1
|
Choi Y, Lee HK, Choi KC. Engineered adult stem cells: a promising tool for anti-cancer therapy. BMB Rep 2023; 56:71-77. [PMID: 36330711 PMCID: PMC9978368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 02/24/2023] Open
Abstract
Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings. [BMB Reports 2023; 56(2): 71-77].
Collapse
Affiliation(s)
- Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea,Corresponding author. Tel: +82-43-261-3664; Fax: +82-43-267-3150; E-mail:
| |
Collapse
|
2
|
Choi Y, Lee HK, Choi KC. Engineered adult stem cells: a promising tool for anti-cancer therapy. BMB Rep 2023; 56:71-77. [PMID: 36330711 PMCID: PMC9978368 DOI: 10.5483/bmbrep.2022-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 08/03/2023] Open
Abstract
Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings. [BMB Reports 2023; 56(2): 71-77].
Collapse
Affiliation(s)
- Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
3
|
Vanella R, Kovacevic G, Doffini V, Fernández de Santaella J, Nash MA. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering. Chem Commun (Camb) 2022; 58:2455-2467. [PMID: 35107442 PMCID: PMC8851469 DOI: 10.1039/d1cc04635g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/23/2022] [Indexed: 12/29/2022]
Abstract
Enzyme engineering is an important biotechnological process capable of generating tailored biocatalysts for applications in industrial chemical conversion and biopharma. Typical enhancements sought in enzyme engineering and in vitro evolution campaigns include improved folding stability, catalytic activity, and/or substrate specificity. Despite significant progress in recent years in the areas of high-throughput screening and DNA sequencing, our ability to explore the vast space of functional enzyme sequences remains severely limited. Here, we review the currently available suite of modern methods for enzyme engineering, with a focus on novel readout systems based on enzyme cascades, and new approaches to reaction compartmentalization including single-cell hydrogel encapsulation techniques to achieve a genotype-phenotype link. We further summarize systematic scanning mutagenesis approaches and their merger with deep mutational scanning and massively parallel next-generation DNA sequencing technologies to generate mutability landscapes. Finally, we discuss the implementation of machine learning models for computational prediction of enzyme phenotypic fitness from sequence. This broad overview of current state-of-the-art approaches for enzyme engineering and evolution will aid newcomers and experienced researchers alike in identifying the important challenges that should be addressed to move the field forward.
Collapse
Affiliation(s)
- Rosario Vanella
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Gordana Kovacevic
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Vanni Doffini
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Jaime Fernández de Santaella
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Michael A Nash
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
4
|
Japir AAWMM, Ke W, Li J, Mukerabigwi JF, Ibrahim A, Wang Y, Li X, Zhou Q, Mohammed F, Ge Z. Tumor-dilated polymersome nanofactories for enhanced enzyme prodrug chemo-immunotherapy. J Control Release 2021; 339:418-429. [PMID: 34662586 DOI: 10.1016/j.jconrel.2021.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022]
Abstract
Combination chemo-immunotherapy of cancers has attracted great attention due to its significant synergistic antitumor effect. The response rates and therapeutic efficacy of immunotherapy can be enhanced significantly after proper combination with chemotherapy. However, chemo-immunotherapy is frequently limited by severe immune-related adverse events and systemic side toxicity. In this report, efficient nanofactory-directed enzyme prodrug chemo-immunotherapy is demonstrated based on enzyme-loaded tumor-dilatable polymersomes with optimized membrane cross-linking density. Upon intravenous injection of the nanofactories, they can passively accumulate at the tumor site. The tumor pH-responsive nanofactories can swell from ~100 nm to ~200 nm under the trigger of tumor acidity, leading to prolonged retention of up to one week inside tumor tissues. Simultaneously, the membrane permeability of the nanofactories has improved significantly, which allows hydrophilic small molecules to pass across the membranes while keeping the enzymes in the inner cavities. Subsequently, the non-toxic prodrug mixtures of chemo-immunotherapy are administrated three times within 6 days, which are in situ activated by the nanofactories selectively at tumor sites. Activated chemotherapeutic drugs kill cancer cells and generate tumor-associated antigens to promote the maturation of dendritic cells. Activated indoleamine 2, 3-dioxygenase 1 inhibitors reverse the immunosuppressive tumor microenvironment. Finally, primary tumors can be effectively suppressed while causing minimal systemic toxicity. The distant tumors that are established after treatment can also be inhibited completely via activation of antitumor immunity in mice. Thus, the tumor-dilatable polymersome nanofactories with long-term intratumoral retention offer a promising paradigm for enhanced enzyme prodrug chemo-immunotherapy.
Collapse
Affiliation(s)
- Abd Al-Wali Mohammed M Japir
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Junjie Li
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Alhadi Ibrahim
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
5
|
Humer D, Furlanetto V, Schruef AK, Wlodarczyk A, Kuttke M, Divne C, Spadiut O. Potential of unglycosylated horseradish peroxidase variants for enzyme prodrug cancer therapy. Biomed Pharmacother 2021; 142:112037. [PMID: 34392084 DOI: 10.1016/j.biopha.2021.112037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/17/2022] Open
Abstract
Fighting cancer still relies on chemo- and radiation therapy, which is a trade-off between effective clearance of malignant cells and severe side effects on healthy tissue. Targeted cancer treatment on the other hand is a promising and refined strategy with less systemic interference. The enzyme horseradish peroxidase (HRP) exhibits cytotoxic effects on cancer cells in combination with indole-3-acetic acid (IAA). However, the plant-derived enzyme is out of bounds for medical purposes due to its foreign glycosylation pattern and resulting rapid clearance and immunogenicity. In this study, we generated recombinant, unglycosylated HRP variants in Escherichia coli using random mutagenesis and investigated their biochemical properties and suitability for cancer treatment. The cytotoxicity of the HRP-IAA enzyme prodrug system was assessed in vitro with HCT-116 human colon, FaDu human nasopharyngeal squamous cell carcinoma and murine colon adenocarcinoma cells (MC38). Extensive cytotoxicity was shown in all three cancer cell lines: the cell viability of HCT-116 and MC38 cells treated with HRP-IAA was below 1% after 24 h incubation and the surviving fraction of FaDu cells was ≤ 10% after 72 h. However, no cytotoxic effect was observed upon in vivo intratumoral application of HRP-IAA on a MC38 tumor model in C57BL/6J mice. However, we expect that targeting of HRP to the tumor by conjugation to specific antibodies or antibody fragments will reduce HRP clearance and thereby enhance therapy efficacy.
Collapse
Affiliation(s)
- Diana Humer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Valentina Furlanetto
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health Department of Industrial Biotechnology, AlbaNova, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Anna-Katharina Schruef
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Angelika Wlodarczyk
- Austrian Research Institute for Chemistry and Engineering (OFI), Franz-Grill-Straße 5, Objekt 213, 1030 Vienna, Austria
| | - Mario Kuttke
- Medical University of Vienna, Institute for Vascular Biology and Thrombosis Research, Center for Pharmacology and Physiology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Christina Divne
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health Department of Industrial Biotechnology, AlbaNova, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
6
|
Güngör T, Önder FC, Tokay E, Gülhan ÜG, Hacıoğlu N, Tok TT, Çelik A, Köçkar F, Ay M. PRODRUGS FOR NITROREDUCTASE BASED CANCER THERAPY- 2: Novel amide/Ntr combinations targeting PC3 cancer cells. Eur J Med Chem 2019; 171:383-400. [DOI: 10.1016/j.ejmech.2019.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
|
7
|
Mishra AP, Chandra S, Tiwari R, Srivastava A, Tiwari G. Therapeutic Potential of Prodrugs Towards Targeted Drug Delivery. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2018; 12:111-123. [PMID: 30505359 PMCID: PMC6210501 DOI: 10.2174/1874104501812010111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
In designing of Prodrugs, targeting can be achieved in two ways: site-specified drug delivery and site-specific drug bioactivation. Prodrugs can be designed to target specific enzymes or carriers by considering enzyme-substrate specificity or carrier-substrate specificity in order to overcome various undesirable drug properties. There are certain techniques which are used for tumor targeting such as Antibody Directed Enzyme Prodrug Therapy [ADEPT] Gene-Directed Enzyme Prodrug Therapy [GDEPT], Virus Directed Enzyme Prodrug Therapy [VDEPT] and Gene Prodrug Activation Therapy [GPAT]. Our review focuses on the Prodrugs used in site-specific drug delivery system specially on tumor targeting.
Collapse
Affiliation(s)
- Abhinav P Mishra
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| | - Suresh Chandra
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| | - Ashish Srivastava
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| |
Collapse
|
8
|
Helfield BL, Chen X, Qin B, Watkins SC, Villanueva FS. Mechanistic Insight into Sonoporation with Ultrasound-Stimulated Polymer Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2678-2689. [PMID: 28847500 PMCID: PMC5644032 DOI: 10.1016/j.ultrasmedbio.2017.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 05/06/2023]
Abstract
Sonoporation is emerging as a feasible, non-viral gene delivery platform for the treatment of cardiovascular disease and cancer. Despite promising results, this approach remains less efficient than viral methods. The objective of this work is to help substantiate the merit of polymeric microbubble sonoporation as a non-viral, localized cell permeation and payload delivery strategy by taking a ground-up approach to elucidating the fundamental mechanisms at play. In this study, we apply simultaneous microscopy of polymeric microbubble sonoporation over its intrinsic biophysical timescales-with sub-microsecond resolution to examine microbubble cavitation and millisecond resolution over several minutes to examine local macromolecule uptake through enhanced endothelial cell membrane permeability-bridging over six orders of magnitude in time. We quantified microbubble behavior and resulting sonoporation thresholds at transmit frequencies of 0.5, 1 and 2 MHz, and determined that sonic cracking is a necessary but insufficient condition to induce sonoporation. Further, sonoporation propensity increases with the extent of sonic cracking, namely, from partial to complete gas escape from the polymeric encapsulation. For the subset that exhibited complete gas escape from sonic cracking, a proportional relationship between the maximum projected gas area and resulting macromolecule uptake was observed. These results have revealed one aspect of polymeric bubble activity on the microsecond time scale that is associated with eliciting sonoporation in adjacent endothelial cells, and contributes toward an understanding of the physical rationale for sonoporation with polymer-encapsulated microbubble contrast agents.
Collapse
Affiliation(s)
- Brandon L Helfield
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
9
|
Evans JC, Malhotra M, Cryan JF, O'Driscoll CM. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br J Pharmacol 2016; 173:3041-3079. [PMID: 27526115 PMCID: PMC5056232 DOI: 10.1111/bph.13576] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) otherwise known as glutamate carboxypeptidase II (GCPII) is a membrane bound protein that is highly expressed in prostate cancer and in the neovasculature of a wide variety of tumours including glioblastomas, breast and bladder cancers. This protein is also involved in a variety of neurological diseases including schizophrenia and ALS. In recent years, there has been a surge in the development of both diagnostics and therapeutics that take advantage of the expression and activity of PSMA/GCPII. These include gene therapy, immunotherapy, chemotherapy and radiotherapy. In this review, we discuss the biological roles that PSMA/GCPII plays, both in normal and diseased tissues, and the current therapies exploiting its activity that are at the preclinical stage. We conclude by giving an expert opinion on the future direction of PSMA/GCPII based therapies and diagnostics and hurdles that need to be overcome to make them effective and viable.
Collapse
Affiliation(s)
- James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
10
|
Robson T, Worthington J, McKeown SR, Hirst DG. Radiogenic Therapy: Novel Approaches for Enhancing Tumor Radiosensitivity. Technol Cancer Res Treat 2016; 4:343-61. [PMID: 16029055 DOI: 10.1177/153303460500400404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy (RT) is a well established modality for treating many forms of cancer. However, despite many improvements in treatment planning and delivery, the total radiation dose is often too low for tumor cure, because of the risk of normal tissue damage. Gene therapy provides a new adjunctive strategy to enhance the effectiveness of RT, offering the potential for preferential killing of cancer cells and sparing of normal tissues. This specificity can be achieved at several levels including restricted vector delivery, transcriptional targeting and specificity of the transgene product. This review will focus on those gene therapy strategies that are currently being evaluated in combination with RT, including the use of radiation sensitive promoters to control the timing and location of gene expression specifically within tumors. Therapeutic transgenes chosen for their radiosensitizing properties will also be reviewed, these include: gene correction therapy, in which normal copies of genes responsible for radiation-induced apoptosis are transfected to compensate for the deletions or mutated variants in tumor cells (p53 is the most widely studied example). enzymes that synergize the radiation effect, by generation of a toxic species from endogenous precursors ( e.g., inducible nitric oxide synthase) or by activation of non toxic prodrugs to toxic species ( e.g., herpes simplex virus thymidine kinase/ganciclovir) within the target tissue. conditionally replicating oncolytic adenoviruses that synergize the radiation effect. membrane transport proteins ( e.g., sodium iodide symporter) to facilitate uptake of cytotoxic radionuclides. The evidence indicates that many of these approaches are successful for augmenting radiation induced tumor cell killing with clinical trials currently underway.
Collapse
Affiliation(s)
- T Robson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | | | |
Collapse
|
11
|
Eggenreich B, Willim M, Wurm DJ, Herwig C, Spadiut O. Production strategies for active heme-containing peroxidases from E. coli inclusion bodies - a review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2016; 10:75-83. [PMID: 28352527 PMCID: PMC5040872 DOI: 10.1016/j.btre.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 01/28/2023]
Abstract
Heme-containing peroxidases are frequently used in medical applications. However, these enzymes are still extracted from their native source, which leads to inadequate yields and a mixture of isoenzymes differing in glycosylation which limits subsequent enzyme applications. Thus, recombinant production of these enzymes in Escherichia coli is a reasonable alternative. Even though production yields are high, the product is frequently found as protein aggregates called inclusion bodies (IBs). These IBs have to be solubilized and laboriously refolded to obtain active enzyme. Unfortunately, refolding yields are still very low making the recombinant production of these enzymes in E. coli not competitive. Motivated by the high importance of that enzyme class, this review aims at providing a comprehensive summary of state-of-the-art strategies to obtain active peroxidases from IBs. Additionally, various refolding techniques, which have not yet been used for this enzyme class, are discussed to show alternative and potentially more efficient ways to obtain active peroxidases from E. coli.
Collapse
Affiliation(s)
- Britta Eggenreich
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Melissa Willim
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - David Johannes Wurm
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
12
|
Tobin PH, Richards DH, Callender RA, Wilson CJ. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab 2015; 15:743-56. [PMID: 25495737 DOI: 10.2174/1389200216666141208151524] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Protein engineering holds the potential to transform the metabolic drug landscape through the development of smart, stimulusresponsive drug systems. Protein therapeutics are a rapidly expanding segment of Food and Drug Administration approved drugs that will improve clinical outcomes over the long run. Engineering of protein therapeutics is still in its infancy, but recent general advances in protein engineering capabilities are being leveraged to yield improved control over both pharmacokinetics and pharmacodynamics. Stimulus- responsive protein therapeutics are drugs which have been designed to be metabolized under targeted conditions. Protein engineering is being utilized to develop tailored smart therapeutics with biochemical logic. This review focuses on applications of targeted drug neutralization, stimulus-responsive engineered protein prodrugs, and emerging multicomponent smart drug systems (e.g., antibody-drug conjugates, responsive engineered zymogens, prospective biochemical logic smart drug systems, drug buffers, and network medicine applications).
Collapse
Affiliation(s)
| | | | | | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|
13
|
Cömert Önder F, Ay M, Aydoğan Türkoğlu S, Tura Köçkar F, Çelik A. Antiproliferative activity ofHumulus lupulusextracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase,β-lactamase enzyme inhibition studies. J Enzyme Inhib Med Chem 2015; 31:90-8. [DOI: 10.3109/14756366.2015.1004060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Hattinger CM, Serra M. Role of pharmacogenetics of drug-metabolizing enzymes in treating osteosarcoma. Expert Opin Drug Metab Toxicol 2015; 11:1449-63. [PMID: 26095223 DOI: 10.1517/17425255.2015.1060220] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) biotransform several toxins and xenobiotics in both tumor and normal cells, resulting in either their detoxification or their activation. Since DMEs also metabolize several chemotherapeutic drugs, they can significantly influence tumor response to chemotherapy and susceptibility of normal tissues to collateral toxicity of anticancer treatments. AREAS COVERED This review discusses the pharmacogenetics of DMEs involved in the metabolism of drugs which constitute the backbone of osteosarcoma (OS) chemotherapy, highlighting what is presently known for this tumor and their possible impact on the modulation of future treatment approaches. EXPERT OPINION Achieving further insight into pharmacogenetic markers and biological determinants related to treatment response in OS may ultimately lead to individualized treatment regimens, based on a combination of genotype and tumor characteristics of each patient.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- a Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , Via di Barbiano 1/10, I-40136 Bologna, Italy +390 516 366 762 ; +390 516 366 763 ;
| | | |
Collapse
|
15
|
Alekseenko IV, Snezhkov EV, Chernov IP, Pleshkan VV, Potapov VK, Sass AV, Monastyrskaya GS, Kopantzev EP, Vinogradova TV, Khramtsov YV, Ulasov AV, Rosenkranz AA, Sobolev AS, Bezborodova OA, Plyutinskaya AD, Nemtsova ER, Yakubovskaya RI, Sverdlov ED. Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer. J Transl Med 2015; 13:78. [PMID: 25880666 PMCID: PMC4359447 DOI: 10.1186/s12967-015-0433-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/10/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Gene-directed enzyme prodrug therapy (GDEPT) represents a technology to improve drug selectivity for cancer cells. It consists of delivery into tumor cells of a suicide gene responsible for in situ conversion of a prodrug into cytotoxic metabolites. Major limitations of GDEPT that hinder its clinical application include inefficient delivery into cancer cells and poor prodrug activation by suicide enzymes. We tried to overcome these constraints through a combination of suicide gene therapy with immunomodulating therapy. Viral vectors dominate in present-day GDEPT clinical trials due to efficient transfection and production of therapeutic genes. However, safety concerns associated with severe immune and inflammatory responses as well as high cost of the production of therapeutic viruses can limit therapeutic use of virus-based therapeutics. We tried to overcome this problem by using a simple nonviral delivery system. METHODS We studied the antitumor efficacy of a PEI (polyethylenimine)-PEG (polyethylene glycol) copolymer carrying the HSVtk gene combined in one vector with granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA. The system HSVtk-GM-CSF/PEI-PEG was tested in vitro in various mouse and human cell lines, ex vivo and in vivo using mouse models. RESULTS We showed that the HSVtk-GM-CSF/PEI-PEG system effectively inhibited the growth of transplanted human and mouse tumors, suppressed metastasis and increased animal lifespan. CONCLUSIONS We demonstrated that appreciable tumor shrinkage and metastasis inhibition could be achieved with a simple and low toxic chemical carrier - a PEI-PEG copolymer. Our data indicate that combined suicide and cytokine gene therapy may provide a powerful approach for the treatment of solid tumors and their metastases.
Collapse
Affiliation(s)
- Irina V Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, 123182, Russia.
| | - Eugene V Snezhkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Igor P Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Victor V Pleshkan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, 123182, Russia.
| | - Victor K Potapov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Alexander V Sass
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Galina S Monastyrskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Eugene P Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Tatyana V Vinogradova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Yuri V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova, 34/5, Moscow, 119334, Russia.
| | - Alexey V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova, 34/5, Moscow, 119334, Russia.
| | - Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova, 34/5, Moscow, 119334, Russia.
- Moscow State University, Biological Faculty, ul. Leninskiye Gory, 1-12, Moscow, 119234, Russia.
| | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova, 34/5, Moscow, 119334, Russia.
- Moscow State University, Biological Faculty, ul. Leninskiye Gory, 1-12, Moscow, 119234, Russia.
| | - Olga A Bezborodova
- Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, 2nd Botkinskiy proezd 3, Moscow, 125284, Russia.
| | - Anna D Plyutinskaya
- Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, 2nd Botkinskiy proezd 3, Moscow, 125284, Russia.
| | - Elena R Nemtsova
- Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, 2nd Botkinskiy proezd 3, Moscow, 125284, Russia.
| | - Raisa I Yakubovskaya
- Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, 2nd Botkinskiy proezd 3, Moscow, 125284, Russia.
| | - Eugene D Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, 123182, Russia.
| |
Collapse
|
16
|
Zhou X, Liu J, Wang W. Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET Syst Biol 2014; 8:96-103. [PMID: 25014376 DOI: 10.1049/iet-syb.2013.0025] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has been proved and widely acknowledged that messenger RNAs can talk to each other by competing for a limited pool of miRNAs. The competing endogenous RNAs are called as ceRNAs. Although some researchers have recently used ceRNAs to do biological function annotations, few of them have investigated the ceRNA network on specific disease systematically. In this work, using both miRNA expression data and mRNA expression data of breast cancer patient as well as the miRNA target relations, the authors proposed a computational method to construct a breast-cancer-specific ceRNA network by checking whether the shared miRNA sponges between the gene pairs are significant. The ceRNA network is shown to be scale-free, thus the topological characters such as hub nodes and communities may provide important clues for the biological mechanism. Through investigation on the communities (the dense clusters) in the network, it was found that they are related to cancer hallmarks. In addition, through function annotation of the hub genes in the network, it was found that they are related to breast cancer. Moreover, classifiers based on the discriminative hubs can significantly distinguish breast cancer patients' risks of distant metastasis in all the three independent data sets.
Collapse
Affiliation(s)
- Xionghui Zhou
- School of Computer, Wuhan University, Wuhan, People's Republic of China.
| | - Juan Liu
- School of Computer, Wuhan University, Wuhan, People's Republic of China
| | - Wei Wang
- School of Computer, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Abrate A, Buono R, Canu T, Esposito A, Del Maschio A, Lucianò R, Bettiga A, Colciago G, Guazzoni G, Benigni F, Hedlund P, Altaner C, Montorsi F, Cavarretta IT. Mesenchymal stem cells expressing therapeutic genes induce autochthonous prostate tumour regression. Eur J Cancer 2014; 50:2478-88. [DOI: 10.1016/j.ejca.2014.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/08/2014] [Accepted: 06/16/2014] [Indexed: 01/14/2023]
|
18
|
Doloff JC, Waxman DJ. Adenoviral vectors for prodrug activation-based gene therapy for cancer. Anticancer Agents Med Chem 2014; 14:115-26. [PMID: 23869779 DOI: 10.2174/18715206113139990309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/09/2013] [Accepted: 04/10/2013] [Indexed: 11/22/2022]
Abstract
Cancer cell heterogeneity is a common feature - both between patients diagnosed with the same cancer and within an individual patient's tumor - and leads to widely different response rates to cancer therapies and the potential for the emergence of drug resistance. Diverse therapeutic approaches have been developed to combat the complexity of cancer, including individual treatment modalities designed to target tumor heterogeneity. This review discusses adenoviral vectors and how they can be modified to replicate in a cancer-specific manner and deliver therapeutic genes under multi-tiered regulation to target tumor heterogeneity, including heterogeneity associated with cancer stem cell-like subpopulations. Strategies that allow for combination of prodrug-activation gene therapy with a novel replication-conditional, heterogeneous tumor-targeting adenovirus are discussed, as are the benefits of using adenoviral vectors as tumor-targeting oncolytic vectors. While the anticancer activity of many adenoviral vectors has been well established in preclinical studies, only limited successes have been achieved in the clinic, indicating a need for further improvements in activity, specificity, tumor cell delivery and avoidance of immunogenicity.
Collapse
Affiliation(s)
| | - David J Waxman
- Department of Cell and Molecular, Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
19
|
Okura H, Smith CA, Rutka JT. Gene therapy for malignant glioma. MOLECULAR AND CELLULAR THERAPIES 2014; 2:21. [PMID: 26056588 PMCID: PMC4451964 DOI: 10.1186/2052-8426-2-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. Despite current treatment modalities, such as surgical resection followed by chemotherapy and radiotherapy, only modest improvements in median survival have been achieved. Frequent recurrence and invasiveness of GBM are likely due to the resistance of glioma stem cells to conventional treatments; therefore, novel alternative treatment strategies are desperately needed. Recent advancements in molecular biology and gene technology have provided attractive novel treatment possibilities for patients with GBM. Gene therapy is defined as a technology that aims to modify the genetic complement of cells to obtain therapeutic benefit. To date, gene therapy for the treatment of GBM has demonstrated anti-tumor efficacy in pre-clinical studies and promising safety profiles in clinical studies. However, while this approach is obviously promising, concerns still exist regarding issues associated with transduction efficiency, viral delivery, the pathologic response of the brain, and treatment efficacy. Tumor development and progression involve alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for GBM have been proposed. Improved viral vectors are being evaluated, and the potential use of gene therapy alone or in synergy with other treatments against GBM are being studied. In this review, we will discuss the most commonly studied gene therapy approaches for the treatment of GBM in preclinical and clinical studies including: prodrug/suicide gene therapy; oncolytic gene therapy; cytokine mediated gene therapy; and tumor suppressor gene therapy. In addition, we review the principles and mechanisms of current gene therapy strategies as well as advantages and disadvantages of each.
Collapse
Affiliation(s)
- Hidehiro Okura
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada ; Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Christian A Smith
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada
| | - James T Rutka
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada ; Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario M5T 1P5 Canada ; Division of Neurosurgery, The Hospital for Sick Children, Suite 1503, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada
| |
Collapse
|
20
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014; 14:1241-57. [PMID: 24773178 DOI: 10.1517/14712598.2014.915307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014. [PMID: 24773178 DOI: 10.1517/14712598.2014.91530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chester KA, Baker M, Mayer A. Overcoming the immunologic response to foreign enzymes in cancer therapy. Expert Rev Clin Immunol 2014; 1:549-59. [DOI: 10.1586/1744666x.1.4.549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Kwiatkowska A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in gene therapy for glioblastoma. Cancers (Basel) 2013; 5:1271-305. [PMID: 24202446 PMCID: PMC3875940 DOI: 10.3390/cancers5041271] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.
Collapse
Affiliation(s)
- Aneta Kwiatkowska
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
24
|
Boulaiz H, Aránega A, Blanca C, Pablo A, Fernando RS, Esmeralda C, Consolación M, Jose P. A Novel Double-Enhanced Suicide Gene Therapy in a Colon Cancer Cell Line Mediated by Gef and Apoptin. BioDrugs 2013; 28:63-74. [DOI: 10.1007/s40259-013-0055-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging. Gene Ther 2012; 20:529-37. [PMID: 22914496 DOI: 10.1038/gt.2012.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.
Collapse
|
26
|
Ardiani A, Johnson AJ, Ruan H, Sanchez-Bonilla M, Serve K, Black ME. Enzymes to die for: exploiting nucleotide metabolizing enzymes for cancer gene therapy. Curr Gene Ther 2012; 12:77-91. [PMID: 22384805 DOI: 10.2174/156652312800099571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.
Collapse
Affiliation(s)
- Andressa Ardiani
- School of Molecular Biosciences, Washington State University, Pullman, 99164-7520, USA
| | | | | | | | | | | |
Collapse
|
27
|
Gui R, Li D, Qi G, Suhad A, Nie X. Inhibition of Grb2-mediated activation of MAPK signal transduction suppresses NOR 1/CB1954-induced cytotoxicity in the HepG2 cell line. Oncol Lett 2012; 4:566-570. [PMID: 23741254 DOI: 10.3892/ol.2012.774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/22/2012] [Indexed: 11/06/2022] Open
Abstract
The nitroreductase oxidored-nitro domain containing protein 1 (NOR1) gene may be involved in the chemical carcinogenesis of hepatic cancer and nasopharyngeal carcinoma (NPC). We have previously demonstrated that NOR1 overexpression is capable of converting the monofunctional alkylating agent 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) into a toxic form by reducing the 4-nitro group of CB1954. Toxic CB1954 is able to enhance cell killing in the NPC cell line CNE1; however, the underlying mechanisms remain unknown. Using cDNA microarrays and quantitative real-time PCR, we previously discovered that NOR1 increases the expression of growth factor receptor-bound protein 2 (Grb2) mRNA by 4.8-fold in the human hepatocellular carcinoma cell line HepG2. In the present study, we revealed that NOR1 increased Grb2 protein expression by 3-fold in HepG2 cells. Additionally, we demonstrated that NOR1 enhanced CB1954-induced cell killing in HepG2 cells, and cell cytotoxicity was inhibited with the tyrosine kinase inhibitor genistein, or by stable transfection of Grb2 small hairpin RNA (shRNA) pU6+27-shGrb2 to silence the expression of Grb2. Western blot analysis revealed that Grb2 downregulation may reduce the activity of the mitogen-activated protein kinase (MAPK). Inhibiting the activation of MAPK using the methyl ethyl ketone (MEK) inhibtor PD98059 suppressed CB1954-induced cell killing. These results suggested that the NOR1 gene enhances CB1954-mediated cell cytotoxicity through the upregulation of Grb2 expression and the activation of MAPK signal transduction in the HepG2 cell line.
Collapse
Affiliation(s)
- Rong Gui
- Clinical Laboratory Centre of the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | | | | | | | | |
Collapse
|
28
|
Fathabadi EG, Shelling AN, Al-Kassas R. Nanocarrier systems for delivery of siRNA to ovarian cancer tissues. Expert Opin Drug Deliv 2012; 9:743-54. [DOI: 10.1517/17425247.2012.683173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Kim KM, Won YW, Adhikary PP, Hwang YM, Kim YH. Suicidal gene therapy against tumor using reducible poly (oligo-D-arginine). J Control Release 2012; 152 Suppl 1:e148-9. [PMID: 22195813 DOI: 10.1016/j.jconrel.2011.08.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kyung-Min Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
30
|
Hunt MA, Li D, Hay MP, Currie MJ, Robinson BA, Patterson AV, Dachs GU. Characterisation of enzyme prodrug gene therapy combinations in coated spheroids and vascular networks in vitro. J Gene Med 2012; 14:62-74. [DOI: 10.1002/jgm.1635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michelle A. Hunt
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Dan Li
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Margaret J. Currie
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Bridget A. Robinson
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Gabi U. Dachs
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| |
Collapse
|
31
|
In vitro and in vivo double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for PC-3 cell line. World J Surg Oncol 2012; 10:3. [PMID: 22226139 PMCID: PMC3283475 DOI: 10.1186/1477-7819-10-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/08/2012] [Indexed: 11/27/2022] Open
Abstract
Background One of the most frequently used and efficient suicide gene therapies for prostate cancer is HSV-TK/GCV system, but its application has been limited due to lack of favorable gene vector and the reduction of "bystander effect". We investigated the effect of a novel combination of HSV-TK/GCV fused with Cx43 and gemcitabine using non-viral vector generation 5 polyamidoamine dendrimers (G5-PAMAM-D) on PC-3 cells. Methods RT-PCR and Western blot were used to detect TK and Cx43 expression. Cell viability and proliferation were measured by using MTT assay. Cell apoptosis was detected with double-staining of Annexin V-FITC and propidium iodide (PI) by flow cytometry. Nude mice models were established to evaluate the therapeutic effect in vivo. Results G5-PAMAM-D efficiently delivered recombinant plasmids into PC-3 cells and HSV-TK and Cx43 could be expressed successfully. With gemcitabine, G5-PAMAM-D mediated HSV-TK and Cx43 expression effectively inhibited prostate cancer PC-3 cell proliferation, leading to more cellular apoptosis and inhibiting PC-3 tumor growth in nude mice models. Conclusions This study illustrates that this new suicide gene system mediated by G5-PAMAM-D is effective in decreasing PC-3 cell proliferation and inducing cell apoptosis, and inhibiting tumor growth in vivo. In a word, our study could provide a potential approach for gene therapy of prostate cancer.
Collapse
|
32
|
Hearnden V, Sankar V, Hull K, Juras DV, Greenberg M, Kerr AR, Lockhart PB, Patton LL, Porter S, Thornhill MH. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev 2012; 64:16-28. [PMID: 21371513 DOI: 10.1016/j.addr.2011.02.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/15/2011] [Accepted: 02/23/2011] [Indexed: 02/08/2023]
Abstract
The oral mucosa's accessibility, excellent blood supply, by-pass of hepatic first-pass metabolism, rapid repair and permeability profile make it an attractive site for local and systemic drug delivery. Technological advances in mucoadhesives, sustained drug release, permeability enhancers and drug delivery vectors are increasing the efficient delivery of drugs to treat oral and systemic diseases. When treating oral diseases, these advances result in enhanced therapeutic efficacy, reduced drug wastage and the prospect of using biological agents such as genes, peptides and antibodies. These technologies are also increasing the repertoire of drugs that can be delivered across the oral mucosa to treat systemic diseases. Trans-mucosal delivery is now a favoured route for non-parenteral administration of emergency drugs and agents where a rapid onset of action is required. Furthermore, advances in drug delivery technology are bringing forward the likelihood of transmucosal systemic delivery of biological agents.
Collapse
|
33
|
Chen Y, Wang G, Kong D, Zhang Z, Yang K, Liu R, Zhao W, Xu Y. Double-targeted and double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for prostate cancer. Mol Carcinog 2011; 52:237-46. [DOI: 10.1002/mc.21850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 01/09/2023]
|
34
|
Robertson DM, Kalangara JP, Baucom RB, Petroll WM, Cavanagh HD. A reconstituted telomerase-immortalized human corneal epithelium in vivo: a pilot study. Curr Eye Res 2011; 36:706-12. [PMID: 21780919 DOI: 10.3109/02713683.2011.582662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Telomerase-immortalized human corneal epithelial cells have been reported to stratify and differentiate in vitro similar to native tissue. The purpose of this study was to assess the ability of a telomerase-immortalized human corneal epithelial cell line to generate a full thickness epithelium in vivo in athymic mice. METHODS Telomerized corneal epithelial cells were transduced with a retroviral vector encoding the herpes simplex thymidine kinase gene. Efficacy of the thymidine kinase suicide gene was confirmed using a live/dead assay. The epithelium was mechanically removed from athymic nude mice and remaining cells were treated with mitomycin C to prevent re-epithelialization. Telomerized corneal epithelial cells were seeded onto the denuded cornea and allowed to adhere for 4 and 24 hours. Cellular attachment was assessed using a fluorescent cell tracker. Stratification and differentiation were assessed after 7 days using phalloidin and a mouse monoclonal antibody to K3. RESULTS Telomerized corneal epithelial cells were visualized across the denuded stromal surface at 4 and 24 hours, with multi-layering evident at the latter time point. No epithelium was present in the non-treated eye. After 7 days post-transplantation cells stratified into a multilayered epithelium, with positive K3 expression in basal and suprabasal cells. Treatment with ganciclovir induced significant loss of viability in vitro. CONCLUSIONS The findings in this pilot study demonstrate that telomerized corneal epithelial cells possess the capacity to reconstitute a stratified corneal epithelium in vivo. The introduction of thymidine kinase allowed for the successful induction of cell death in proliferating cells in vitro. Collectively, these data suggest that a telomerase-immortalized corneal epithelial cell line transduced with thymidine kinase represents a potential model for studying differentiation and epithelial-niche interactions in vivo with potential applications in tissue engineering.
Collapse
Affiliation(s)
- Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9057, USA.
| | | | | | | | | |
Collapse
|
35
|
Suicide gene therapy using reducible poly (oligo-D-arginine) for the treatment of spinal cord tumors. Biomaterials 2011; 32:9766-75. [PMID: 21924768 DOI: 10.1016/j.biomaterials.2011.08.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022]
Abstract
Suicide gene therapy based on a combination of herpes simplex virus-thymidine kinase (HSV-tk) and ganciclovir (GCV) has obstacles to achieving a success in clinical use for the treatment of cancer due to inadequate thymidine kinase (TK) expression. The primary concern for improving anticancer efficacy of the suicide gene therapy is to develop an appropriate carrier that highly expresses TK in vivo. Despite great advances in the development of non-viral vectors, none has been used in cancer suicide gene therapy, not even in experimental challenge. Reducible poly (oligo-D-arginine) (rPOA), one of the effective non-viral carriers working in vivo, was chosen to deliver HSV-tk to spinal cord tumors which are appropriate targets for suicide gene therapy. Since the system exerts toxicity only in dividing cells, cells in the central nervous system, which are non-proliferative, are not sensitive to the toxic metabolites. In the present study, we demonstrated that the locomotor function of the model rat was maintained through the tumor suppression resulting from the tumor-selective suicide activity by co-administration of rPOA/HSV-tk and GCV. Thus, rPOA plays a crucial role in suicide gene therapy for cancer, and an rPOA/HSV-tk and GCV system could help promote in vivo trials of suicide gene therapy.
Collapse
|
36
|
Miletti T, Farber PJ, Mittermaier A. Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation. JOURNAL OF BIOMOLECULAR NMR 2011; 51:71-82. [PMID: 21947916 DOI: 10.1007/s10858-011-9542-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/28/2011] [Indexed: 05/31/2023]
Abstract
We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with (15)N R (1), R (1ρ ), and {(1)H}-(15)N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo "gating" motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ( ex ) contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns-ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.
Collapse
Affiliation(s)
- Teresa Miletti
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| | | | | |
Collapse
|
37
|
Therapeutic targeting of subdural medulloblastomas using human neural stem cells expressing carboxylesterase. Cancer Gene Ther 2011; 18:817-24. [DOI: 10.1038/cgt.2011.52] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Castro MG, Candolfi M, Kroeger K, King GD, Curtin JF, Yagiz K, Mineharu Y, Assi H, Wibowo M, Ghulam Muhammad AKM, Foulad D, Puntel M, Lowenstein PR. Gene therapy and targeted toxins for glioma. Curr Gene Ther 2011; 11:155-80. [PMID: 21453286 DOI: 10.2174/156652311795684722] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/08/2011] [Indexed: 12/12/2022]
Abstract
The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.
Collapse
Affiliation(s)
- Maria G Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Perret GY, Uzzan B. An anticancer strategic dilemma: to kill or to contain. The choice of the pharmaceutical industry in 2009. Fundam Clin Pharmacol 2011; 25:283-95. [DOI: 10.1111/j.1472-8206.2010.00849.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Rama AR, Prados J, Melguizo C, Burgos M, Alvarez PJ, Rodriguez-Serrano F, Ramos JL, Aranega A. Synergistic antitumoral effect of combination E gene therapy and Doxorubicin in MCF-7 breast cancer cells. Biomed Pharmacother 2011; 65:260-70. [PMID: 21723082 DOI: 10.1016/j.biopha.2011.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/17/2011] [Indexed: 10/18/2022] Open
Abstract
The low effectiveness of conventional therapies to achieve the long-term survival of metastatic breast cancer patients calls for the development of novel options. Genes encoding cytotoxic proteins have been proposed as a new strategy to enhance the antiproliferative activity of drugs. Combined therapy using these genes and classical antitumoral drugs are under intensive study. The E gene from ϕX174 encodes a membrane protein with a toxic domain that leads to a decrease in the tumour cell growth rate. With the aim of improving the anti-tumour effect on breast cancer cells of the currently used chemotherapeutic drugs (Paclitaxel, Docetaxel and Doxorubicin), we investigated the association of E suicide gene with these drugs. The effect of the combined therapy (gene therapy and cytotoxic) was determined by treating transfected MCF-7 cells and multicellular tumour spheroids (MTS) with drugs gradient concentrations. Our results showed that E gene has a direct oncolytic effect inducing a significant decrease in the proliferation rate of the MCF-7 cells. The E gene antitumoral activity was mediated by the induction of apoptosis (mitochondrial pathway). In addition, a significant enhancement of proliferation inhibition was observed when E gene transfection was associated with cytotoxic drugs in comparison to single treatments. The use of the combined therapy E gene-Doxorubicin obtained the greatest effect on the MCF-7 growth arrest. This therapeutic association also induced a significant enhancement of the MTS volume growth inhibition. Anti-tumour activity of the chemotherapeutic drugs classically used in the treatment of breast cancer was enhanced by E gene. Our in vitro results indicate that experimental therapeutic strategy based in the combined therapy E gene and cytotoxic drugs may be of potential therapeutic value as a new strategy for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Ana R Rama
- Institute of Biopathology and Regenerative Medicine (IBIMER), Dept. Anatomía y Embriología, Facultad de Medicina, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Leveille S, Samuel S, Goulet ML, Hiscott J. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther 2011; 18:435-43. [PMID: 21394109 DOI: 10.1038/cgt.2011.14] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oncolytic viruses (OVs) are promising therapeutic agents for cancer treatment, with recent studies emphasizing the combined use of chemotherapeutic compounds and prodrug suicide gene strategies to improve OV efficacy. In the present study, the synergistic activity of recombinant vesicular stomatitis virus (VSV)-MΔ51 virus expressing the cytosine deaminase/uracil phosphoribosyltransferase (CD::UPRT) suicide gene and 5-fluorocytosine (5FC) prodrug was investigated in triggering tumor cell oncolysis. In a panel of VSV-sensitive and -resistant cells-prostate PC3, breast MCF7 and TSA, B-lymphoma Karpas and melanoma B16-F10-the combination treatment increased killing of non-infected bystander cells in vitro via the release of 5FC toxic derivatives. In addition, we showed a synergistic effect on cancer cell killing with VSV-MΔ51 and the active form of the drug 5-fluorouracil. Furthermore, by monitoring VSV replication at the tumor site and maximizing 5FC bioavailability, we optimized the treatment regimen and improved survival of animals bearing TSA mammary adenocarcinoma. Altogether, this study emphasizes the potency of the VSV-CD::UPRT and 5FC combination, and demonstrates the necessity of optimizing each step of a multicomponent therapy to design efficient treatment.
Collapse
Affiliation(s)
- S Leveille
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
42
|
Li C, Penet MF, Wildes F, Takagi T, Chen Z, Winnard PT, Artemov D, Bhujwalla ZM. Nanoplex delivery of siRNA and prodrug enzyme for multimodality image-guided molecular pathway targeted cancer therapy. ACS NANO 2010; 4:6707-16. [PMID: 20958072 PMCID: PMC2991391 DOI: 10.1021/nn102187v] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ability to destroy cancer cells while sparing normal tissue is highly sought after in cancer therapy. Small interfering RNA (siRNA)-mediated silencing of cancer-cell-specific targets and the use of a prodrug enzyme delivered to the tumor to convert a nontoxic prodrug to an active drug are two promising approaches in achieving this goal. Combining both approaches into a single treatment strategy can amplify selective targeting of cancer cells while sparing normal tissue. Noninvasive imaging can assist in optimizing such a strategy by determining effective tumor delivery of the siRNA and prodrug enzyme to time prodrug administration and detecting target down-regulation by siRNA and prodrug conversion by the enzyme. In proof-of-principle studies, we synthesized a nanoplex carrying magnetic resonance imaging (MRI) reporters for in vivo detection and optical reporters for microscopy to image the delivery of siRNA and a functional prodrug enzyme in breast tumors and achieve image-guided molecular targeted cancer therapy. siRNA targeting of choline kinase-α (Chk-α), an enzyme significantly up-regulated in aggressive breast cancer cells, was combined with the prodrug enzyme bacterial cytosine deaminase (bCD) that converts the nontoxic prodrug 5-fluorocytosine (5-FC) to cytotoxic 5-fluorouracil (5-FU). In vivo MRI and optical imaging showed efficient intratumoral nanoplex delivery. siRNA-mediated down-regulation of Chk-α and the conversion of 5-FC to 5-FU by bCD were detected noninvasively with (1)H MR spectroscopic imaging and (19)F MR spectroscopy. Combined siRNA and prodrug enzyme activated treatment achieved higher growth delay than either treatment alone. The strategy can be expanded to target multiple pathways with siRNA.
Collapse
Affiliation(s)
- Cong Li
- Address correspondence to: and
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Doloff JC, Su T, Waxman DJ. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+. BMC Cancer 2010; 10:487. [PMID: 20836875 PMCID: PMC2946310 DOI: 10.1186/1471-2407-10-487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/13/2010] [Indexed: 11/16/2022] Open
Abstract
Background Cytochrome P450-based suicide gene therapy for cancer using prodrugs such as cyclophosphamide (CPA) increases anti-tumor activity, both directly and via a bystander killing mechanism. Bystander cell killing is essential for the clinical success of this treatment strategy, given the difficulty of achieving 100% efficient gene delivery in vivo using current technologies. Previous studies have shown that the pan-caspase inhibitor p35 significantly increases CPA-induced bystander killing by tumor cells that stably express P450 enzyme CYP2B6 (Schwartz et al, (2002) Cancer Res. 62: 6928-37). Methods To further develop this approach, we constructed and characterized a replication-defective adenovirus, Adeno-2B6/p35, which expresses p35 in combination with CYP2B6 and its electron transfer partner, P450 reductase. Results The expression of p35 in Adeno-2B6/p35-infected tumor cells inhibited caspase activation, delaying the death of the CYP2B6 "factory" cells that produce active CPA metabolites, and increased bystander tumor cell killing compared to that achieved in the absence of p35. Tumor cells infected with Adeno-2B6/p35 were readily killed by cisplatin and doxorubicin, indicating that p35 expression is not associated with acquisition of general drug resistance. Finally, p35 did not inhibit viral release when the replication-competent adenovirus ONYX-017 was used as a helper virus to facilitate co-replication and spread of Adeno-2B6/p35 and further increase CPA-induced bystander cell killing. Conclusions The introduction of p35 into gene therapeutic regimens constitutes an effective approach to increase bystander killing by cytochrome P450 gene therapy. This strategy may also be used to enhance other bystander cytotoxic therapies, including those involving the production of tumor cell toxic protein products.
Collapse
Affiliation(s)
- Joshua C Doloff
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
44
|
Kumar S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 2010; 6:115-31. [PMID: 20064075 DOI: 10.1517/17425250903431040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE OF THE FIELD Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: i) synthesis of novel drugs and drug metabolites; ii) targeted cancer gene therapy; iii) biosensor design; and iv) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. AREAS COVERED IN THIS REVIEW In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of the above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency and utilization of alternate oxidants. WHAT THE READER WILL GAIN The review provides a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine and bioremediation. TAKE HOME MESSAGE Because of its wide applications, academic and pharmaceutical researchers, environmental scientists and healthcare providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology and Toxicology, 2464 Charlotte St., Kansas City, MO 64108, USA.
| |
Collapse
|
45
|
Singh P, Yam M, Russell PJ, Khatri A. Molecular and traditional chemotherapy: a united front against prostate cancer. Cancer Lett 2010; 293:1-14. [PMID: 20117879 DOI: 10.1016/j.canlet.2009.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 01/28/2023]
Abstract
Castrate resistant prostate cancer (CRPC) is essentially incurable. Recently though, chemotherapy demonstrated a survival benefit ( approximately 2months) in the treatment of CRPC. While this was a landmark finding, suboptimal efficacy and systemic toxicities at the therapeutic doses warranted further development. Smart combination therapies, acting through multiple mechanisms to target the heterogeneous cell populations of PC and with potential for reduction in individual dosing, need to be developed. In that, targeted molecular chemotherapy has generated significant interest with the potential for localized treatment to generate systemic efficacy. This can be further enhanced through the use of oncolytic conditionally replicative adenoviruses (CRAds) to deliver molecular chemotherapy. The prospects of chemotherapy and molecular-chemotherapy as single and as components of combination therapies are discussed.
Collapse
Affiliation(s)
- P Singh
- Centre for Medicine and Oral Health, Griffith University - Gold Coast GH1, High Street, Southport, Gold Coast, QLD 4215, Australia
| | | | | | | |
Collapse
|
46
|
Ardiani A, Sanchez-Bonilla M, Black ME. Fusion enzymes containing HSV-1 thymidine kinase mutants and guanylate kinase enhance prodrug sensitivity in vitro and in vivo. Cancer Gene Ther 2010; 17:86-96. [PMID: 19763147 PMCID: PMC2808426 DOI: 10.1038/cgt.2009.60] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/16/2009] [Accepted: 07/08/2009] [Indexed: 11/15/2022]
Abstract
Herpes simplex virus thymidine kinase (HSVTK) with ganciclovir (GCV) is currently the most widely used suicide gene/prodrug system in cancer gene therapy. A major limitation in this therapy is the inefficient activation of GCV by HSVTK to its active antimetabolites. We described earlier two strategies to overcome this limitation: (1) generation of HSVTK mutants with improved GCV activation potential and (2) construction of a fusion protein encoding HSVTK and mouse guanylate kinase (MGMK), the second enzyme in the GCV activation pathway. As a means to further enhance GCV activation, two MGMK/HSVTK constructs containing the HSVTK mutants, mutant 30 and SR39, were generated and evaluated for their tumor and bystander killing effects in vitro and in vivo. One fusion mutant, MGMK/30, shows significant reduction in IC(50) values of approximately 12 500-fold, 100-fold, and 125-fold compared with HSVTK, mutant 30 or MGMK/HSVTK, respectively. In vitro bystander analyses show that 5% of MGMK/30-expressing cells are sufficient to induce 75% of tumor cell killing. In an xenograft tumor model, MGMK/30 displays the greatest inhibition of tumor growth at a GCV concentration (1 mg kg(-1)) that has no effect on wild-type HSVTK-, MGMK/HSVTK-, or mutant 30-transfected cells. Another fusion construct, MGMK/SR39, sensitizes rat C6 glioma cells to GCV by 2500-fold or 25-fold compared with HSVTK or MGMK/HSVTK, respectively. In vitro analyses show similar IC(50) values between cells harboring SR39 and MGMK/SR39, although MGMK/SR39 seems to elicit stronger bystander killing effects in which 1% of MGMK/SR39-transfected cells result in 60% cell death. In a xenograft tumor model, despite observable tumor growth inhibition, no statistical significance in tumor volume was detected between mice harboring SR39- and MGMK/SR39-transfected cells when dosed with 1 mg kg(-1) GCV. However, at a lower dose of GCV (0.1 mg kg(-1)), MGMK/SR39 seems to have slightly greater tumor growth inhibition properties compared with SR39 (P< or =0.05). In vivo studies indicate that both mutant fusion proteins display substantial improvements in bystander killing in the presence of 1 mg kg(-1) GCV, even when only 5% of the tumor cells are transfected. Such fusion mutants with exceptional prodrug converting properties will allow administration of lower and non-myelosuppressive doses of GCV concomitant with improved tumor killing and as such are promising candidates for translational gene therapy studies.
Collapse
Affiliation(s)
- Andressa Ardiani
- School of Molecular Biosciences, P.O. Box 646534, Washington State University, Pullman, WA 99164-6534
| | - Marilyn Sanchez-Bonilla
- Department of Pharmaceutical Sciences, P.O. Box 646534, Washington State University, Pullman, WA 99164-6534
| | - Margaret E. Black
- School of Molecular Biosciences, P.O. Box 646534, Washington State University, Pullman, WA 99164-6534
- Department of Pharmaceutical Sciences, P.O. Box 646534, Washington State University, Pullman, WA 99164-6534
| |
Collapse
|
47
|
In vivo characterization of horseradish peroxidase with indole-3-acetic acid and 5-bromoindole-3-acetic acid for gene therapy of cancer. Cancer Gene Ther 2010; 17:420-8. [PMID: 20075982 DOI: 10.1038/cgt.2009.86] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene-directed enzyme prodrug therapy is a form of targeted cancer therapy, in which an enzyme is used to convert a non-toxic prodrug to a cytotoxin within the tumor. Horseradish peroxidase (HRP) is able to convert the indole prodrugs indole-3-acetic acid (IAA) and the halogenated derivative 5-bromo-IAA (5Br-IAA) to toxic agents able to induce cell kill in vitro. This study characterized HRP-directed gene therapy in vivo. Human nasopharyngeal squamous cell carcinoma cells, FaDu, stably expressing HRP were grown as xenografts in SCID mice. Pharmacokinetic analysis of IAA and 5Br-IAA showed satisfactory drug profiles, and millimolar concentrations could be achieved in tumor tissue at non-toxic doses. HRP-expressing tumors showed a modest growth delay when treated with IAA compared with drug-vehicle controls. Treatment response could not be improved using different drug scheduling or drug vehicle, nor by combining HRP-directed gene therapy with fractionated radiotherapy.
Collapse
|
48
|
Dachs GU, Hunt MA, Syddall S, Singleton DC, Patterson AV. Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules 2009; 14:4517-45. [PMID: 19924084 PMCID: PMC6255103 DOI: 10.3390/molecules14114517] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 12/12/2022] Open
Abstract
Gene directed enzyme prodrug therapy (GDEPT) of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC), and bacterial nitroreductase (NfsB) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954), and their respective derivatives.
Collapse
Affiliation(s)
- Gabi U. Dachs
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Michelle A. Hunt
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Sophie Syddall
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| |
Collapse
|
49
|
Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 2009; 109:2880-93. [PMID: 19476376 DOI: 10.1021/cr900028p] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- William B Parker
- Southern Research Institute, 2000 Ninth Avenue, South Birmingham, Alabama 35205, USA.
| |
Collapse
|
50
|
Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells. Cancer Chemother Pharmacol 2009; 66:69-78. [PMID: 19771430 DOI: 10.1007/s00280-009-1135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 09/07/2009] [Indexed: 12/14/2022]
Abstract
PURPOSE The potential use of combined therapy is under intensive study including the association between classical cytotoxic and genes encoding toxic proteins which enhanced the antitumour activity. The main aim of this work was to evaluate whether the gef gene, a suicide gene which has a demonstrated antiproliferative activity in tumour cells, improved the antitumour effect of chemotherapeutic drugs used as first-line treatment in the management of advanced breast cancer. METHODS MCF-7 human breast cancer cells were transfected with gef gene using pcDNA3.1-TOPO expression vector. To determine the effect of the combined therapy, MCF-7 transfected and non-transfected cells were exposed to paclitaxel, docetaxel and doxorubicin at different concentrations. The growth-inhibitory effect of gef gene and/or drugs was assessed by MTT assay. Apoptosis modulation was determined by flow cytometric analysis, DNA fragmentation and morphological analysis. Multicellular tumour spheroids (MTS) from MCF-7 cells were used to confirm effectiveness of combined therapy (gef gene and drug). RESULTS Our results demonstrate that combined therapy gef gene/drugs (paclitaxel, docetaxel or doxurubicin) caused a decrease in cell viability. However, only the gef-doxorubicin (10 microM) combination induced a greater enhancement in the antitumour activity in MCF-7 cells. Most importantly, this combined strategy resulted in a significant synergistic effect, thus allowing lower doses of the drug to be used to achieve the same therapeutic effect. These results were confirmed using MTS in which volume decrease with combined therapy was greater than obtained using the gene therapy or chemotherapy alone, or the sum of both therapies. CONCLUSIONS The cytotoxic effect of gef gene in breast cancer cells enhances the chemotherapeutic effect of doxorubicin. This therapeutic approach has the potential to overcome some of the major limitations of conventional chemotherapy, and may therefore constitute a promising strategy for future applications in breast cancer therapy.
Collapse
|