application. Thus, a novel phytosomal delivery system of TQ-Phospholipon® 90H complex (TQ-phytosome) was developed by refluxing combined with anti-solvent precipitation. This TQ delivery system was optimized by a three-factor, three-level Box-Behnken design. The optimized TQ-phytosome size was (45.59 ± 1.82 nm) and the vesicle size was confirmed by transmission electron microscopy. The in vitro release pattern of the formulation indicated a biphasic release pattern, where an initial burst release was observed within 2 h, followed by a prolonged release. A remarkable increase in dose-dependent cytotoxicity was evident from the significant decrease in IC50 value of TQ-phytosomes (4.31 ± 2.21 µM) against the A549 cell line. The differential effect of TQ-phytosomes in cell cycle analysis was observed, where cancer cells were accumulated on G2-M and pre-G1 phases. Furthermore, increased apoptotic induction and cell necrosis of TQ-phytosomes were revealed with the annexin V staining technique via activation of caspase-3. In reactive oxygen species (ROS) analysis, TQ-phytosomes acted to significantly increase ROS generation in A549 cells. In conclusion, the sustained release profile with significantly-improved anticancer potential could be obtained with TQ by this phytosomal nanocarrier platform.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 2014, Saudi Arabia;
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina (EN), Italy;
| | - Mohamed A. Alfaleh
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.L.A.); (A.F.A.)
| | - Faris O Arif
- General Surgery KAUH, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.L.A.); (A.F.A.)
| |
Collapse
|
26
|
Yu M, Ren L, Liang F, Zhang Y, Jiang L, Ma W, Li C, Li X, Ye X. Effect of epiberberine from Coptis chinensis Franch on inhibition of tumor growth in MKN-45 xenograft mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153216. [PMID: 32534357 DOI: 10.1016/j.phymed.2020.153216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND PURPOSE Gastric cancer is one of the major malignancies worldwide. Epiberberine (EPI) is a major alkaloid from Coptis chinensis Franch and the antitumor property of EPI remains poorly understood. METHOD The inhibition on gastric cancer cells was observed by MTT assays and colony formation experiments. The apoptosis, cell cycle, and reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) in gastric cancer cells were analyzed by Flow cytometry. The anti-tumor effect of EPI was evaluated with the MKN-45-beraring nude mice, and the potential mechanisms were explored by RNA-seq, qPCR, siRNA silencing and western blotting. RESULTS EPI inhibited the proliferation of human gastric cancer cell lines MKN-45 (harboring wild-type p53) and HGC-27 (harboring mutant p53) in a dose dependent manner. EPI induced the apoptosis and cell cycle arrest in these two cell lines, of which MKN-45 cells are more sensitive to EPI than HGC-27 cells. Further experiments indicated that EPI induced the accumulation of ROS and decreased of ΔΨm in MKN-45 cells. The significant differentially expressed genes obtained by RNA-seq were distinctly enriched in the p53 signaling pathway. The apoptosis induced by EPI in MKN-45 cells would be effectively inhibited with the treatment of p53 siRNA and p53 inhibitor PFT-α. Western blotting demonstrated that EPI diminished the expression of Bcl-2 and XIAP, and increased those of p53, Bax, p21, p27, Cytochrome C and Cleaved-caspase 3. Animal experiments confirmed that EPI significantly alleviated tumor growth in MKN-45 xenograft mice via p53/Bax pathway. CONCLUSIONS These data indicated that EPI could be a novel anti-tumor candidate against MKN-45-related gastric cancer via targeting p53-dependent mitochondria-associated pathway.
Collapse
Affiliation(s)
- Min Yu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Ren
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fan Liang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yaru Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingmin Jiang
- Chongqing Productivity Promotion Center of Chinese Traditional Medicine Mod-ernization, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Wenyu Ma
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunming Li
- Chongqing Productivity Promotion Center of Chinese Traditional Medicine Mod-ernization, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xuegang Li
- Chongqing Productivity Promotion Center of Chinese Traditional Medicine Mod-ernization, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
27
|
Zhang M, Du H, Wang L, Yue Y, Zhang P, Huang Z, Lv W, Ma J, Shao Q, Ma M, Liang X, Yang T, Wang W, Zeng J, Chen G, Wang X, Fan J. Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chem Biol Interact 2020; 320:109022. [DOI: 10.1016/j.cbi.2020.109022] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
|
28
|
A multiple endpoint approach reveals potential in vitro anticancer properties of thymoquinone in human renal carcinoma cells. Food Chem Toxicol 2019; 136:111076. [PMID: 31883990 DOI: 10.1016/j.fct.2019.111076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022]
Abstract
Thymoquinone (TQ) is a monoterpene isolated from the oil of Nigella sativa seeds. The aim of this work was to evaluate the cytotoxic effects induced by TQ and its impact on the migration and invasion potential of 786-O human renal cancer cells. These cells were exposed to TQ (1-100 μM) for 24 and 48 h and cell viability assessed using the Crystal Violet and MTS assays. TQ treatment clearly decreased cell viability in a concentration- and time-dependent manner. TQ exposure moderately increased intracellular ROS levels and co-incubation with reduced glutathione markedly increased cell viability. Moreover, the effect of TQ in the cell cycle distribution was evaluated using flow cytometry, and an increase in the sub-G1 population was observed, especially at 30 μM, along with an increase in the % of apoptotic cells. TQ did not show genotoxic effects at a non-cytotoxic concentration (1.0 μM). At this concentration level, TQ significantly decreased the collective migration of 786-O cells, whereas it had no effect in chemotactic migration. TQ also decreased the invasiveness potential of 786-O cells, as evaluated by the transwell invasion assay. Overall, these results suggest that TQ presents an anticancer potential in the context of renal cancer, warranting further investigation.
Collapse
|
29
|
Khan MA, Tania M, Fu J. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov Today 2019; 24:2315-2322. [PMID: 31541714 DOI: 10.1016/j.drudis.2019.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
Thymoquinone is a natural product known for its anticancer activity. Preclinical studies indicated numerous mechanisms of action by which thymoquinone exerts its effects on cancer cells. Recent evidence has indicated that thymoquinone can modulate epigenetic machinery, like modifying histone acetylation and deacetylation, DNA methylation and demethylation, which are among the major epigenetic changes that can contribute to carcinogenesis. Moreover, thymoquinone can alter the genetic expression of various noncoding RNAs, such as miRNA and lncRNA, which are the key parts of cellular epigenetics. This review focuses on cellular epigenetic systems, epigenetic changes responsible for cancer and the counteraction of thymoquinone to target epigenetic challenges, which might be among the mechanisms of the thymoquinone effect in cancer cells.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mousumi Tania
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka 1205, Bangladesh
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
30
|
Shahraki S, Mohebbati R, Shafei MN, Mahmoudi M, Hosseinian S, Parhizgar S, Yazd ZNE, Heravi NE, Abadi RNS, Khajavirad A. Induction of Apoptosis and Growth-Inhibition by Thymoquinone in ACHN and GP-293 Cell Lines in Comparable with Cis-Platinum. J Pharmacopuncture 2019; 22:176-183. [PMID: 31673449 PMCID: PMC6820476 DOI: 10.3831/kpi.2019.22.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022] Open
Abstract
Objective In the current work, we investigated the cytotoxic and apoptotic effects of Thymoquinone (TQ), an active compound of Nigella sativa (N. sativa) and Cis-platinum, on normal renal epithelial (GP-293) and human renal adenocarcinoma cell lines (ACHN). Methods GP-293 and ACHN cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% Fetal bovine serum (FBS) and 1% penicillin plus streptomycin antibiotic. The MTT assay was used for cellular viability assessment. Viability of cells was observed using inverted light microscope 24, 48 and 72 h after exposure of the cells to various concentrations of TQ (1, 2.5, 5, 10, 50 and 100 μg/ml) and Cis-platinum (0.5, 1, 1.5, 2, 3, 6 and 12.5 μg/ml). Moreover, apoptosis was analyzed with a flow-cytometry method. The untreated cells were considered as control group. Results Morphological changes such as reduced cell number and increased intercellular distance and reduced cell viability in ACHN and GP-293cell lines were observed in both TQ and Cis-platinum groups; however, Cis-platinum had greater effect on ACHN cell line than GP-293 cell line. In addition, GP-293 cell line was more sensitive to TQ compared to ACHN cell line. Furthermore, TQ and Cis-platinum had apoptotic effects on both ACHN and GP-293 cell lines. Conclusion Our findings demonstrated that TQ and Cis-platinum had cytotoxic and apoptotic effects on both cell lines, However, GP-293 cell line was more sensitive to TQ. Additionally, Cis-platinum was more effective on ACHN cell line than on GP-293 cell line.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Bu-Ali Research Institute, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Parhizgar
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Naji Ebrahimi Yazd
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazanin Entezari Heravi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abolfazl Khajavirad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Yıldırım İH, Azzawri AA, Duran T. Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cells. DICLE MEDICAL JOURNAL 2019. [DOI: 10.5798/dicletip.620329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Gaudin O, Toukal F, Hua C, Ortonne N, Assier H, Jannic A, Giménez-Arnau E, Wolkenstein P, Chosidow O, Ingen-Housz-Oro S. Association Between Severe Acute Contact Dermatitis Due to Nigella sativa Oil and Epidermal Apoptosis. JAMA Dermatol 2019; 154:1062-1065. [PMID: 30073256 DOI: 10.1001/jamadermatol.2018.2120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Nigella sativa oil (NSO) is widely used for cosmetic and culinary purposes. Cases of severe acute contact dermatitis due to NSO are poorly described, with no histologic description. Objectives To describe the clinical and histologic features of severe acute contact dermatitis due to NSO and investigate the components responsible for such eruptions. Design, Setting, and Participants A case series study of 3 patients with contact dermatitis admitted to the dermatology department between August 21, 2009, and February 19, 2017, was conducted. All patients had been referred to the dermatology department for acute contact dermatitis due to NSO and had patch tests performed. Main Outcomes and Measures Clinical and histologic features of the cutaneous eruptions, length of hospital stay, chemical analysis of NSO, and results of patch tests. Results Three patients (3 women; median age, 27 years [range, 20-47 years]) were included in the case series. All patients had polymorphic skin lesions spreading beyond the area of NSO application: typical and atypical targets, patches with central blisters, erythematous or purpuric plaques with a positive Nikolsky sign mimicking Stevens-Johnson syndrome, or toxic epidermal necrolysis. Two patients had pustules. They had severe impairment, with more than 15% skin detachment and fever. The results of skin biopsies showed epidermal apoptosis characterized by vacuolar alteration of the basal layer, keratinocyte apoptosis, and a moderate perivascular infiltrate of lymphocytes in the dermis. The results of patch tests using the patients' NSO were all positive. The results of gas chromatography combined with mass spectrometry performed on the NSO of 1 patient identified several constituent substances, mainly terpenes, thymoquinone, linoleic acid, and fatty acids. Conclusions and Relevance These cases suggest that acute contact dermatitis due to NSO may induce topically triggered epidermal apoptosis, previously described as the concept of acute syndrome of apoptotic pan epidermolysis. Thymoquinone and p-cymene may be the main agents involved in the pathophysiologic characteristics of this acute contact dermatitis. Clinicians should be aware of such severe reactions to NSO and report these cases to pharmacovigilance authorities.
Collapse
Affiliation(s)
- Olivier Gaudin
- Dermatology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France
| | - Feyrouz Toukal
- Dermatology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France
| | - Camille Hua
- Dermatology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France
| | - Nicolas Ortonne
- Pathology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France
| | - Haudrey Assier
- Dermatology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France
| | - Arnaud Jannic
- Dermatology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France
| | - Elena Giménez-Arnau
- National Center for Research, Mixed Research Unit 7177, University of Strasbourg, Strasbourg, France
| | - Pierre Wolkenstein
- Dermatology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France.,University of Paris Est Créteil Val de Marne, Université Paris-Est Créteil, Créteil, France.,Reference Center for Severe Cutaneous Adverse Reactions, Créteil, France.,Equipe d'Accueil 7379, Epidémiologie en Dermatologie et Evaluation des Thérapeutiques, Créteil, France
| | - Olivier Chosidow
- Dermatology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France.,University of Paris Est Créteil Val de Marne, Université Paris-Est Créteil, Créteil, France.,Reference Center for Severe Cutaneous Adverse Reactions, Créteil, France.,Equipe d'Accueil 7379, Epidémiologie en Dermatologie et Evaluation des Thérapeutiques, Créteil, France
| | - Saskia Ingen-Housz-Oro
- Dermatology Department, Assistance publique-Hôpitaux de Paris, Henri Mondor Hospital, Créteil, France.,Reference Center for Severe Cutaneous Adverse Reactions, Créteil, France.,Equipe d'Accueil 7379, Epidémiologie en Dermatologie et Evaluation des Thérapeutiques, Créteil, France
| |
Collapse
|
33
|
Saffari_Chaleshtori J, Heidari-Sureshjani E, Moradi F, Heidarian E. The Effects of Thymoquinone on Viability, and Anti-apoptotic Factors (BCL-XL, BCL-2, MCL-1) in Prostate Cancer (PC3) Cells: An In Vitro and Computer-Simulated Environment Study. Adv Pharm Bull 2019; 9:490-496. [PMID: 31592099 PMCID: PMC6773927 DOI: 10.15171/apb.2019.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Since active plant ingredients can induce apoptosis in many tumors, in this study we evaluate the apoptotic effects of thymoquinone (TQ) on PC3 cells. Also, we predicted the interaction of TQ with BCL-XL, BCL-2, and MCL-1anti-apoptotic factors by computer-simulated environment. Methods: PC3 cells were treated with different concentrations of TQ (0- 80 µM) and IC50 was determined using 3-(4, 5-dimethylthiaztol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Apoptotic and cytotoxicity effects of TQ were analyzed using flowcytometry and comet assay, respectively. Changes in energy and the molecular interactions of TQ with BCL-XL, BCL-2 and MCL-1 anti-apoptotic factors were investigated using simulation. Results: IC50 value was 40 µM. TQ led to the destruction of the genome of PC3 cells and inducing apoptosis. Molecular dynamics (MD) revealed that the root mean-square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and the number of hydrogen and hydrophobic bonds between TQ and residues of BCL-2, BCL-XL and MCL-1were significantly (P<0.001) changed. TQ makes a more stable and stronger connection with BCL-XL compared to BCL-2 and MCL-1 and inhibits BCL-XL non-competitively. Conclusion: Our results demonstrated that TQ not only led to apoptosis, at least partly, due to reduction in the Coil, Turn, and Bend structure of BCL-XL but also caused a decrease in the Rg and RMSD value of BCL-XL, MCL-1, and BCL-2.
Collapse
Affiliation(s)
| | | | - Fahimeh Moradi
- Cellular & Molecular, Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
34
|
Piperine: role in prevention and progression of cancer. Mol Biol Rep 2019; 46:5617-5629. [PMID: 31273611 DOI: 10.1007/s11033-019-04927-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022]
Abstract
Cancer is among the leading causes of death worldwide. Several pharmacological protocols have been developed in order to block tumor progression often showing partial efficacy and severe counterproductive effects. It is now conceived that a healthy lifestyle coupled with the consumption of certain phytochemicals can play a protective role against tumor development and progression. According to this vision, it has been introduced the concept of "chemoprevention". This term refers to natural agents with the capability to interfere with the tumorigenesis and metastasis, or at least, attenuate the cancer-related symptoms. Piperine (1-Piperoylpiperidine), a main extract of Piper longum and Piper nigrum, is an alkaloid with a long history of medicinal use. In fact, it exhibits a variety of biochemical and pharmaceutical properties, including chemopreventive activities without significant cytotoxic effects on normal cells, at least at doses < of 250 µg/ml. The aim of this review is to discuss the relevant molecular and cellular mechanisms underlying the chemopreventive action of this natural alkaloid.
Collapse
|
35
|
Mahmoud YK, Abdelrazek HMA. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother 2019; 115:108783. [PMID: 31060003 DOI: 10.1016/j.biopha.2019.108783] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recently, there is growing interest in the natural bioactive components having anticancer activity. Thymoquinone (TQ), the principle active constituent of black seed (Nigella sativa), has promising properties including anticancer and chemosensitizing peculiarities. The anticancer power of TQ is accomplished by several aspects; including promotion of apoptosis, arrest of cell cycle and ROS generation. In addition, it boosts the immune system and lessens the side effects associated with traditional anticancer therapy. TQ also controls angiogenesis and cancer metastasis. This review focuses on the potential aspects and mechanisms by which TQ acquires its actions.
Collapse
Affiliation(s)
- Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
36
|
Stress response due to sodium azide treatment inside Nigella sativa L. plant and its effect on antioxidative property. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Chemical Variability of the Essential Oil of Origanum ehrenbergii Boiss. from Lebanon, Assessed by Independent Component Analysis (ICA) and Common Component and Specific Weight Analysis (CCSWA). Int J Mol Sci 2019; 20:ijms20051026. [PMID: 30818755 PMCID: PMC6429486 DOI: 10.3390/ijms20051026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022] Open
Abstract
Origanum ehrenbergii Boiss., an endemic plant to Lebanon, is widely acknowledged in Lebanese traditional medicine. The aim of the present study was to evaluate the influence of the drying method, region, and time of harvest on yield and chemical composition of O. ehrenbergii essential oils (EOs). Plants were harvested monthly throughout 2013 and 2014, from two different regions, Aabadiye and Qartaba, then dried using two drying methods: lyophilization and shade-drying at 4 °C. EO was extracted by hydrodistillation and analyzed by GC/MS. GC-MS data, combined with independent component analysis (ICA) and common component and specific weight analysis (CCSWA), showed that drying techniques, region of harvest, and soil composition have no effect on the chemical composition of O. ehrenbergii EOs. Of the factors analyzed, only harvesting time affected the EO composition of this species. High and stable amounts of carvacrol, associated with reliable antimicrobial activities, were detected in material harvested between March and October. EOs obtained from plants harvested in Aabadiye in January and February showed high amounts of thymoquinone, related to anti-inflammatory and cytotoxic effects. The use of ICA and CCSWA was proven to be efficient, and allowed the development of a discriminant model for the classification of O. ehrenbergii chemotype and the determination of the best harvesting time.
Collapse
|
38
|
Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma cells. J Cell Physiol 2018; 234:10421-10431. [PMID: 30387147 DOI: 10.1002/jcp.27710] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung cancer has been associated with the highest cancer-associated mortality rate in the world. Chemotherapeutic management of cancer necessitates introducing new promising agents. Plants represent a rich source of new antineoplastic and chemotherapeutic agents. Thymoquinone (TQ), the main constituent of Nigella sativa (black seed or black cumin), has shown potent antioxidant and anti-inflammatory activities so far. The purpose of the current study was to evaluate the antineoplastic potential of TQ and their underlying mechanisms in A549 cells (human lung cancer cell line). METHOD The A549 cells were treated with the different concentrations of TQ for three following days. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Necrosis and apoptosis were assessed by fluorescence-activated cell sorter analysis through propidium iodide and annexin V staining and also by assessing caspase-3 and -9 activation. DNA fragmentation was monitored by gel electrophoresis. RESULTS TQ decreased the viability and increased apoptotic cell death in A549 human lung tumor cells. TQ treatment significantly elevated the Bax/ Bcl-2 ratio in the lung cancer cells. TQ also upregulated p53 expression, another apoptotic modulator in A549 cancer cells. TQ also activated caspase-dependent apoptosis by the activation of caspases-3 and -9. CONCLUSION Our results proposed that TQ may be a potential new therapeutic agent for the management of lung cancer. TQ promoted apoptosis in A546 lung cancer cells by the activation of p53 and caspase cascade dependent pathways.
Collapse
Affiliation(s)
- Saeed Samarghandian
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
39
|
Abu-Darwish MS, Efferth T. Medicinal Plants from Near East for Cancer Therapy. Front Pharmacol 2018; 9:56. [PMID: 29445343 PMCID: PMC5797783 DOI: 10.3389/fphar.2018.00056] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/16/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Cancer is one of the major problems affecting public health worldwide. As other cultures, the populations of the Near East rely on medicinal herbs and their preparations to fight cancer. Methods: We compiled data derived from historical ethnopharmacological information as well as in vitro and in vivo results and clinical findings extracted from different literature databases including (PubMed, Scopus, Web of Science, and Google Scholar) during the past two decades. Results: In this survey, we analyzed the huge amount of data available on anticancer ethnopharmacological sources used in the Near East. Medicinal herbs are the most dominant ethnopharmacological formula used among cancer's patients in the Near East. The data obtained highlight for the first time the most commonly used medicinal plants in the Near East area for cancer treatment illustrating their importance as natural anticancer agents. The literature survey reveals that various Arum species, various Artemisia species, Calotropis procera, Citrullus colocynthis, Nigella sativa, Pulicaria crispa, various Urtica species, Withania somnifera, and others belong to the most frequently used plants among cancer patients in the Near East countries. Molecular modes of action that have been investigated for plant extracts and isolated compounds from Near East include cell cycle arrest and apoptosis induction with participation of major player in these processes such as p53 and p21, Bcl-2, Bax, cytochrome c release, poly (ADP-ribose) polymerase cleavage, activation of caspases, etc. Conclusion: The ethnopharmacology of the Near East was influenced by Arabic and Islamic medicine and might be promising for developing new natural and safe anticancer agents. Further research is required to elucidate their cellular and molecular mechanisms and to estimate their clinical activity.
Collapse
Affiliation(s)
- Mohammad S. Abu-Darwish
- Department of Basic and Applied Sciences, Shoubak University College, Al-Balqa’ Applied University, Al-Salt, Jordan
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
40
|
Chowdhury FA, Hossain MK, Mostofa AGM, Akbor MM, Bin Sayeed MS. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4010629. [PMID: 29651429 PMCID: PMC5831880 DOI: 10.1155/2018/4010629] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ), the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.
Collapse
Affiliation(s)
- Fabliha Ahmed Chowdhury
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamal Hossain
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. G. M. Mostofa
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maruf Mohammad Akbor
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | | |
Collapse
|
41
|
Majdalawieh AF, Fayyad MW, Nasrallah GK. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit Rev Food Sci Nutr 2018; 57:3911-3928. [PMID: 28140613 DOI: 10.1080/10408398.2016.1277971] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past two decades, studies have documented the wide-range anti-cancer effects of Nigella sativa, known as black seed or black cumin. Thymoquinone (TQ), its major active ingredient, has also been extensively studied and reported to possess potent anti-cancer properties. Herein, we provide a comprehensive review of the findings related to the anti-cancer activity of TQ. The review focuses on analyzing experimental studies performed using different in vitro and in vivo models to identify the anti-proliferative, pro-apoptotic, anti-oxidant, cytotoxic, anti-metastatic, and NK-dependent cytotoxic effects exerted by TQ. In addition, we pinpoint the molecular mechanisms underlying these effects and the signal transduction pathways implicated by TQ. Our analysis show that p53, NF-κB, PPARγ, STAT3, MAPK, and PI3K/AKT signaling pathways are among the most significant pathways through which TQ mediates its anti-cancer activity. Experimental findings and recent advances in the field highlight TQ as an effective therapeutic agent for the suppression of tumor development, growth and metastasis for a wide range of tumors.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- a Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences , American University of Sharjah , Sharjah , United Arab Emirates
| | - Muneera W Fayyad
- a Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences , American University of Sharjah , Sharjah , United Arab Emirates
| | - Gheyath K Nasrallah
- b Department of Biomedical Science, College of Health Sciences , Qatar University , Doha , Qatar.,c Biomedical Research Center , Qatar University , Doha , Qatar
| |
Collapse
|
42
|
Mesdaghinia E, Mohammad-Ebrahimi B, Foroozanfard F, Banafshe HR. The effect of vitamin E and aspirin on the uterine artery blood flow in women with recurrent abortion: A single-blind randomized controlled trial. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.10.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
43
|
Golshan Iranpour F, Fazelian K, Dashti GR. Thymoquinone as a natural spermostatic substance in reproductive medicine: An experimental study. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.10.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
44
|
Effect of dihydroartemisinin on UHRF1 gene expression in human prostate cancer PC-3 cells. Anticancer Drugs 2017; 28:384-391. [PMID: 28059831 DOI: 10.1097/cad.0000000000000469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the second most common cancer in men around the world, prostate cancer is increasingly gaining more attention. Dihydroartemisinin (DHA) has been proven to be a promising anticancer agent in vitro as well as in vivo in accumulating data. However, the detailed mechanisms of how DHA action in human prostate cancer PC-3 cells remain elusive. This study aimed to investigate the effects of DHA, a novel anticancer agent, by inhibiting the expression of ubiquitin like containing PHD and ring finger 1 (UHRF1) in PC-3 cells. The apoptosis and cell-cycle distribution were detected by flow cytometry. Quantitative real-time PCR was performed to examine both UHRF1 and DNA methyltransferase 1 (DNMT1) expressions at mRNA levels, whereas the expressions of UHRF1, DNMT1, and p16 proteins at protein levels were detected by Western blotting. Methylation levels of p16 CpG islands were determined by bisulfite genomic sequencing. We showed that DHA induced the downregulation of UHRF1 and DNMT1, accompanied by an upregulation of p16 in PC-3 cells. Decreased p16 promoter methylation levels in DHA-treated groups were also observed in PC-3 cells. Furthermore, DHA significantly induced apoptosis and G1/S cell-cycle arrest in PC-3 cells. Our results suggested that downregulation of UHRF1/DNMT1 is upstream to many cellular events, including G1 cell arrest, demethylation of p16, and apoptosis. Together, our study provides new evidence that DHA may serve as a potential therapeutic agent in the treatment of prostate cancer.
Collapse
|
45
|
Mollazadeh H, Afshari AR, Hosseinzadeh H. Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis: - Black cumin and cancer. J Pharmacopuncture 2017; 20:158-172. [PMID: 30087792 PMCID: PMC5633668 DOI: 10.3831/kpi.2017.20.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/12/2023] Open
Abstract
Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and PPAR-γ, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir R Afshari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Mostofa AGM, Hossain MK, Basak D, Bin Sayeed MS. Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical Studies. Front Pharmacol 2017; 8:295. [PMID: 28659794 PMCID: PMC5466966 DOI: 10.3389/fphar.2017.00295] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022] Open
Abstract
Thymoquinone (TQ), the main bioactive component of Nigella sativa, has been found to exhibit anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteracts carcinogenesis, malignant growth, invasion, migration, and angiogenesis. Moreover, TQ can specifically sensitize tumor cells toward conventional cancer treatments (e.g., radiotherapy, chemotherapy, and immunotherapy) and simultaneously minimize therapy-associated toxic effects in normal cells. In this review, we summarized the adjuvant potential of TQ as observed in various in vitro and in vivo animal models and discussed the pharmacological properties of TQ to rationalize its supplementary role in potentiating the efficacy of standard therapeutic modalities namely surgery, radiotherapy, chemotherapy, and immunotherapy. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical levels to delineate its implied utility as a novel complementary adjuvant therapy for cancer treatment.
Collapse
Affiliation(s)
- A G M Mostofa
- Department of Clinical Pharmacy and Pharmacology, University of DhakaDhaka, Bangladesh
| | - Md Kamal Hossain
- Department of Pharmaceutical Chemistry, University of DhakaDhaka, Bangladesh
| | - Debasish Basak
- Department of Clinical Pharmacy and Pharmacology, University of DhakaDhaka, Bangladesh
| | | |
Collapse
|
47
|
Pang J, Shen N, Yan F, Zhao N, Dou L, Wu LC, Seiler CL, Yu L, Yang K, Bachanova V, Weaver E, Tretyakova NY, Liu S. Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells. Oncotarget 2017; 8:34453-34467. [PMID: 28415607 PMCID: PMC5470982 DOI: 10.18632/oncotarget.16431] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 01/27/2023] Open
Abstract
Thymoquinone (TQ), a bioactive constituent of the volatile oil of Monarda fistulosa and Nigella sativa, possesses cancer-specific growth inhibitory effects, but the underlying molecular mechanisms remain largely elusive. We propose that TQ curbs cancer cell growth through dysfunction of DNA methyltransferase 1 (DNMT1). Molecular docking analysis revealed that TQ might interact with the catalytic pocket of DNMT1 and compete with co-factor SAM/SAH for DNMT1 inhibition. In vitro inhibitory assays showed that TQ decreases DNMT1 methylation activity in a dose-dependent manner with an apparent IC50 of 30 nM. Further, exposure of leukemia cell lines and patient primary cells to TQ resulted in DNMT1 downregulation, mechanistically, through dissociation of Sp1/NFkB complex from DNMT1 promoter. This led to a reduction of DNA methylation, a decrease of colony formation and an increase of cell apoptosis via the activation of caspases. In addition, we developed and validated a sensitive and specific LC-MS/MS method and successfully detected a dynamic change of TQ in mouse plasma after administration of TQ through the tail vein, and determined a tolerable dose of TQ to be 15 mg/kg in mouse. TQ administration into leukemia-bearing mice induced leukemia regression, as indicated by the reversed splenomegaly and the inhibited leukemia cell growth in lungs and livers. Our study for the first time demonstrates that DNMT1-dependent DNA methylation mediates the anticancer actions of TQ, opening a window to develop TQ as a novel DNA hypomethylating agent for leukemia therapy.
Collapse
Affiliation(s)
- Jiuxia Pang
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Na Shen
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fei Yan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Na Zhao
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Liping Dou
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Lai-Chu Wu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43021, USA
| | - Christopher L. Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Ke Yang
- Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, Minneapolis, MN 55455, USA
| | - Eric Weaver
- Prairie Pharms LLC, Nora Springs, IA 50458, USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
48
|
Laskar AA, Khan MA, Askari F, Younus H. Thymoquinone binds and activates human salivary aldehyde dehydrogenase: Potential therapy for the mitigation of aldehyde toxicity and maintenance of oral health. Int J Biol Macromol 2017; 103:99-110. [PMID: 28472683 DOI: 10.1016/j.ijbiomac.2017.04.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/28/2023]
Abstract
Human salivary aldehyde dehydrogenase (hsALDH) is a very important anti-oxidant enzyme present in the saliva. It is involved in the detoxification of toxic aldehydes and maintenance of oral health. Reduced level of hsALDH activity is a risk factor for oral cancer development. Thymoquinone (TQ) has many pharmacological activities and health benefits. This study aimed to examine the activation of hsALDH by TQ. The effect of TQ on the activity and kinetics of hsALDH was studied. The binding of TQ with the enzyme was examined by different biophysical methods and molecular docking analysis. TQ enhanced the dehydrogenase activity of crude and purified hsALDH by 3.2 and 2.9 fold, respectively. The Km of the purified enzyme decreased and the Vmax increased. The esterase activity also increased by 1.2 fold. No significant change in the nucleophilicity of the catalytic cysteine residue was observed. TQ forms a strong complex with hsALDH without altering the secondary structures of the enzyme. It fits in the active site of ALDH3A1 close to Cys 243 and the other highly conserved amino acid residues which lead to enhancement of substrate binding affinity and catalytic efficiency of the enzyme. TQ is expected to give better protection from toxic aldehydes in the oral cavity and to reduce the risk of oral cancer development through the activation of hsALDH. Therefore, the addition of TQ in the diet and other oral formulations is expected to be beneficial for health.
Collapse
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Fizza Askari
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
49
|
Ahmad R, Ahmad N, Naqvi AA, Shehzad A, Al-Ghamdi MS. Role of traditional Islamic and Arabic plants in cancer therapy. J Tradit Complement Med 2017; 7:195-204. [PMID: 28417090 PMCID: PMC5388086 DOI: 10.1016/j.jtcme.2016.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022] Open
Abstract
ETHNO PHARMACOLOGICAL RELEVANCE This review article underlines individual Traditional Islamic and Arabic plant (TAI) and their role in treating cancer. The aim of the study is to specifically evaluate the progress of herbs, Arabic and Islamic traditional herbs in particular, applied in cancer treatment, so far. MATERIALS AND METHODS Islamic and Arabic plants were selected and identified through different literature survey using "Google scholar", "Web of science", "Scopus" and "PubMed". Each plant, from identified Arabic and Islamic plants list, was search individually for the most cited articles in the aforementioned databases using the keywords, "Anticancer", "Uses in cancer treatment", "Ethno pharmacological importance in cancer" etc. RESULTS The current review about Islamic and Arabic plants illuminates the importance of Islamic and Arabic plants and their impact in treating cancer. There is a long list of Islamic and Arabic plants used in cancer as mentioned in review with enormous amount of literature. Each plant has been investigated for its anticancer potential. The literature survey as mentioned in table shows; these plants are widely utilized in cancer as a whole, a part thereof or in the form of isolated chemical constituent. CONCLUSIONS This review strongly supports the fact; Arabic and Islamic traditional plants have emerged as a good source of complementary and alternative medicine in treating cancer. Traditional Arab-Islamic herbal-based medicines might be promising for new cancer therapeutics with low toxicity and minimal side effects. The plants used are mostly in crude form and still needs advance research for the isolation of phytochemicals and establishing its cellular and molecular role in treating cancer.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Natural Products and Alternative Medicines, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Atta Abbas Naqvi
- Department of Pharmacy Practice, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mastour Safer Al-Ghamdi
- Department of Pharmacology, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| |
Collapse
|
50
|
Al-Attass SA, Zahran FM, Turkistany SA. Nigella sativa and its active constituent thymoquinone in oral health. Saudi Med J 2017; 37:235-44. [PMID: 26905343 PMCID: PMC4800885 DOI: 10.15537/smj.2016.3.13006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this review, we summarized published reports that investigated the role of Nigella sativa (NS) and its active constituent, thymoquinone (TQ) in oral health and disease management. The literature studies were preliminary and scanty, but the results revealed that black seed plants have a potential therapeutic effect for oral and dental diseases. Such results are encouraging for the incorporation of these plants in dental therapeutics and hygiene products. However, further detailed preclinical and clinical studies at the cellular and molecular levels are required to investigate the mechanisms of action of NS and its constituents, particularly TQ.
Collapse
Affiliation(s)
- Safia A Al-Attass
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. E-mail.
| | | | | |
Collapse
|