1
|
Tsukamoto T. Hematopoietic Stem/Progenitor Cells and the Pathogenesis of HIV/AIDS. Front Cell Infect Microbiol 2020; 10:60. [PMID: 32154191 PMCID: PMC7047323 DOI: 10.3389/fcimb.2020.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction between human immunodeficiency virus (HIV) and hematopoietic stem/progenitor cells (HSPCs) has been of great interest. However, it remains unclear whether HSPCs can act as viral reservoirs. Many studies have reported the presence of latently infected HSPCs in the bone marrow of HIV-infected patients, whereas many other investigators have reported negative results. Hence, further evidence is required to elucidate this controversy. The other arm of HSPC investigations of HIV infection involves dynamics analysis in the early and late stages of infection to understand the impact on the pathogenesis of acquired immunodeficiency syndrome. Several recent studies have suggested reduced amounts and/or functional impairment of multipotent, myeloid, and lymphoid progenitors in HIV infection that may contribute to hematological manifestations, including anemia, pancytopenia, and T-cell depletion. In addition, ongoing and future studies on the senescence of HSPCs are expected to further the understanding of HIV pathogenesis. This mini review summarizes reports describing the basic aspects of hematopoiesis in response to HIV infection and offers insights into the association of HIV infection/exposure of the host HSPCs and hematopoietic potential.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
2
|
Menkova-Garnier I, Hocini H, Foucat E, Tisserand P, Bourdery L, Delaugerre C, Benne C, Lévy Y, Lelièvre JD. P2X7 Receptor Inhibition Improves CD34 T-Cell Differentiation in HIV-Infected Immunological Nonresponders on c-ART. PLoS Pathog 2016; 12:e1005571. [PMID: 27082982 PMCID: PMC4833302 DOI: 10.1371/journal.ppat.1005571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Peripheral CD4+ T-cell levels are not fully restored in a significant proportion of HIV+ individuals displaying long-term viral suppression on c-ART. These immunological nonresponders (INRs) have a higher risk of developing AIDS and non-AIDS events and a lower life expectancy than the general population, but the underlying mechanisms are not fully understood. We used an in vitro system to analyze the T- and B-cell potential of CD34+ hematopoietic progenitor cells. Comparisons of INRs with matched HIV+ patients with high CD4+ T-cell counts (immune responders (IRs)) revealed an impairment of the generation of T-cell progenitors, but not of B-cell progenitors, in INRs. This impairment resulted in the presence of smaller numbers of recent thymic emigrants (RTE) in the blood and lower peripheral CD4+ T-cell counts. We investigated the molecular pathways involved in lymphopoiesis, focusing particularly on T-cell fate specification (Notch pathway), survival (IL7R-IL7 axis) and death (Fas, P2X7, CD39/CD73). P2X7 expression was abnormally strong and there was no CD73 mRNA in the CD34+ cells of INRs, highlighting a role for the ATP pathway. This was confirmed by the demonstration that in vitro inhibition of the P2X7-mediated pathway restored the T-cell potential of CD34+ cells from INRs. Moreover, transcriptomic analysis revealed major differences in cell survival and death pathways between CD34+ cells from INRs and those from IRs. These findings pave the way for the use of complementary immunotherapies, such as P2X7 antagonists, to restore T-cell lymphopoiesis in INRs.
Collapse
Affiliation(s)
- Inna Menkova-Garnier
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Créteil, France.,Vaccine Research Institute, Créteil, France
| | - Hakim Hocini
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Vaccine Research Institute, Créteil, France
| | - Emile Foucat
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Pascaline Tisserand
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Vaccine Research Institute, Créteil, France
| | - Laure Bourdery
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | | | - Clarisse Benne
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Yves Lévy
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Créteil, France.,Vaccine Research Institute, Créteil, France.,Groupe Hospitalier Henri-Mondor Albert-Chenevier, Créteil, France
| | - Jean-Daniel Lelièvre
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Créteil, France.,Vaccine Research Institute, Créteil, France.,Groupe Hospitalier Henri-Mondor Albert-Chenevier, Créteil, France
| |
Collapse
|
3
|
Yang H, Gu J, Zhu Q, Lu H, Wang K, Ni X, Lu Y, Lu L. Protection of acute GVHD by all-trans retinoic acid through suppression of T cell expansion and induction of regulatory T cells through IL-2 signaling. Int Immunopharmacol 2015; 28:911-6. [DOI: 10.1016/j.intimp.2015.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/31/2015] [Indexed: 01/13/2023]
|
4
|
Shi X, Sims MD, Hanna MM, Xie M, Gulick PG, Zheng YH, Basson MD, Zhang P. Neutropenia during HIV infection: adverse consequences and remedies. Int Rev Immunol 2014; 33:511-36. [PMID: 24654626 DOI: 10.3109/08830185.2014.893301] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neutropenia frequently occurs in patients with Human immunodeficiency virus (HIV) infection. Causes for neutropenia during HIV infection are multifactoral, including the viral toxicity to hematopoietic tissue, the use of myelotoxic agents for treatment, complication with secondary infections and malignancies, as well as the patient's association with confounding factors which impair myelopoiesis. An increased prevalence and severity of neutropenia is commonly seen in advanced stages of HIV disease. Decline of neutrophil phagocytic defense in combination with the failure of adaptive immunity renders the host highly susceptible to developing fatal secondary infections. Neutropenia and myelosuppression also restrict the use of many antimicrobial agents for treatment of infections caused by HIV and opportunistic pathogens. In recent years, HIV infection has increasingly become a chronic disease because of progress in antiretroviral therapy (ART). Prevention and treatment of severe neutropenia becomes critical for improving the survival of HIV-infected patients.
Collapse
|
5
|
Re A, Cattaneo C, Skert C, Balsalobre P, Michieli M, Bower M, Ferreri AJM, Hentrich M, Ribera JM, Allione B, Schommers P, Montoto S, Almici C, Ferremi P, Mazzucato M, Gattillo S, Casari S, Spina M, Diez-Martin JL, Tirelli U, Rossi G. Stem cell mobilization in HIV seropositive patients with lymphoma. Haematologica 2013; 98:1762-8. [PMID: 23975176 DOI: 10.3324/haematol.2013.089052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High-dose chemotherapy with autologous peripheral blood stem cell rescue has been reported as feasible and effective in HIV-associated lymphoma. Although a sufficient number of stem cells seems achievable in most patients, there are cases of stem cell harvest failure. The aim of this study was to describe the mobilization policies used in HIV-associated lymphoma, evaluate the failure rate and identify factors influencing mobilization results. We analyzed 155 patients who underwent attempted stem cell mobilization at 10 European centers from 2000-2012. One hundred and twenty patients had non-Hodgkin lymphoma and 35 Hodgkin lymphoma; 31% had complete remission, 57% chemosensitive disease, 10% refractory disease, 2% untested relapse. Patients were mobilized with chemotherapy + G-CSF (86%) or G-CSF alone (14%); 73% of patients collected >2 and 48% >5 × 10(6) CD34(+) cells/kg. Low CD4+ count and refractory disease were associated with mobilization failure. Low CD4(+) count, low platelet count and mobilization with G-CSF correlated with lower probability to achieve >5 × 10(6) CD34(+) cells/kg, whereas cyclophosphamide ≥ 3 g/m(2) + G-CSF predicted higher collections. Circulating CD34(+) cells and CD34/WBC ratio were strongly associated with collection result. HIV infection alone should not preclude an attempt to obtain stem cells in candidates for autologous transplant as the results are comparable to the HIV-negative population.
Collapse
|
6
|
Sagüés M, Sancho JM, Serrano D, Balsalobre P, Gayoso J, Morgades M, Conde E, Iriondo A, Varela R, Escoda L, Xicoy B, Espigado I, Fernández-Abellán P, Díez JL, Ribera JM. [Comparison of two initial mobilizing strategies of peripheral blood stem cells for autologous transplantation in patients with lymphoma and human immunodeficiency virus infection]. Med Clin (Barc) 2012; 139:192-6. [PMID: 21807388 DOI: 10.1016/j.medcli.2011.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/05/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Several studies have demonstrated the feasibility of autologous stem cell transplantation (ASCT) in patients with lymphoma and human immunodeficiency virus (HIV) infection. HIV infection has been described as a risk factor for poor mobilization. The aim of this study was to compare the results of two mobilization strategies of peripheral blood stem cells (PBSC) in patients with lymphoma and HIV infection in seven Spanish hospitals. PATIENTS AND METHODS The following variables were collected: demographic, clinical and biological features, previous chemotherapies and outcomes, as well as mobilization's strategies (classified in two groups: 1) G-CSF, and 2) G-CSF + chemotherapy). RESULTS Between January 2000 and May 2010, 42 patients with lymphoma and HIV infection were referred for ASCT. The rate of successful mobilization (collection >1.60 × 10(6) CD34 cells/kg) with the first regimen was 67%, with no differences between those patients mobilized with G-CSF or with G-CSF + chemotherapy (16 [72%] and 12 [60%], respectively; p=0.382). The status of the lymphoma at the time of mobilization was the only factor for successful mobilization (20/22 patients [91%] in complete remission [CR] mobilized adequately versus 5/12 [58%] in partial remission [PR]; p=0.038). CONCLUSIONS In patients with lymphoma and HIV infection, mobilization with G-CSF was as effective as mobilization with chemotherapy followed by G-CSF. The stage of disease prior to the mobilization was the main risk factor for the success of mobilization, with better results in patients mobilized in remission of the lymphoma.
Collapse
Affiliation(s)
- Miguel Sagüés
- ICO-Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Institut de Recerca contra la Leucèmia Josep Carreras, Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood 2011; 117:5142-51. [PMID: 21436070 DOI: 10.1182/blood-2011-01-331306] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mechanisms of CD4(+) T-cell count decline, the hallmark of HIV disease progression, and its relationship to elevated levels of immune activation are not fully understood. Massive depletion of CD4(+) T cells occurs during the course of HIV-1 infection, so that maintenance of adequate CD4(+) T-cell levels probably depends primarily on the capacity to renew depleted lymphocytes, that is, the lymphopoiesis. We performed here a comprehensive study of quantitative and qualitative attributes of CD34(+) hematopoietic progenitor cells directly from the blood of a large set of HIV-infected persons compared with uninfected donors, in particular the elderly. Our analyses underline a marked impairment of primary immune resources with the failure to maintain adequate lymphocyte counts. Systemic immune activation emerges as a major correlate of altered lymphopoiesis, which can be partially reversed with prolonged antiretroviral therapy. Importantly, HIV disease progression despite elite control of HIV replication or virologic success on antiretroviral treatment is associated with persistent damage to the lymphopoietic system or exhaustion of lymphopoiesis. These findings highlight the importance of primary hematopoietic resources in HIV pathogenesis and the response to antiretroviral treatments.
Collapse
|
8
|
Jaeger S, Ertaylan G, van Dijk D, Leser U, Sloot P. Inference of surface membrane factors of HIV-1 infection through functional interaction networks. PLoS One 2010; 5:e13139. [PMID: 20967291 PMCID: PMC2953485 DOI: 10.1371/journal.pone.0013139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/08/2010] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND HIV infection affects the populations of T helper cells, dendritic cells and macrophages. Moreover, it has a serious impact on the central nervous system. It is yet not clear whether this list is complete and why specifically those cell types are affected. To address this question, we have developed a method to identify cellular surface proteins that permit, mediate or enhance HIV infection in different cell/tissue types in HIV-infected individuals. Receptors associated with HIV infection share common functions and domains and are involved in similar cellular processes. These properties are exploited by bioinformatics techniques to predict novel cell surface proteins that potentially interact with HIV. METHODOLOGY/PRINCIPAL FINDINGS We compiled a set of surface membrane proteins (SMP) that are known to interact with HIV. This set is extended by proteins that have direct interaction and share functional similarity. This resulted in a comprehensive network around the initial SMP set. Using network centrality analysis we predict novel surface membrane factors from the annotated network. We identify 21 surface membrane factors, among which three have confirmed functions in HIV infection, seven have been identified by at least two other studies, and eleven are novel predictions and thus excellent targets for experimental investigation. CONCLUSIONS Determining to what extent HIV can interact with human SMPs is an important step towards understanding patient specific disease progression. Using various bioinformatics techniques, we generate a set of surface membrane factors that constitutes a well-founded starting point for experimental testing of cell/tissue susceptibility of different HIV strains as well as for cohort studies evaluating patient specific disease progression.
Collapse
Affiliation(s)
- Samira Jaeger
- Knowledge Management in Bioinformatics, Humboldt-Universität Berlin, Berlin, Germany
- Algorithmic Computational Biology, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
| | - Gokhan Ertaylan
- Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| | - David van Dijk
- Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Humboldt-Universität Berlin, Berlin, Germany
| | - Peter Sloot
- Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
HIV-1 Nef protein expression in human CD34+ progenitors impairs the differentiation of an early T/NK cell precursor. Virology 2008; 377:207-15. [PMID: 18555888 DOI: 10.1016/j.virol.2008.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 12/30/2022]
Abstract
HIV-1 impairs the production of T cells, through mechanisms that are still unknown. Here, we investigated the effect of the expression of HIV-1 Nef on the T-cell potential of human hematopoietic CD34(+) precursors. Those progenitors were transduced by using lentiviral vectors expressing Nef and cultured on OP9-DL1 cells allowing the differentiation of T cell from human hematopoietic precursors. We demonstrate that Nef impairs the generation of a CD3epsilon(+)CD5(+) CD1a(+) precursor stage that has initiated a D-J rearrangement of the TCRbeta locus. Onward stages of T-cell development were also affected with a quantitative reduction of CD4(+) intraCD3epsilon(+) Immature single positive cells (ISP), Double Positive (DP) CD4(+)CD8(+) TCRalphabeta T cells and CD56(+) NK cells. But B cell production was not affected. Limiting dilution analyses demonstrated a significant reduction in the frequency of T/NK progenitors among Nef-expressing CD34(+) cells. Altogether, these data demonstrate that Nef interferes with the differentiation of a primitive lymphoid human precursor with a T/NK potential.
Collapse
|
10
|
Kirchhoff F, Silvestri G. Is Nef the elusive cause of HIV-associated hematopoietic dysfunction? J Clin Invest 2008; 118:1622-5. [PMID: 18431512 DOI: 10.1172/jci35487] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
HIV-associated hematological abnormalities involve all lineages of blood cells, thus implying that the virus impairs the function of early HSCs. However, the underlying mechanisms of this defect are unknown, particularly since HSCs are largely resistant to HIV-1 infection. In this issue of the JCI, Prost and colleagues show that the viral accessory protein Negative factor (Nef) plays a potentially critical role in the pathogenesis of HIV/SIV-associated hematopoietic dysfunction by affecting the clonogenic potential of HSCs (see the related article beginning on page 1765). Soluble Nef induces PPARgamma in uninfected HSCs, thereby suppressing the expression of STAT5A and STAT5B, two factors necessary for proper HSC function. The identification of this novel activity of extracellular Nef defines a new mechanism of HIV/SIV pathogenesis and suggests that approaches aimed at increasing STAT5A and STAT5B expression may be considered in HIV-infected individuals with prominent hematological abnormalities. The results also raise the question of whether dysregulation of hematopoiesis by extracellular Nef plays a role in the development of T cell immunodeficiency and the high levels of chronic immune activation associated with AIDS.
Collapse
|
11
|
Redd AD, Avalos A, Essex M. Infection of hematopoietic progenitor cells by HIV-1 subtype C, and its association with anemia in southern Africa. Blood 2007; 110:3143-9. [PMID: 17693583 PMCID: PMC2200905 DOI: 10.1182/blood-2007-04-086314] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reports from southern Africa, an area in which human immunodeficiency virus type 1 (HIV-1) infection is caused almost exclusively by subtype C (HIV-1C), have shown increased rates of anemia in HIV-infected populations compared with similar acquired immunodeficiency syndrome (AIDS) patients in the United States, an area predominantly infected with subtype B (HIV-1B). Recent findings by our group demonstrated a direct association between HIV-1 infection and hematopoietic progenitor cell health in Botswana. Therefore, using a single-colony infection assay and quantitative proviral analysis, we examined whether HIV-1C could infect hematopoietic progenitor cells (HPCs) and whether this phenotype was associated with the higher rates of anemia found in southern Africa. The results show that a significant number of HIV-1C, but not HIV-1B, isolates can infect HPCs in vitro (P < .05). In addition, a portion of HIV-1C-positive Africans had infected progenitor cell populations in vivo, which was associated with higher rates of anemia in these patients (P < .05). This represents a difference in cell tropism between 2 geographically separate and distinct HIV-1 subtypes. The association of this hematotropic phenotype with higher rates of anemia should be considered when examining anti-HIV drug treatment regimens in HIV-1C-predominant areas, such as southern Africa.
Collapse
Affiliation(s)
- Andrew D Redd
- Department of Immunology and Infectious Diseases, Harvard School of Public Health AIDS Initiative, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
12
|
Redd AD, Avalos A, Phiri K, Essex M. Effects of HIV type 1 infection on hematopoiesis in Botswana. AIDS Res Hum Retroviruses 2007; 23:996-1003. [PMID: 17725416 DOI: 10.1089/aid.2006.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical observations suggest that HIV-1 infection causes higher anemia rates in patients in southern Africa than in those in the United States. To explore this difference we performed a cross-sectional exploratory study on the effect of HIV-1 infection on hematopoiesis in Botswana by examining hematological presentation, HIV disease state, hematopoietic progenitor cell number, and circulating viral levels in HIV-infected patients and HIV-uninfected controls. We found significant associations between CD34(+) and CD4(+) cell counts in HIV-positive patients. Significant relationships were also seen between the CD34(+) CD4(+) cell population and hemoglobin levels, as well as colony-forming ability. These associations, however, were not seen in uninfected controls. Circulating viral p24 levels were found to correlate significantly with CD34(+) cell count, CD34(+) CD4(+) cell count, and colony-forming ability. These results demonstrate a direct association between HIV-1 infection in southern Africa and hematopoietic progenitor cell health.
Collapse
Affiliation(s)
- Andrew D Redd
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
13
|
Bortolin MT, Simonelli C, Zanussi S, Pratesi C, Bidoli E, Rupolo M, Berretta M, Tedeschi R, De Paoli P. Effects on virological and immunological parameters during CD34 mobilization in HIV patients with lymphoma. Am J Hematol 2006; 81:800-2. [PMID: 16838324 DOI: 10.1002/ajh.20610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of CD34 mobilization with chemotherapy and G-CSF administration were evaluated in 13 HIV-positive patients with relapsed lymphomas and low CD4 counts. After mobilization, CD4+ cells increased significantly while HIV-RNA and integrated HIV-DNA showed no increases. G-CSF led to an increase of CD4+ cells with limited effects on HIV replication.
Collapse
Affiliation(s)
- Maria Teresa Bortolin
- Microbiology, Immunology and Virology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Scadden DT, Muse VV, Hasserjian RP. Case records of the Massachusetts General Hospital. Case 30-2006. A 41-year-old man with dyspnea, fever, and lymphadenopathy. N Engl J Med 2006; 355:1358-68. [PMID: 17005954 DOI: 10.1056/nejmcpc069021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- David T Scadden
- Department of Hematology-Oncology, Massachusetts General Hospital, USA
| | | | | |
Collapse
|
15
|
Trajcevski S, Solly SK, Frisén C, Trenado A, Cosset FL, Klatzmann D. Characterization of a semi-replicative gene delivery system allowing propagation of complementary defective retroviral vectors. J Gene Med 2005; 7:276-87. [PMID: 15515136 DOI: 10.1002/jgm.663] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recently, several cancer gene therapy studies have shown that replication-competent retroviral vectors represent a major improvement over replication-defective ones in terms of transgene propagation efficiency. However, this positive effect is somewhat spoiled by the increased risk of dissemination and oncogenesis that replication-competent retroviral vectors entail. To enhance both their integral safety and their transgene capacity, we developed a semi-replication-competent retroviral vector system. METHODS The semi-replication-competent retroviral vector system is based on two transcomplementing replication-defective retroviral vectors termed gag-pol vector (GPv) and env vector (Ev). Vector propagation was monitored in vitro and in solid tumors in vivo, using different reporter transgenes for GPv and Ev. Systemic vector dissemination and leukemogenesis was assessed by direct intravenous vector injection and subsequent bone marrow transplantation, in MLV-sensitive mice. RESULTS In vitro and in vivo the semi-replication-competent retroviral vectors propagate transgenes almost as efficiently as replication-competent ones. The semi-replication-competent retroviral vector system does not lead to detectable dissemination or leukemogenesis as does the replication-competent vector or the parental virus. Additionally, the vector duo allows co-propagation of different transgenes as well as mobilization of a third replication-defective vector. CONCLUSIONS This study is an initial proof of principle for the use of complementary retroviral vectors to deliver and propagate transgenes in vitro and in solid tumors in vivo, but with reduced pathogenicity compared to its parental virus. In-between replication-defective and replication-competent retroviral vectors, this semi-replicative system offers good grounds for its application in in vitro studies and allows envisioning its further development for cancer gene therapy.
Collapse
Affiliation(s)
- Stéphane Trajcevski
- Laboratoire de biologie et thérapeutiques des pathologies immunitaires, CNRS UMR7087, Université Pierre et Marie Curie, Groupe hospitalier Pitié-Salpêtrière, 83 boulevard de l'hôpital, 75651 Paris cedex 13, France
| | | | | | | | | | | |
Collapse
|