1
|
Coronel-Meneses D, Sánchez-Trasviña C, Ratera I, Mayolo-Deloisa K. Strategies for surface coatings of implantable cardiac medical devices. Front Bioeng Biotechnol 2023; 11:1173260. [PMID: 37256118 PMCID: PMC10225971 DOI: 10.3389/fbioe.2023.1173260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Cardiac medical devices (CMDs) are required when the patient's cardiac capacity or activity is compromised. To guarantee its correct functionality, the building materials in the development of CMDs must focus on several fundamental properties such as strength, stiffness, rigidity, corrosion resistance, etc. The challenge is more significant because CMDs are generally built with at least one metallic and one polymeric part. However, not only the properties of the materials need to be taken into consideration. The biocompatibility of the materials represents one of the major causes of the success of CMDs in the short and long term. Otherwise, the material will lead to several problems of hemocompatibility (e.g., protein adsorption, platelet aggregation, thrombus formation, bacterial infection, and finally, the rejection of the CMDs). To enhance the hemocompatibility of selected materials, surface modification represents a suitable solution. The surface modification involves the attachment of chemical compounds or bioactive compounds to the surface of the material. These coatings interact with the blood and avoid hemocompatibility and infection issues. This work reviews two main topics: 1) the materials employed in developing CMDs and their key characteristics, and 2) the surface modifications reported in the literature, clinical trials, and those that have reached the market. With the aim of providing to the research community, considerations regarding the choice of materials for CMDs, together with the advantages and disadvantages of the surface modifications and the limitations of the studies performed.
Collapse
Affiliation(s)
- David Coronel-Meneses
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Calef Sánchez-Trasviña
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Imma Ratera
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Instituto de Salud Carlos IIIBellaterra, Spain
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Spain
| |
Collapse
|
2
|
Kuchinka J, Willems C, Telyshev DV, Groth T. Control of Blood Coagulation by Hemocompatible Material Surfaces-A Review. Bioengineering (Basel) 2021; 8:215. [PMID: 34940368 PMCID: PMC8698751 DOI: 10.3390/bioengineering8120215] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Hemocompatibility of biomaterials in contact with the blood of patients is a prerequisite for the short- and long-term applications of medical devices such as cardiovascular stents, artificial heart valves, ventricular assist devices, catheters, blood linings and extracorporeal devices such as artificial kidneys (hemodialysis), extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass. Although lower blood compatibility of materials and devices can be handled with systemic anticoagulation, its side effects, such as an increased bleeding risk, make materials that have a better hemocompatibility highly desirable, particularly in long-term applications. This review provides a short overview on the basic mechanisms of blood coagulation including plasmatic coagulation and blood platelets, as well as the activation of the complement system. Furthermore, a survey on concepts for tailoring the blood response of biomaterials to improve the hemocompatibility of medical devices is given which covers different approaches that either inhibit interaction of material surfaces with blood components completely or control the response of the coagulation system, blood platelets and leukocytes.
Collapse
Affiliation(s)
- Janna Kuchinka
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, 124498 Moscow, Russia;
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991 Moscow, Russia
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991 Moscow, Russia
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Cardona A, Iacovacci V, Mazzocchi T, Menciassi A, Ricotti L. Novel Nanostructured Coating on PDMS Substrates Featuring High Resistance to Urine. ACS APPLIED BIO MATERIALS 2018; 2:255-265. [DOI: 10.1021/acsabm.8b00586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Angelo Cardona
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Veronica Iacovacci
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Tommaso Mazzocchi
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Arianna Menciassi
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Leonardo Ricotti
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| |
Collapse
|
4
|
Nistor PA, May PW. Diamond thin films: giving biomedical applications a new shine. J R Soc Interface 2017; 14:20170382. [PMID: 28931637 PMCID: PMC5636274 DOI: 10.1098/rsif.2017.0382] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/29/2017] [Indexed: 01/10/2023] Open
Abstract
Progress made in the last two decades in chemical vapour deposition technology has enabled the production of inexpensive, high-quality coatings made from diamond to become a scientific and commercial reality. Two properties of diamond make it a highly desirable candidate material for biomedical applications: first, it is bioinert, meaning that there is minimal immune response when diamond is implanted into the body, and second, its electrical conductivity can be altered in a controlled manner, from insulating to near-metallic. In vitro, diamond can be used as a substrate upon which a range of biological cells can be cultured. In vivo, diamond thin films have been proposed as coatings for implants and prostheses. Here, we review a large body of data regarding the use of diamond substrates for in vitro cell culture. We also detail more recent work exploring diamond-coated implants with the main targets being bone and neural tissue. We conclude that diamond emerges as one of the major new biomaterials of the twenty-first century that could shape the way medical treatment will be performed, especially when invasive procedures are required.
Collapse
Affiliation(s)
- P A Nistor
- Regenerative Medicine Laboratory, University of Bristol, Bristol BS8 1TD, UK
| | - P W May
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
5
|
Sweitzer R, Scholz C, Montezuma S, Rizzo JF. Evaluation of Subretinal Implants Coated with Amorphous Aluminum Oxide and Diamond-like Carbon. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506060202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Retinal prostheses may be used to support patients suffering from age-related macular degeneration (AMD) or retinitis pigmentosa (RP). A hermetic encapsulation of the poly(imide) (PI)-based prosthesis is important in order to prevent the leakage of water and ions into the electric circuitry embedded in the poly(imide) matrix. The deposition of amorphous aluminum oxide (by sputtering) and diamond like carbon (by pulsed laser ablation) were made for applications in retinal prostheses. The thin films obtained were characterized for composition, thickness, adhesion and smoothness by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy, profilometry and light microscopy. Biocompatibility was tested in vivo by implanting coated specimen subretinally in the eye of Yucatan pigs. While amorphous aluminum oxide is more readily deposited with sufficient adhesion quality, superior biocompatibility behavior was shown by diamond-like carbon. Amorphous aluminum oxide had more adverse effects and caused more severe damage to the retinal tissue.
Collapse
Affiliation(s)
- Robyn Sweitzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899
| | - Carmen Scholz
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, and VA Center for Innovative Visual Rehabilitation, Boston, MA
| | - Sandra Montezuma
- Department of Ophthalmology, Massachusetts Eye&Ear Infirmary, Boston, MA
| | - Joseph F. Rizzo
- Department of Ophthalmology, Massachusetts Eye&Ear Infirmary, Boston, MA and VA Center for Innovative Visual Rehabilitation, Boston, MA
| |
Collapse
|
6
|
A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers (Basel) 2014. [DOI: 10.3390/polym6092309] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Salahas A, Vrahatis A, Karabinos I, Antonellis I, Ifantis G, Gavaliatsis I, Anthopoulos P, Tavernarakis A. Success, safety, and efficacy of implantation of diamond-like carbon-coated stents. Angiology 2007; 58:203-10. [PMID: 17495270 DOI: 10.1177/0003319707300360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate safety and clinically defined efficacy of the implantation of a new stent coated with diamond-like carbon (DLC stent), in a group of patients who underwent percutaneous transluminal coronary revascularization procedures in two hemodynamic centers. This study was an observational prospective nonrandomized study that included 196 patients with a total of 236 significant de novo atheromatous coronary lesions, in which 245 DLC stents were implanted. The primary end point of this study was a composite of major cardiovascular events (death or acute myocardial infarction with or without Q) and need for target lesion revascularization (TLR) or target vessel revascularization (TVR) procedure during the first 48 hours and at 6 months after the DLC stent implantation. All patients had a myocardial perfusion imaging study with Tl(201) at 6 months after DLC stent implantation. Only patients with a myocardial perfusion imaging study indicative of myocardial ischemia were then submitted for a new coronary angiogram. No major cardiovascular event or emergency TVR occurred during hospitalization. At 6-month follow-up no major cardiovascular event occurred either, whereas the rate for TLR was 5.6% and that for TVR was 7.65%. This preliminary study provides enough clinical evidence that implantation of intracoronary bare metal stents coated with diamond-like carbon is associated with high success rates, safety, and efficacy, both in the hospital and at the 6-month follow-up after the interventional procedure.
Collapse
|
8
|
Yamanaka H, Rosenberg G, Weiss WJ, Snyder AJ, Zapanta CM, Siedlecki CA. Short-term in vivo studies of surface thrombosis in a left ventricular assist system. ASAIO J 2006; 52:257-65. [PMID: 16760713 DOI: 10.1097/01.mat.0000219067.19482.1e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Thrombosis continues to be a major adverse and at times fatal event in patients with left ventricular assist systems (LVAS). To assess acute thrombosis in an LVAS, multiscale analysis of surface thrombosis was performed on LVAS blood sacs retrieved after implantation in seven calves for 3 days. Two study groups were evaluated: One group was given heparin and warfarin sodium throughout the study; the second received no postoperative anticoagulation. On explantation, the blood sacs were examined for macroscopic thrombi; microscale thrombosis was assessed with the use of scanning electron microscopy. Macroscopic thrombi about 1 mm in diameter were seen in all sacs from both groups. Although macroscopic thrombi occurred in all sac regions, scanning electron microscopy revealed differences in microscale topography between the port regions and the other sac regions. The primary structure was spherical particles approximately 400 nm in diameter, found to occur at a lower density in the ports. In contrast, the highest densities of proteinaceous rough topography and fibrillar structures consistent with fibrin clot were seen in the port regions. The density distribution of these structures was different in the eight sac regions, and anticoagulation therapy appeared to have no effect on surface thrombosis in these short-term LVAS implants.
Collapse
Affiliation(s)
- Hanako Yamanaka
- Department of Bioengineering, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
9
|
Yamanaka H, Rosenberg G, Weiss WJ, Snyder AJ, Zapanta CM, Siedlecki CA. Multiscale analysis of surface thrombosis in vivo in a left ventricular assist system. ASAIO J 2006; 51:567-77. [PMID: 16322720 DOI: 10.1097/01.mat.0000181707.06225.a0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Thrombosis limits the success of ventricular assist devices as the demand for alternatives to heart transplants is increasing. This study mapped the occurrence of thrombosis in a left ventricular assist system (LVAS) to better understand the biologic response to these devices. Nine calves divided into two groups were implanted with LVAS for 28 to 30 days. One group was anticoagulated, whereas the second group received no long-term anticoagulation. The blood-contacting poly(urethane urea) surfaces of blood sacs in the LVAS were examined for macroscopic thrombi upon retrieval. The sac was partitioned into eight sections and imaged for thrombi by scanning electron microscopy. No difference in thrombosis was observed macroscopically between the groups. Anticoagulation appeared to result in reduction of platelet-like structures, but the presence of fibrin-like structures remained similar between groups. Regional differences correlating with high and low shear stress regions were observed. At the macroscale, fewer thrombi were recorded in the high shear stress ports. At the microscale, features resembling fibrin were observed primarily in the ports and platelet-like features were common in lower shear stress regions. These variations in thrombosis with anticoagulation and location are likely due to varied fluid dynamics within the LVAS blood sac.
Collapse
Affiliation(s)
- Hanako Yamanaka
- Department of Bioengineering, The Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ohgoe Y, Takada S, Hirakuri KK, Tsuchimoto K, Homma A, Miyamatsu T, Saitou T, Friedbacher G, Tatsumi E, Taenaka Y, Fukui Y. Investigating the Functionality of Diamond-Like Carbon Films on an Artificial Heart Diaphragm. ASAIO J 2003; 49:701-7. [PMID: 14655738 DOI: 10.1097/01.mat.0000093970.59796.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this study, the authors used diamond-like carbon film to coat the ellipsoidal diaphragm (polyurethane elastomer) of artificial hearts. The purpose of such coatings is to prevent the penetration of hydraulic silicone oil and blood through the diaphragm. To attach diamond-like carbon film uniformly on the diaphragm, the authors developed a special electrode. In estimating the uniformity of the diamond-like carbon film, the thickness was measured using a scanning electron microscope, and the characteristics of the diamond-like carbon film was investigated using infrared spectroscopy, Ar-laser Raman spectrophotometer, and x-ray photoelectron spectrometer. Also, to estimate the penetration of silicone oil through the diaphragm, in vitro testing was operated by alternating the pressure of silicone oil for 20 days. The authors were able to successfully attach uniform deposition of diamond-like carbon film on the ellipsoidal diaphragm. In this in vitro test, diamond-like carbon film was proven to have good stability. The amount of silicone oil penetration was improved by one-third using the diamond-like carbon film coating compared with an uncoated diaphragm. It is expected that through the use of the diamond-like carbon film, the dynamic compatibility of an artificial heart diaphragm will increase.
Collapse
Affiliation(s)
- Yasuharu Ohgoe
- Department of Electronic & Computer Engineering, Faculty of Science & Engineering, Tokyo Denki University, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang P, Huang N, Leng YX, Chen JY, Fu RKY, Kwok SCH, Leng Y, Chu PK. Activation of platelets adhered on amorphous hydrogenated carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition (PIII-D). Biomaterials 2003; 24:2821-9. [PMID: 12742720 DOI: 10.1016/s0142-9612(03)00091-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amorphous carbon films have attracted much attention recently due to their good biocompatibility. Diamond-like carbon (DLC), one form of amorphous carbon that is widely used in many kinds of industries, has been proposed for use in blood contacting medical devices. However, the blood coagulation mechanism on DLC in a biological environment is not well understood. Platelet adhesion and activation are crucial events in the interactions between blood and the materials as they influence the subsequent formation of thrombus. In this work, the behavior of platelets adhered onto hydrogenated amorphous carbon films (a-C:H) is investigated. Hydrogenated amorphous carbon films with different hydrogen contents, structures, and chemical bonds were fabricated at room temperature using plasma immersion ion implantation-deposition (PIII-D). The wettability of the films was investigated by contact angle measurements using several common liquids. Platelet adhesion experiments were conducted to examine the interaction of blood with the films in vitro and the activation of adherent platelets. The results show that the behavior of the platelets adhered on the a-C:H films is influenced by their structure and chemical bond, and it appears that protein interaction plays a key role in the activation of the adherent platelets.
Collapse
Affiliation(s)
- P Yang
- Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon, China
| | | | | | | | | | | | | | | |
Collapse
|