1
|
Zhang X, Wang Q, Cui F, Wu X, Zhang C. Mendelian randomization analysis does not reveal a causal influence between keratoconus and three major mental disorders. Front Psychiatry 2024; 15:1370670. [PMID: 39234617 PMCID: PMC11371735 DOI: 10.3389/fpsyt.2024.1370670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Background Observational studies have suggested at a possible link between keratoconus (KC) and various mental disorders, but the exact direction of causation in these associations remains unclear. This study aims to investigate the potential causal link between KC and three prominent mental conditions: Anxiety, Depression, and Schizophrenia. Methods Using instrumental variables identified from Genome-wide association study (GWAS) data of European individuals, we conducted bidirectional two-sample Mendelian Randomization (MR) analyses to explore potential causal relationships between KC and the three major mental disorders. We primarily employed the Inverse-Variance Weighted (IVW) method to evaluate causality. In addition, we performed four supplementary MR methods (MR-Egger, Weighted Median, Simple Mode, and Weighted Mode). Furthermore, we conducted various sensitivity analyses to assess heterogeneity, horizontal pleiotropy, and result stability. Results Our findings did not reveal any concrete evidence of a causal link between KC and the three major mental disorders, namely anxiety, depression, and schizophrenia [anxiety: odds ratio (OR)=0.997, 95% confidence interval (CI)=0.988-1.008, p = 0.621; depression: OR=1.008, 95% CI=0.999-1.017, p = 0.084; schizophrenia: OR=1.002, 95% CI= 0.984-1.020, p = 0.840]. Similarly, the three major mental disorders were not caustically associated with KC [anxiety: OR=1.014, 95% CI=0.635-1.620, p = 0.953; depression: OR=1.109, 95% CI= 0.749-1.643, p = 0.604; schizophrenia: OR= 0.969, 95% CI= 0.884-1.062, p = 0.497]. The sensitivity analyses indicated that the results remained robust, with no signs of pleiotropy or heterogeneity. Conclusions Our study does not support a genetically determined significant causal connection between KC and the three major mental disorders. The increased occurrence of mental disorders observed in KC patients in observational reports likely arises from factors that can be modified. Further research is warranted to unveil the underlying mechanisms behind the associations observed in observational studies.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Ophthalmology, The Jinan Second People's Hospital, Jinan, Shandong, China
| | - Qiaoling Wang
- Department of Ophthalmology, The Jinan Second People's Hospital, Jinan, Shandong, China
| | - Fenghua Cui
- Department of Ophthalmology, The Jinan Second People's Hospital, Jinan, Shandong, China
| | - Xuelian Wu
- Department of Ophthalmology, The Jinan Second People's Hospital, Jinan, Shandong, China
| | - Chenming Zhang
- Department of Ophthalmology, The Jinan Second People's Hospital, Jinan, Shandong, China
| |
Collapse
|
2
|
Liu R, Ma R, Yan X. Balanced activation of Nrf-2/ARE mediates the protective effect of sulforaphane on keratoconus in the cell mechanical microenvironment. Sci Rep 2024; 14:6937. [PMID: 38521828 PMCID: PMC10960822 DOI: 10.1038/s41598-024-57596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Keratoconus (KC) is a progressive degenerative disease that usually occurs bilaterally and is characterized by corneal thinning and apical protrusion of the cornea. Oxidative stress is an indicator of the accumulation of reactive oxygen species (ROS), and KC keratocytes exhibit increased ROS production compared with that of normal keratocytes. Therefore, oxidative stress in KC keratocytes may play a major role in the development and progression of KC. Here, we investigated the protective effect of sulforaphane (SF) antioxidants using a hydrogel-simulated model of the cell mechanical microenvironment of KC. The stiffness of the KC matrix microenvironment in vitro was 16.70 kPa and the stiffness of the normal matrix microenvironment was 34.88 kPa. Human keratocytes (HKs) were cultured for 24 h before observation or drug treatment with H2O2 in the presence or absence of SF. The levels of oxidative stress, nuclear factor E2-related factor 2 (Nrf-2) and antioxidant response element (ARE) were detected. The high-stress state of HKs in the mechanical microenvironment of KC cells compensates for the activation of the Nrf-2/ARE signaling pathway. H2O2 leads to increased oxidative stress and decreased levels of antioxidant proteins in KC. In summary, SF can reduce endogenous and exogenous oxidative stress and increase the antioxidant capacity of cells.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, 450003, People's Republic of China
| | - Ruojun Ma
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, 450003, People's Republic of China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
3
|
Melcher S, Zimmerer C, Galli R, Golde J, Herber R, Raiskup F, Koch E, Steiner G. Analysis of riboflavin/ultraviolet a corneal cross-linking by molecular spectroscopy. Heliyon 2023; 9:e13206. [PMID: 36747519 PMCID: PMC9898066 DOI: 10.1016/j.heliyon.2023.e13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Corneal cross-linking (CXL) with riboflavin and ultraviolet A light is a therapeutic procedure to restore the mechanical stability of corneal tissue. The treatment method is applied to pathological tissue, such as keratoconus and induces the formation of new cross-links. At present, the molecular mechanisms of induced cross-linking are still not known exactly. In this study, we investigated molecular alterations within porcine cornea tissue after treatment with riboflavin and ultraviolet A light by surface enhanced Raman spectroscopy (SERS). For that purpose, after CXL treatment a thin silver layer was vapor-deposited onto cornea flaps. To explore molecular alterations induced by the photochemical process hierarchical cluster analysis (HCA) was used. The detailed analysis of SERS spectra reveals that there is no general change in collagen secondary structure while modifications on amino acid side chains are the most dominant outcome. The formation of secondary and aromatic amine groups as well as methylene and carbonyl groups were observed. Even though successful cross-linking could not be registered in all treated samples, Raman signals of newly formed chemical groups are already present in riboflavin only treated corneas.
Collapse
Affiliation(s)
- Steven Melcher
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany,Corresponding author.
| | - Cordelia Zimmerer
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Jonas Golde
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Robert Herber
- Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Frederik Raiskup
- Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
4
|
Salman A, Darwish T, Badla AA, Askar M, Al-Rufayie M, Ghabra M, Haddeh Y, Kailani O, Shaaban R, Hajjo S, Hasan H, Ali A. Prevalence of Keratoconus and Keratoconus Suspect among Patients Seeking Refractive Surgery in Syria. Middle East Afr J Ophthalmol 2022; 29:181-185. [PMID: 38162559 PMCID: PMC10754103 DOI: 10.4103/meajo.meajo_50_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE The purpose of this study was to determine the prevalence of keratoconus (KC) and keratoconus suspect (KCS) among patients seeking refractive surgery in Syria. METHODS This is a retrospective multicenter screening study. The study was conducted in Damascus University, Tishreen University, and Tartous Specialist Eye Center (a private center). Data were collected from refractive surgery candidates referred for preoperative evaluation before laser in situ keratomileusis, photorefractive keratectomy, intrastromal corneal rings, and phakic intraocular lens implantation. Corneal parameters were obtained by Scheimpflug-Placido tomography, Sirius (CSO, Italy). RESULTS A total of 1479 patients were included in this analysis. The prevalence rates of KC and KCS were 18.19% (269/1479) and 13.52% (200/1479), respectively. In addition, patients with KC were found to have higher percentages of eye rubbing and astigmatism than suspect and normal (P < 0.0001). CONCLUSION High prevalence rate of KC was found among patients seeking refractive surgery in Syria. Although this study was carried out on a highly selective population, it may reflect a high prevalence rate in a general population in Syria.
Collapse
Affiliation(s)
| | - Taym Darwish
- Department of Ophthalmology, Tishreen University, Lattakia, Syria
| | - Abdul Aziz Badla
- Department of Ophthalmology, Sulaiman Al-Habib Hospital, Dubai, United Arab Emirates
| | - Mohammad Askar
- Department of Ophthalmology, Damascus University, Damascus, Syria
| | | | - Marwan Ghabra
- Department of Ophthalmology, Whipps Cross University Hospital, Leytonstone, London, UK
| | - Yusra Haddeh
- Department of Ophthalmology, Damascus University, Damascus, Syria
| | - Obeda Kailani
- Department of Ophthalmology, King’s College Hospital NHS Foundation Trust, London, UK
| | - Rafea Shaaban
- Department of Ophthalmology, Tartous University, Tartous, Syria
| | - Samer Hajjo
- Department of Ophthalmology, Damascus University, Damascus, Syria
| | - Hiba Hasan
- Department of Ophthalmology, Tishreen University, Lattakia, Syria
| | - Ali Ali
- Department of Ophthalmology, Tishreen University, Lattakia, Syria
| |
Collapse
|
5
|
Varela-Fernández R, García-Otero X, Díaz-Tomé V, Regueiro U, López-López M, González-Barcia M, Isabel Lema M, Otero-Espinar FJ. Mucoadhesive PLGA Nanospheres and Nanocapsules for Lactoferrin Controlled Ocular Delivery. Pharmaceutics 2022; 14:pharmaceutics14040799. [PMID: 35456633 PMCID: PMC9029159 DOI: 10.3390/pharmaceutics14040799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background: the present work describes the preparation, characterization and optimization of eight types of PLGA-based nanosystems (nanospheres and nanocapsules) as innovative mucoadhesive drug delivery systems of lactoferrin, in order to achieve a preclinical consistent base as an alternative pharmacological treatment to different ocular syndromes and diseases. Methods: All different nanoparticles were prepared via two modified nanoprecipitation techniques, using a three-component mixture of drug/polymer/surfactant (Lf/PLGA/Poloxamer), as a way to overcome the inherent limitations of conventional PLGA NPs. These modified polymeric nanocarriers, intended for topical ophthalmic administration, were subjected to in vitro characterization, surface modification and in vitro and in vivo assessments. Results: An appropriate size range, uniform size distribution and negative ζ potential values were obtained for all types of formulations. Lactoferrin could be effectively included into all types of nanoparticles with appropriate encapsulation efficiency and loading capacity values. A greater, extended, and controlled delivery of Lf from the polymeric matrix was observed through the in vitro release studies. No instability or cytotoxicity was proved for all the formulations by means of organotypic models. Additionally, mucoadhesive in vitro and in vivo experiments show a significant increase in the residence time of the nanoparticles in the eye surface. Conclusions: all types of prepared PLGA nanoparticles might be a potential alternative for the topical ophthalmic administration of lactoferrin.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Molecular Imaging Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
| | - Uxía Regueiro
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Maite López-López
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Miguel González-Barcia
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Isabel Lema
- Department of Surgery and Medical-Surgical Specialties, Ophthalmology Area, University of Santiago de Compostela (USC), Campus Vida, 15706 Santiago de Compostela, Spain
- Correspondence: (M.I.L.); (F.J.O.-E.)
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Institute of Materials Imatus, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain
- Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (M.I.L.); (F.J.O.-E.)
| |
Collapse
|
6
|
Lasagni Vitar RM, Bonelli F, Rama P, Ferrari G. Nutritional and Metabolic Imbalance in Keratoconus. Nutrients 2022; 14:nu14040913. [PMID: 35215563 PMCID: PMC8876314 DOI: 10.3390/nu14040913] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Keratoconus (KC) is a progressive corneal degeneration characterized by structural changes consisting of progressive thinning and steepening of the cornea. These alterations result in biomechanical weakening and, clinically, in vision loss. While the etiology of KC has been the object of study for over a century, no single agent has been found. Recent reviews suggest that KC is a multifactorial disease that is associated with a wide variety of genetic and environmental factors. While KC is typically considered a disease of the cornea, associations with systemic conditions have been well described over the years. In particular, nutritional and metabolic imbalance, such as the redox status, hormones, metabolites, and micronutrients (vitamins and metal ions), can deeply influence KC initiation and progression. In this paper, we comprehensively review the different nutritional (vitamins and minerals) and metabolic (hormones and metabolites) factors that are altered in KC, discussing their possible implication in the pathophysiology of the disease.
Collapse
Affiliation(s)
| | | | | | - Giulio Ferrari
- Correspondence: ; Tel.: +39-02-26436186; Fax: +39-02-26436164
| |
Collapse
|
7
|
Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms23031255. [PMID: 35163178 PMCID: PMC8835903 DOI: 10.3390/ijms23031255] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is an important pathomechanism found in numerous ocular degenerative diseases. To provide a better understanding of the mechanism and treatment of oxidant/antioxidant imbalance-induced ocular diseases, this article summarizes and provides updates on the relevant research. We review the oxidative damage (e.g., lipid peroxidation, DNA lesions, autophagy, and apoptosis) that occurs in different areas of the eye (e.g., cornea, anterior chamber, lens, retina, and optic nerve). We then introduce the antioxidant mechanisms present in the eye, as well as the ocular diseases that occur as a result of antioxidant imbalances (e.g., keratoconus, cataracts, age-related macular degeneration, and glaucoma), the relevant antioxidant biomarkers, and the potential of predictive diagnostics. Finally, we discuss natural antioxidant therapies for oxidative stress-related ocular diseases.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
| | - Yen-Ning Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yu-Ting Tsao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30012, Taiwan;
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 7855); Fax: +886-3-328-7798
| |
Collapse
|
8
|
Navel V, Malecaze J, Pereira B, Baker JS, Malecaze F, Sapin V, Chiambaretta F, Dutheil F. Oxidative and antioxidative stress markers in keratoconus: a systematic review and meta-analysis. Acta Ophthalmol 2021; 99:e777-e794. [PMID: 33354927 DOI: 10.1111/aos.14714] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To conduct a systematic review and meta-analysis on the levels of oxidative stress markers and antioxidants in keratoconus compared to healthy subject. METHOD The PubMed, Cochrane Library, Embase, Science Direct and Google Scholar databases were searched on 1st June 2020 for studies reporting oxidative and antioxidative stress markers in keratoconus and healthy controls. Main meta-analysis was stratified by type of biomarkers, type of samples (tears, cornea, aqueous humour and blood) and type of corneal samples (stromal cells, epithelium and endothelium). RESULTS We included 36 articles, for a total of 1328 keratoconus patients and 1208 healthy controls. There is an overall increase in oxidative stress markers in keratoconus compared with healthy controls (standard mean deviation (SMD) = 0.94, 95% confidence interval (95% CI) 0.55-1.33), with a significant increase in reactive oxygen and nitrogen species (1.09, 0.41-1.78) and malondialdehyde (1.78, 0.83-2.73). There is an overall decrease in antioxidants in keratoconus compared with healthy controls (-0.63, -0.89 to -0.36), with a significant decrease in total antioxidant capacity/status (-1.65, -2.88 to -0.43), aldehyde/NADPH dehydrogenase (-0.77, -1.38 to -0.17), lactoferrin/transferrin/albumin (-1.92, -2.96 to -0.89) and selenium/zinc (-1.42, -2.23 to -0.61). Oxidative stress markers were higher in tears and in cornea of keratoconus than in aqueous humour, and antioxidants were decreased in tears, aqueous humour and blood without difference between sample type. Oxidative stress markers increased in stromal cells and antioxidants decreased in endothelium. CONCLUSION Oxidative stress markers and antioxidants were dysregulated in keratoconus, involving an imbalance of redox homeostasis in tears, cornea, aqueous humour and blood.
Collapse
Affiliation(s)
- Valentin Navel
- Ophthalmology CHU Clermont‐Ferrand University Hospital of Clermont‐Ferrand Clermont‐Ferrand France
- Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team CNRS UMR 6293 INSERM U1103 Université Clermont Auvergne Clermont‐Ferrand France
| | - Jean Malecaze
- Ophthalmology CHU Clermont‐Ferrand University Hospital of Clermont‐Ferrand Clermont‐Ferrand France
- Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team CNRS UMR 6293 INSERM U1103 Université Clermont Auvergne Clermont‐Ferrand France
| | - Bruno Pereira
- Clinical Research and Innovation Direction CHU Clermont–Ferrand University Hospital of Clermont Ferrand Clermont‐Ferrand France
| | - Julien S. Baker
- Department of Sport, Physical Education and Health Centre for Health and Exercise Science Research Hong Kong Baptist University Kowloon Tong Hong Kong
| | - François Malecaze
- Ophthalmology Department Pierre‐Paul Riquet Hospital University Hospital of Toulouse Toulouse France
| | - Vincent Sapin
- Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team CNRS UMR 6293 INSERM U1103 Université Clermont Auvergne Clermont‐Ferrand France
- Medical Biochemistry and Molecular Biology CHU Clermont‐Ferrand University Hospital of Clermont‐Ferrand Clermont‐Ferrand France
| | - Frédéric Chiambaretta
- Ophthalmology CHU Clermont‐Ferrand University Hospital of Clermont‐Ferrand Clermont‐Ferrand France
- Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team CNRS UMR 6293 INSERM U1103 Université Clermont Auvergne Clermont‐Ferrand France
| | - Frédéric Dutheil
- Preventive and Occupational Medicine CNRS, LaPSCo Physiological and Psychosocial Stress CHU Clermont‐Ferrand Université Clermont Auvergne University Hospital of Clermont‐Ferrand Clermont‐Ferrand France
| |
Collapse
|
9
|
Wisse RPL, Kuiper JJW, Radstake TRD, Broen JCA. Quantification of Double Stranded DNA Breaks and Telomere Length as Proxies for Corneal Damage and Replicative Stress in Human Keratoconus Corneas. Transl Vis Sci Technol 2019; 8:10. [PMID: 31372311 PMCID: PMC6660185 DOI: 10.1167/tvst.8.4.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose The pathogenesis of keratoconus (KC) is multifactorial, and associated with oxidative stress and subsequent DNA damage. We investigate differences in DNA damage and replicative stress in patients with KC, and in healthy and diseased controls. Methods We obtained 64 corneal buttons from 27 patients with KC after corneal transplant surgery, 21 with a decompensated graft (DG), and 16 healthy controls (HC). The amount of intact Alu elements per genome copy as measured by quantitative polymerase chain reaction (qPCR) was used to quantify intact DNA. Telomere length was measured as a proxy for replicative stress. In addition, telomerase reverse transcriptase (hTERT) gene expression level was assessed. Results Mean (± standard deviation [SD]) DNA damage was similar between the KC (5.56 ± 14.08), DG (3.16 ± 8.22), and HC (3.51 ± 6.66) groups (P = 0.807). No associations were found between DNA damage and patient age (P = 0.523), atopic constitution (P = 0.240), or contact lens wear (P = 0.393). Telomere length differed (P = 0.034), most notably in the KC group, and hTERT was not detected in any corneal sample. Three cross-linked (CXL) KC corneas did not contain significantly more DNA damage (×2.6, P = 0.750). Conclusions Based on these findings, differences in actual corneal DNA damage in KC could not be identified, and the longer telomere length in KC did not support replicative stress as a major etiologic factor in the pathogenesis of KC. Future longitudinal investigations on KC etiology should assess progressively early cases to better comprehend the cellular and molecular processes preceding the archetypical morphologic changes. Translational Relevance The standard treatment for progressive keratoconus promotes the crosslinking of collagen fibers through ultraviolet radiation and the subsequent formation of reactive oxygen species. Our study helps to underline the safety of this treatment approach.
Collapse
Affiliation(s)
- Robert P L Wisse
- Department of Ophthalmology, University Medical Center Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, The Netherlands.,Ophthalmo-Immunology group, Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, The Netherlands
| | - Timothy R D Radstake
- Department of Rheumatology & Clinical Immunology, Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, The Netherlands
| | - Jasper C A Broen
- Department of Rheumatology & Clinical Immunology, Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
10
|
Volatier TLA, Figueiredo FC, Connon CJ. Keratoconus at a Molecular Level: A Review. Anat Rec (Hoboken) 2019; 303:1680-1688. [DOI: 10.1002/ar.24090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Che J. Connon
- Institute of Genetic MedicineNewcastle University Newcastle upon Tyne UK
| |
Collapse
|
11
|
Loukovitis E, Sfakianakis K, Syrmakesi P, Tsotridou E, Orfanidou M, Bakaloudi DR, Stoila M, Kozei A, Koronis S, Zachariadis Z, Tranos P, Kozeis N, Balidis M, Gatzioufas Z, Fiska A, Anogeianakis G. Genetic Aspects of Keratoconus: A Literature Review Exploring Potential Genetic Contributions and Possible Genetic Relationships with Comorbidities. Ophthalmol Ther 2018; 7:263-292. [PMID: 30191404 PMCID: PMC6258591 DOI: 10.1007/s40123-018-0144-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Keratoconus (KC) is a complex, genetically heterogeneous, multifactorial degenerative disorder that is accompanied by corneal ectasia which usually progresses asymmetrically. With an incidence of approximately 1 per 2000 and 2 cases per 100,000 population presenting annually, KC follows an autosomal recessive or dominant pattern of inheritance and is, apparently, associated with genes that interact with environmental, genetic, and/or other factors. This is an important consideration in refractive surgery in the case of familial KC, given the association of KC with other genetic disorders and the imbalance between dizygotic twins. The present review attempts to identify the genetic loci contributing to the different KC clinical presentations and relate them to the common genetically determined comorbidities associated with KC. METHODS The PubMed, MEDLINE, Google Scholar, and GeneCards databases were screened for KC-related articles published in English between January 2006 and November 2017. Keyword combinations of "keratoconus," "risk factor(s)," "genetics," "genes," "genetic association(s)," and "cornea" were used. In total, 217 articles were retrieved and analyzed, with greater weight placed on the more recent literature. Further bibliographic research based on the 217 articles revealed another 124 relevant articles that were included in this review. Using the reviewed literature, an attempt was made to correlate genes and genetic risk factors with KC characteristics and genetically related comorbidities associated with KC based on genome-wide association studies, family-based linkage analysis, and candidate-gene approaches. RESULTS An association matrix between known KC-related genes and KC symptoms and/or clinical signs together with an association matrix between identified KC genes and genetically related KC comorbidities/syndromes were constructed. CONCLUSION Twenty-four genes were identified as potential contributors to KC and 49 KC-related comorbidities/syndromes were found. More than 85% of the known KC-related genes are involved in glaucoma, Down syndrome, connective tissue disorders, endothelial dystrophy, posterior polymorphous corneal dystrophy, and cataract.
Collapse
Affiliation(s)
| | - Konstantinos Sfakianakis
- Division of Surgical Anatomy, Laboratory of Anatomy, Medical School, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | - Panagiota Syrmakesi
- AHEPA University Hospital, Thessaloníki, Greece
- Ophthalmica Eye Institute, Thessaloníki, Greece
| | - Eleni Tsotridou
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Myrsini Orfanidou
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Dimitra Rafailia Bakaloudi
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Maria Stoila
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Athina Kozei
- Ophthalmica Eye Institute, Thessaloníki, Greece
- School of Pharmacology, University of Nicosia, Makedonitissis, Nicosia, Cyprus
| | | | | | | | | | | | - Zisis Gatzioufas
- Department of Ophthalmology, Cornea, Cataract and Refractive Surgery, University Hospital Basel, Basel, Switzerland
| | - Aliki Fiska
- Laboratory of Anatomy, Medical School, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | | |
Collapse
|
12
|
Roy S, Yadav S, Dasgupta T, Chawla S, Tandon R, Ghosh S. Interplay between hereditary and environmental factors to establish an in vitro disease model of keratoconus. Drug Discov Today 2018; 24:403-416. [PMID: 30408528 DOI: 10.1016/j.drudis.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/03/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
Abstract
Keratoconus (KC) is a bilateral corneal dystrophy and a multifactorial, multigenic disorder with an etiology involving a strong environmental component and complex inheritance patterns. The underlying pathophysiology of KC is poorly understood because of potential crosstalk between genetic-epigenetic variants possibly triggered by the environmental factors. Here, we decode the etiopathological basis of KC using genomic, transcriptomic, proteomic and metabolic approaches. The lack of relevant models that accurately imitate this condition has been particularly limiting in terms of the effective management of KC. Tissue-engineered in vitro models of KC could address this need and generate valuable insights into its etiopathology for the establishment of disease models to accelerate drug discovery.
Collapse
Affiliation(s)
- Subhadeep Roy
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Saumya Yadav
- Cornea & Refractive Surgery Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tanushree Dasgupta
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Shikha Chawla
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Radhika Tandon
- Cornea & Refractive Surgery Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
13
|
Caglayan M, Kocamıs SI, Sarac O, Tatli Dogan H, Kosekahya P, Ayan M, Cagil N. Investigation of Heme Oxygenase 2 Enzyme Protein Expression in Keratoconus and Normal Human Corneal Epithelium: An Immunohistochemical Study. Curr Eye Res 2018; 44:25-29. [DOI: 10.1080/02713683.2018.1521980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mehtap Caglayan
- Department of Ophthalmology, Mardin State Hospital, Mardin, Turkey
| | | | - Ozge Sarac
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| | | | - Pinar Kosekahya
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Murat Ayan
- Department of Ophthalmology, Yenimahalle State Hospital, Ankara, Turkey
| | - Nurullah Cagil
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
14
|
Hashmani S, Hashmani N, Memon RS. Corneal Collagen Cross-Linking Combined with an Artiflex Iris-Fixated Anterior Chamber Phakic Intraocular Lens Implantation in a Patient with Progressive Keratoconus. Case Rep Ophthalmol 2017; 8:482-488. [PMID: 29118708 PMCID: PMC5662956 DOI: 10.1159/000480728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/28/2017] [Indexed: 01/04/2023] Open
Abstract
We present here the case of a 24-year-old male who experienced progressive keratoconus and vision loss which adversely affected his ability to carry out everyday tasks. This landed him in the Hashmanis Hospital for consultation. He had a preoperative best corrected visual acuity of 6/12. He underwent multiple Oculus Pentacam examinations, which showed progressive keratoconus. Corneal collagen cross-linking (CXL) was performed to stabilize his cornea and, subsequently, an Artiflex anterior chamber iris-fixated phakic intraocular lens (ACIF-PIOL) was implanted to alleviate his refractive errors. The patient achieved a postoperative uncorrected visual acuity of 6/12. This report shows that CXL combined with ACIF-PIOL can be safe and effective in those with progressive keratoconus.
Collapse
|
15
|
Moussa S, Grabner G, Ruckhofer J, Dietrich M, Reitsamer H. Genetics in Keratoconus - What is New? Open Ophthalmol J 2017; 11:201-210. [PMID: 28932336 PMCID: PMC5585456 DOI: 10.2174/1874364101711010201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/01/2017] [Accepted: 06/14/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Keratoconus is characterized as a bilateral, progressive, non-inflammatory thinning of the cornea resulting in blurred vision due to irregular astigmatism. Keratoconus has a multifactorial etiology, with multiple genetic and environmental components contributing to the disease pathophysiology. Several genomic loci and genes have been identified that highlight the complex molecular etiology of this disease. Conclusion: The review focuses on current knowledge of these genetic risk factors associated with keratoconus.
Collapse
Affiliation(s)
- Sarah Moussa
- Paracelsus Medical University Salzburg, Department of Ophthalmology and Optometry, Müllner Hauptstr. 48, 5020 Salzburg, Austria
| | - Günther Grabner
- Paracelsus Medical University Salzburg, Department of Ophthalmology and Optometry, Müllner Hauptstr. 48, 5020 Salzburg, Austria
| | - Josef Ruckhofer
- Paracelsus Medical University Salzburg, Department of Ophthalmology and Optometry, Müllner Hauptstr. 48, 5020 Salzburg, Austria
| | - Marie Dietrich
- Paracelsus Medical University Salzburg, Department of Ophthalmology and Optometry, Müllner Hauptstr. 48, 5020 Salzburg, Austria
| | - Herbert Reitsamer
- Paracelsus Medical University Salzburg, Department of Ophthalmology and Optometry, Müllner Hauptstr. 48, 5020 Salzburg, Austria
| |
Collapse
|
16
|
Soiberman U, Foster JW, Jun AS, Chakravarti S. Pathophysiology of Keratoconus: What Do We Know Today. Open Ophthalmol J 2017; 11:252-261. [PMID: 28932341 PMCID: PMC5585454 DOI: 10.2174/1874364101711010252] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/01/2017] [Accepted: 06/14/2017] [Indexed: 12/19/2022] Open
Abstract
Keratoconus is a common corneal ectasia that leads to progressive visual impairment. Numerous studies have shown abnormal protein expression patterns in keratoconic corneas. However, the specific mechanisms causing this disease remain ambiguous. This review aims to provide an update on morphological studies of the keratoconic cornea, relate these early studies with current findings from proteomic, biochemical and cell culture studies and to postulate possible pathogenic pathways.
Collapse
Affiliation(s)
- Uri Soiberman
- Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - James W Foster
- Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Albert S Jun
- Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Shukti Chakravarti
- Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
17
|
Decreased Integrity, Content, and Increased Transcript Level of Mitochondrial DNA Are Associated with Keratoconus. PLoS One 2016; 11:e0165580. [PMID: 27783701 PMCID: PMC5081165 DOI: 10.1371/journal.pone.0165580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/16/2016] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress may play an important role in the pathogenesis of keratoconus (KC). Mitochondrial DNA (mtDNA) is involved in mitochondrial function, and the mtDNA content, integrity, and transcript level may affect the generation of reactive oxygen species (ROS) and be involved in the pathogenesis of KC. We designed a case-control study to research the relationship between KC and mtDNA integrity, content and transcription. One-hundred ninety-eight KC corneas and 106 normal corneas from Chinese patients were studied. Quantitative real-time PCR was used to measure the relative mtDNA content, transcript levels of mtDNA and related genes. Long-extension PCR was used to detect mtDNA damage. ROS, mitochondrial membrane potential and ATP were measured by respective assay kit, and Mito-Tracker Green was used to label the mitochondria. The relative mtDNA content of KC corneas was significantly lower than that of normal corneas (P = 9.19×10−24), possibly due to decreased expression of the mitochondrial transcription factor A (TFAM) gene (P = 3.26×10−3). In contrast, the transcript levels of mtDNA genes were significantly increased in KC corneas compared with normal corneas (NADH dehydrogenase subunit 1 [ND1]: P = 1.79×10−3; cytochrome c oxidase subunit 1 [COX1]: P = 1.54×10−3; NADH dehydrogenase subunit 1, [ND6]: P = 4.62×10−3). The latter may be the result of increased expression levels of mtDNA transcription-related genes mitochondrial RNA polymerase (POLRMT) (P = 2.55×10−4) and transcription factor B2 mitochondrial (TFB2M) (P = 7.88×10−5). KC corneas also had increased mtDNA damage (P = 3.63×10−10), higher ROS levels, and lower mitochondrial membrane potential and ATP levels compared with normal corneas. Decreased integrity, content and increased transcript level of mtDNA are associated with KC. These changes may affect the generation of ROS and play a role in the pathogenesis of KC.
Collapse
|
18
|
Perumal N, Funke S, Pfeiffer N, Grus FH. Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep 2016; 6:29629. [PMID: 27436115 PMCID: PMC4951640 DOI: 10.1038/srep29629] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022] Open
Abstract
Despite the high global prevalence of dry eye syndrome (DES), the fundamental processes underlying this pathology remain largely unexplored. Therefore, this study endeavoured to investigate in-depth the tear proteome of DES patients employing the mass spectrometry (MS)-based proteomic strategies. Eighty patients were recruited and subdivided into three major DES subgroups, which are the aqueous-deficient (DRYaq), evaporative (DRYlip) and a combination of the two (DRYaqlip), as well as healthy subjects (CTRL). Discovery proteomics strategy was employed to identify large number of significantly differentially expressed tear proteins in DRYlip vs. CTRL, DRYaq vs. CTRL and DRYaqlip vs. CTRL with 22, 58 and 67 proteins, respectively. Biological functional analysis demonstrated for the first time that various metabolic processes were highly expressed in DRYaq and DRYaqlip, which might modulate various other known processes, especially the inflammatory and immune processes. Targeted proteomics strategy verified that 13 major proteins were differentially expressed in specific DES subgroups, comprising of PRR4, ZG16B, SCGB2A1, DMBT1, PROL1, LACRT, ALDH3A1, ENO1, TF, S100A8, S100A9, PEBP1 and ORM1. In conclusion, this study had explored in-depth the pathology of DES by unravelling various new fundamental processes and the major proteins responsible for the maintenance of tear film stability.
Collapse
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Funke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H Grus
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
19
|
Abstract
PURPOSE The aim of this study was to evaluate the association between keratoconus (KC) and common allergic conditions, such as asthma, atopic dermatitis, and allergic rhinitis in a large-scale database-based epidemiological study. METHODS We conducted a cross-sectional study to estimate the epidemiologic relationship between KC and allergic diseases. The study population included all Israeli adolescents who underwent medical evaluation by the Israeli Defense Force, between the years 2005 and 2013. The presence of KC was determined by corneal topography read by an ophthalmologist. RESULTS A statistically significantly increased odds ratio (OR) for the presence of KC was found for asthma [OR: 2.0; 95% confidence interval (CI): 1.6-2.5; P < 0.001], allergic rhinitis (OR: 1.6; 95% CI: 1.3-2.0; P < 0.001), and the combination of allergic conjunctivitis, chronic blepharitis, and vernal keratoconjunctivitis (AC/CB/VKC), for which a particularly strong association was found (OR: 6.0; 95% CI: 4.0-9.2; P < 0.001). No significant association was found between angioedema, urticaria, history of anaphylaxis, allergy to hymenoptera sting or atopic dermatitis, and KC. After stratifying the patients according to the severity of the allergic disease, the association between severe (AC/CB/VKC) and KC was very high (OR: 36.5; 95% CI: 20.4-65.4; P < 0.001). CONCLUSIONS In this study, we demonstrated a substantial association between (AC/CB/VKC), asthma, allergic rhinitis, and KC, with no significant association between other allergic diseases and KC. The severity of the allergic status is without doubt associated with a greater risk of having KC. The mechanism causing this association is still unclear.
Collapse
|
20
|
Nowak DM, Gajecka M. Nonrandom Distribution of miRNAs Genes and Single Nucleotide Variants in Keratoconus Loci. PLoS One 2015; 10:e0132143. [PMID: 26176855 PMCID: PMC4503774 DOI: 10.1371/journal.pone.0132143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 12/14/2022] Open
Abstract
Despite numerous studies, the causes of both development and progression of keratoconus remain elusive. Previous studies of this disorder focused mainly on one or two genetic factors only. However, in the analysis of such complex diseases all potential factors should be taken into consideration. The purpose of this study was a comprehensive analysis of known keratoconus loci to uncover genetic factors involved in this disease causation in the general population, which could be omitted in the original studies. In this investigation genomic data available in various databases and experimental own data were assessed. The lists of single nucleotide variants and miRNA genes localized in reported keratoconus loci were obtained from Ensembl and miRBase, respectively. The potential impact of nonsynonymous amino acid substitutions on protein structure and function was assessed with PolyPhen-2 and SIFT. For selected protein genes the ranking was made to choose those most promising for keratoconus development. Ranking results were based on topological features in the protein-protein interaction network. High specificity for the populations in which the causative sequence variants have been identified was found. In addition, the possibility of links between previously analyzed keratoconus loci was confirmed including miRNA-gene interactions. Identified number of genes associated with oxidative stress and inflammatory agents corroborated the hypothesis of their effect on the disease etiology. Distribution of the numerous sequences variants within both exons and mature miRNA which forces you to search for a broader look at the determinants of keratoconus. Our findings highlight the complexity of the keratoconus genetics.
Collapse
Affiliation(s)
- Dorota M. Nowak
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marzena Gajecka
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- * E-mail:
| |
Collapse
|
21
|
The genetic and environmental factors for keratoconus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:795738. [PMID: 26075261 PMCID: PMC4449900 DOI: 10.1155/2015/795738] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/22/2022]
Abstract
Keratoconus (KC) is the most common cornea ectatic disorder. It is characterized by a cone-shaped thin cornea leading to myopia, irregular astigmatism, and vision impairment. It affects all ethnic groups and both genders. Both environmental and genetic factors may contribute to its pathogenesis. This review is to summarize the current research development in KC epidemiology and genetic etiology. Environmental factors include but are not limited to eye rubbing, atopy, sun exposure, and geography. Genetic discoveries have been reviewed with evidence from family-based linkage analysis and fine mapping in linkage region, genome-wide association studies, and candidate genes analyses. A number of genes have been discovered at a relatively rapid pace. The detailed molecular mechanism underlying KC pathogenesis will significantly advance our understanding of KC and promote the development of potential therapies.
Collapse
|
22
|
Karamichos D, Zieske JD, Sejersen H, Sarker-Nag A, Asara JM, Hjortdal J. Tear metabolite changes in keratoconus. Exp Eye Res 2015; 132:1-8. [PMID: 25579606 DOI: 10.1016/j.exer.2015.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 11/18/2022]
Abstract
While efforts have been made over the years, the exact cause of keratoconus (KC) remains unknown. The aim of this study was to identify alterations in endogenous metabolites in the tears of KC patients compared with age-matched healthy subjects. Three groups were tested: 1) Age-matched controls with no eye disease (N = 15), 2) KC - patients wearing Rigid Gas permeable lenses (N = 16), and 3) KC - No Correction (N = 14). All samples were processed for metabolomics analysis using LC-MS/MS. We identified a total of 296 different metabolites of which >40 were significantly regulated between groups. Glycolysis and gluconeogenesis had significant changes, such as 3-phosphoglycerate and 1,3 diphosphateglycerate. As a result the citric acid cycle (TCA) was also affected with notable changes in Isocitrate, aconitate, malate, and acetylphosphate, up regulated in Group 2 and/or 3. Urea cycle was also affected, especially in Group 3 where ornithine and aspartate were up-regulated by at least 3 fold. The oxidation state was also severely affected. Groups 2 and 3 were under severe oxidative stress causing multiple metabolites to be regulated when compared to Group 1. Group 2 and 3, both showed significant down regulation in GSH-to-GSSG ratio when compared to Group 1. Another indicator of oxidative stress, the ratio of lactate - pyruvate was also affected with Groups 2 and 3 showing at least a 2-fold up regulation. Overall, our data indicate that levels of metabolites related to urea cycle, TCA cycle and oxidative stress are highly altered in KC patients.
Collapse
Affiliation(s)
- D Karamichos
- Ophthalmology, University of Oklahoma - Dean McGee Eye Institute, Oklahoma City, OK, USA.
| | - J D Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology Harvard Medical School, 20 Staniiford Street, Boston, MA, USA.
| | - H Sejersen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark.
| | - A Sarker-Nag
- Ophthalmology, University of Oklahoma - Dean McGee Eye Institute, Oklahoma City, OK, USA.
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - J Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark.
| |
Collapse
|
23
|
Role of Protease-Inhibitors in Ocular Diseases. Molecules 2014; 19:20557-20569. [PMID: 25493637 PMCID: PMC6271012 DOI: 10.3390/molecules191220557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models.
Collapse
|
24
|
Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease. PLoS One 2014; 9:e113310. [PMID: 25405607 PMCID: PMC4236164 DOI: 10.1371/journal.pone.0113310] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022] Open
Abstract
Keratoconus (KC) is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36) and KC diagnosed subjects (n = 17). Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF) and KC subjects (Human Keratoconus Cells-HKC) and stimulated with a Vitamin C (VitC) derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β) isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15) or prolactin-inducible protein (PIP) was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1), a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.
Collapse
|
25
|
|
26
|
Karamichos D, Hutcheon AEK, Rich CB, Trinkaus-Randall V, Asara JM, Zieske JD. In vitro model suggests oxidative stress involved in keratoconus disease. Sci Rep 2014; 4:4608. [PMID: 24714342 PMCID: PMC3980225 DOI: 10.1038/srep04608] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/20/2014] [Indexed: 11/09/2022] Open
Abstract
Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.
Collapse
Affiliation(s)
- D Karamichos
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, USA
| | - A E K Hutcheon
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology Harvard Medical School, Boston, MA, USA
| | - C B Rich
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, 80 E Concord Street, Boston, MA 02118, USA
| | - V Trinkaus-Randall
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, 80 E Concord Street, Boston, MA 02118, USA
| | - J M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - J D Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Synowiec E, Wojcik KA, Izdebska J, Binczyk E, Blasiak J, Szaflik J, Szaflik JP. Polymorphisms of the homologous recombination gene RAD51 in keratoconus and Fuchs endothelial corneal dystrophy. DISEASE MARKERS 2013; 35:353-62. [PMID: 24223453 PMCID: PMC3809973 DOI: 10.1155/2013/851817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/28/2013] [Indexed: 01/20/2023]
Abstract
PURPOSE We investigated the association between genotypes and haplotypes of the c.-61G>T (rs 1801320) and c.-98G>C (rs 1801321) polymorphisms of the RAD51 gene and the occurrence of keratoconus (KC) and Fuchs endothelial corneal dystrophy (FECD) in dependence on some environmental factors. METHODS The polymorphisms were genotyped in peripheral blood lymphocytes of 100 KC and 100 FECD patients as well as 150 controls with PCR-RFLP. RESULTS The G/T genotype of the c.-61G>T polymorphism was associated with significantly increased frequency occurrence of KC (crude OR 2.99, 95% CI 1.75-5.13). On the other hand, the G/G genotype of this polymorphism was positively correlated with a decreased occurrence of this disease (crude OR 0.52, 95% CI 0.31-0.88). We did not find any correlation between genotypes/alleles of the c.-98G>C polymorphism and the occurrence of KC. We also found that the G/G genotype and G allele of the c.-98G>C polymorphism had a protective effect against FECD (crude OR 0.51, 95% CI 0.28-0.92; crude OR 0.53, 95% CI 0.30-0.92, resp.), while the G/C genotype and the C allele increased FECD occurrence (crude OR 1.85, 95% CI 1.01-3.36; crude OR 1.90, 95% CI 1.09-3.29, resp.). CONCLUSIONS The c.-61T/T and c.-98G>C polymorphisms of the RAD51 gene may have a role in the KC and FECD pathogenesis and can be considered as markers in these diseases.
Collapse
Affiliation(s)
- Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Katarzyna A. Wojcik
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Justyna Izdebska
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw, Poland
| | - Ewelina Binczyk
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw, Poland
| | - Jacek P. Szaflik
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw, Poland
| |
Collapse
|
28
|
Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V. Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision. Prog Retin Eye Res 2012; 33:28-39. [PMID: 23098688 DOI: 10.1016/j.preteyeres.2012.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/02/2023]
Abstract
Aldehyde dehydrogenase (ALDH) enzymes catalyze the NAD(P)(+)-dependent oxidation of a wide variety of endogenous and exogenous aldehydes to their corresponding acids. Some members of the ALDH superfamily of enzymes are abundantly expressed in the mammalian cornea and lens in a taxon-specific manner. Considered to be corneal and lens crystallins, they confer protective and transparent properties upon these ocular tissues. ALDH3A1 is highly expressed in the cornea of most mammals, with the exception of rabbit that expresses exclusively ALDH1A1 in the cornea. ALDH1A1 is present in both the cornea and lens of several animal species. As a result of their catalytic and non-catalytic functions, ALDH3A1 and ALDH1A1 proteins protect inner ocular tissues from ultraviolet radiation and reactive oxygen-induced damage. In addition, these corneal crystallins contribute to cellular transparency in corneal stromal keratocytes, supporting a structural role of these ALDH proteins. A putative regulatory function of ALDH3A1 on corneal cell proliferation has also been proposed. Finally, the three retinaldehyde dehydrogenases cooperatively mediate retinoic acid signaling during the eye development.
Collapse
Affiliation(s)
- Ying Chen
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
29
|
Saijyothi AV, Fowjana J, Madhumathi S, Rajeshwari M, Thennarasu M, Prema P, Angayarkanni N. Tear fluid small molecular antioxidants profiling shows lowered glutathione in keratoconus. Exp Eye Res 2012; 103:41-6. [DOI: 10.1016/j.exer.2012.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/06/2012] [Accepted: 07/23/2012] [Indexed: 01/16/2023]
|
30
|
Abstract
The human eye is subjected constantly to oxidative stress due to daily exposure to sunlight, high metabolic activities, and oxygen tension. Reactive oxygen species generated from environmental insults and pathological conditions render the human eye particularly vulnerable to oxidative damage. The ocular surface composed of the tear film, the cornea, and the aqueous humor forms the first physical and biochemical barrier of the eye and plays a pivotal role in combating free radicals. These ocular compartments are enriched in certain antioxidants in the form of metabolic enzymes or small molecules. Such an antioxidant defense system in the ocular surface is essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. Herein, we review the properties and functions of key constituent antioxidants of the ocular surface.
Collapse
Affiliation(s)
- Ying Chen
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
31
|
Marchitti SA, Chen Y, Thompson DC, Vasiliou V. Ultraviolet radiation: cellular antioxidant response and the role of ocular aldehyde dehydrogenase enzymes. Eye Contact Lens 2011; 37:206-13. [PMID: 21670692 PMCID: PMC3356694 DOI: 10.1097/icl.0b013e3182212642] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species (ROS) are highly reactive with DNA, proteins, and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat ROS and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase, and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, nicotinamide-adenine dinucleotide phosphate, and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants, which are essential for the maintenance of reduction-oxidation homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multifunctional ocular antioxidants.
Collapse
Affiliation(s)
- Satori A. Marchitti
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Ying Chen
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - David C. Thompson
- Department of Clinical Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
32
|
Stagos D, Chen Y, Cantore M, Jester JV, Vasiliou V. Corneal aldehyde dehydrogenases: multiple functions and novel nuclear localization. Brain Res Bull 2010; 81:211-8. [PMID: 19720116 PMCID: PMC3025408 DOI: 10.1016/j.brainresbull.2009.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a superfamily of NAD(P)(+)-dependent enzymes which catalyze the oxidation of a wide variety of endogenous and exogenous aldehydes to their corresponding acids. Some ALDHs have been identified as corneal crystallins and thereby contribute to the protective and refractive properties of the cornea. ALDH3A1 is highly expressed in the cornea of most mammals with the exception of rabbit that abundantly expresses ALDH1A1 in the cornea instead of ALDH3A1. In this study, we examined the gene expression of other ALDHs and found high messenger levels of ALDH1B1, ALDH2 and ALDH7A1 in mouse cornea and lens. Substantial evidence supports a protective role for ALDH3A1 and ALDH1A1 against ultraviolet radiation (UVR)-induced oxidative damage to ocular tissues. The mechanism by which this protection occurs includes UVR filtering, detoxification of reactive aldehydes generated by UVR exposure and antioxidant activity. We recently have identified ALDH3A1 as a nuclear protein in corneal epithelium. Herein, we show that ALDH3A1 is also found in the nucleus of rabbit keratocytes. The nuclear presence of ALDH3A1 may be involved in cell cycle regulation.
Collapse
Affiliation(s)
- Dimitrios Stagos
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Serbecic N, Beutelspacher SC. Indoleamine 2,3-dioxygenase protects corneal endothelial cells from UV mediated damage. Exp Eye Res 2005; 82:416-26. [PMID: 16318852 DOI: 10.1016/j.exer.2005.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 07/24/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Indoleamine-2,3-dioxygenase (IDO) is an intracellular enzyme present in dendritic cells and macrophages. It is a known modulator of T-cell response and contributes to the UV protection of the lens. There yet is no information on IDO activity in the corneal endothelium, protecting the endothelial cells from light mediated damage. We exposed murine corneal endothelial cells (MCEC) with different doses of UV-B light 280-320 nm, probed for IDO mRNA (real-time PCR) and assessed apoptosis rate (flow cytometry) and caspase-3-activity in the cells. The metabolites of the IDO catalysed reaction, l-kynurenine, was also measured. Malondialdehyde was detected for quantification of UV-B-induced oxidative stress. To investigate specificity, IDO effects were blocked by 1-methyl-tryptophan. The effects of IDO overexpression in the MCEC were assessed by transfection of an expression vector. MCEC consistently express IDO at low levels. Exposure to UV-B light led to a dose-responding upregulation of IDO; IDO was found competent converting l-tryptophan into l-kynurenine. Irradiation led to increased apoptosis and caspase-3-activity of MCEC. Supplementation of l-kynurenine or overexpression of IDO in the MCEC could reduce apoptosis significantly following UV-B irradiation. Inhibition of IDO by 1-MT was potent to reverse this effect. IDO and its metabolite l-kynurenine can protect corneal endothelial cells from UV-B-induced oxidative stress and apoptosis. It may be an active protection mechanism against corneal endothelial damage.
Collapse
MESH Headings
- Animals
- Annexin A5/analysis
- Caspase 3
- Caspases/analysis
- Cells, Cultured
- Endothelium, Corneal/chemistry
- Endothelium, Corneal/drug effects
- Endothelium, Corneal/radiation effects
- Flow Cytometry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/pharmacology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Reverse Transcriptase Polymerase Chain Reaction
- Thiobarbituric Acid Reactive Substances/analysis
- Transfection/methods
- Ultraviolet Rays/adverse effects
Collapse
Affiliation(s)
- Nermin Serbecic
- Department of Ophthalmology, SMZ-Ost, Donauspital, Langobardenstrasse 122, 1220 Wien, Vienna, Austria.
| | | |
Collapse
|
35
|
Hough RB, Piatigorsky J. Preferential transcription of rabbit Aldh1a1 in the cornea: implication of hypoxia-related pathways. Mol Cell Biol 2004; 24:1324-40. [PMID: 14729976 PMCID: PMC321433 DOI: 10.1128/mcb.24.3.1324-1340.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 08/12/2003] [Accepted: 10/31/2003] [Indexed: 01/01/2023] Open
Abstract
Here we examine the molecular basis for the known preferential expression of rabbit aldehyde dehydrogenase class 1 (ALDH1A1) in the cornea. The rabbit Aldh1a1 promoter-firefly luciferase reporter transgene (-3519 to +43) was expressed preferentially in corneal cells in transfection tests and in transgenic mice, with an expression pattern resembling that of rabbit Aldh1a1. The 5' flanking region of the rabbit Aldh1a1 gene resembled that in the human gene (60.2%) more closely than that in the mouse (46%) or rat (51.5%) genes. We detected three xenobiotic response elements (XREs) and one E-box consensus sequence in the rabbit Aldh1a1 upstream region; these elements are prevalent in other highly expressed corneal genes and can mediate stimulation by dioxin and repression by CoCl(2), which simulates hypoxia. The rabbit Aldh1a1 promoter was stimulated fourfold by dioxin in human hepatoma cells and repressed threefold by CoCl(2) treatment in rabbit corneal stromal and epithelial cells. Cotransfection, mutagenesis, and gel retardation experiments implicated the hypoxia-inducible factor 3alpha/aryl hydrocarbon nuclear translocator heterodimer for Aldh1a1 promoter activation via the XREs and stimulated by retinoic acid protein 13 for promoter repression via the E-box. These experiments suggest that XREs, E-boxes, and PAS domain/basic helix-loop-helix transcription factors (bHLH-PAS) contribute to preferential rabbit Aldh1a1 promoter activity in the cornea, implicating hypoxia-related pathways.
Collapse
Affiliation(s)
- R B Hough
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
36
|
Udar N, Kenney MC, Chalukya M, Anderson T, Morales L, Brown D, Nesburn A, Small K. Keratoconus???No Association with the Transforming Growth Factor ?????Induced Gene in a Cohort of American Patients. Cornea 2004; 23:13-7. [PMID: 14701952 DOI: 10.1097/00003226-200401000-00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Keratoconus is a noninflammatory, corneal thinning disorder leading to mixed myopic and irregular astigmatism and implicated as a major reason for cornea transplantations in the Western world. Genetic factors have been suggested as a cause of keratoconus. The levels of transforming growth factor beta-induced (TGFBI) protein have been reported to be altered in keratoconus tissues. Mutations in this gene are responsible for causing various corneal dystrophies. Given this strong evidence of the involvement of this gene in corneal dystrophies, we investigated possible mutations within this gene in 15 probands of families with keratoconus. METHODS All patients and control individuals had complete ophthalmological examination by a corneal specialist to determine their affectation status. The entire transcript of the TGFBI gene was analyzed by direct sequencing from patient DNA. RESULTS We found 8 sequence variations within the gene, none of which was protein-altering changes. These changes were also observed in control individuals, and 4 are previously known polymorphisms. CONCLUSIONS We concluded that the TGFBI gene is not responsible for causing keratoconus in these patients.
Collapse
Affiliation(s)
- Nitin Udar
- Jules Stein Eye Institute, School of Medicine, University of California-Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Keratoconus, a non-inflammatory thinning of the cornea, is a leading indication for corneal transplantation. For its causation, we propose a "Cascade Hypothesis" stating that keratoconus corneas have abnormal or defective enzymes in the lipid peroxidation and/or nitric oxide pathways leading to oxidative damage. The accumulation of oxidative, cytotoxic by-products causes an alteration of various corneal proteins, triggering a cascade of events, (i.e. apoptosis, altered signaling pathways, increased enzyme activities, fibrosis). This hypothesis is supported by biochemical, immunohistochemical and molecular data presented in this review. Based upon this evidence, one can speculate that keratoconus patients should minimize their exposure to oxidative stress. Protective steps should include wearing ultraviolet (UV) protection (in the contact lenses and/or sunglasses), minimizing the mechanical trauma (eye rubbing, poorly fit contact lenses) and keeping eyes comfortable with artificial tears, non-steroidal anti-inflammatory drugs and/or allergy medications.
Collapse
Affiliation(s)
- M Cristina Kenney
- Department of Ophthalmology, UCI Medical Center, University of California, Irvine, Building 55, Room 220, 101 The City Drive, Orange CA 92868, USA.
| | | |
Collapse
|
38
|
Pappa A, Chen C, Koutalos Y, Townsend AJ, Vasiliou V. Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic Biol Med 2003; 34:1178-89. [PMID: 12706498 DOI: 10.1016/s0891-5849(03)00070-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) is one of the most abundant proteins found in corneal epithelial cells of mammalian species, with several postulated protective roles that include detoxification of peroxidic aldehydes, scavenging of free radicals, and direct absorption of ultraviolet (UV) radiation. In the present study, the protective role of ALDH3A1 against UV- and 4-hydroxy-2-nonenal- (4-HNE-) induced oxidative damage was studied. For this purpose, human ALDH3A1 was stably transfected in a human corneal epithelial cell line (HCE) lacking endogenous enzyme. Cells transfected with ALDH3A1 were more resistant to UV- and 4-HNE-induced cytotoxicity than mock-transfected cells. DNA fragmentation assays revealed that both treatments induced apoptosis in mock-transfected cells, but not in ALDH3A1-expressing cells. Apoptosis appeared to occur via caspase-3 activation and subsequent PARP cleavage. The Michaelis-Menten constant (K(m)) for 4-HNE was 54 microM in ALDH3A1-transfected cells; the addition of 100 microM 4-HNE increased NAD(P)H levels by 50% above that in mock-transfected cells. We also found that ALDH3A1 expression prevented 4-HNE-induced protein adduct formation. Taken together, these data suggest that ALDH3A1 is a regulatory element of the cellular defense system that protects corneal epithelium against UV- and 4-HNE-induced oxidative damage.
Collapse
Affiliation(s)
- Aglaia Pappa
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
39
|
Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem 2002; 50:341-51. [PMID: 11850437 DOI: 10.1177/002215540205000306] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study localized malondialdehyde (MDA, a toxic byproduct of lipid peroxidation), nitrotyrosine [NT, a cytotoxic byproduct of nitric oxide (NO)], and nitric oxide synthase isomers (NOS) in normal and diseased human corneas. Normal corneas (n=11) and those with clinical and histopathological diagnoses of keratoconus (n=26), bullous keratopathy (n=17), and Fuchs' endothelial dystrophy (n=12) were examined with antibodies specific for MDA, NT, eNOS (constitutive NOS), and iNOS (inducible NOS). Normal corneas showed little or no staining for MDA, NT, or iNOS, whereas eNOS was detected in the epithelium and endothelium. MDA was present in all disease groups, with each group displaying a distinct pattern of staining. NT was detected in all keratoconus and approximately one half of Fuchs' dystrophy corneas. iNOS and eNOS were evident in all the diseased corneas. Keratoconus corneas showed evidence of oxidative damage from cytotoxic byproducts generated by lipid peroxidation and the NO pathway. Bullous keratopathy corneas displayed byproducts of lipid peroxidation but not peroxynitrite (MDA but not NT). Conversely, Fuchs' dystrophy corneas displayed byproducts of peroxynitrite with little lipid peroxidation (NT >> MDA). These data suggest that oxidative damage occurs within each group of diseased corneas. However, each disease exhibits a distinctive profile, with only keratoconus showing prominent staining for both nitrotyrosine and MDA. These results suggest that keratoconus corneas do not process reactive oxygen species in a normal manner, which may play a major role in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Rajeev Buddi
- The Eye Institute, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | | | |
Collapse
|
40
|
Satomichi A, Nakajima Y, Takeuchi A, Takagaki Y, Saigenji K, Shibuya A. Primary structure of human hepatocellular carcinoma-associated aldehyde dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:328-36. [PMID: 11018724 DOI: 10.1016/s0167-4838(00)00176-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor-associated aldehyde dehydrogenase (T-ALDH) is strongly expressed in hepatocellular carcinoma (HCC) but undetectable in normal liver. In the present study, this enzyme from human HCC, HCC T-ALDH, was purified and the partial amino acid sequences (384 residues) determined by direct protein sequencing matched the amino acid sequence (453 residues) deduced from cloned HCC T-ALDH cDNAs with an open reading frame. The coding sequences of HCC T-ALDH cDNA, human stomach ALDH3A1 cDNA [Hsu et al., J. Biol. Chem. 267 (1992) 3030-3037] and human squamous cell carcinoma (SCC) T-ALDH cDNA (Schuuring et al., GenBank I.D. M74542) matched one another except for discrepancies at four positions, with consequent P12R, I27F and S134A substitutions. R and A were found in HCC and SCC T-ALDHs, whereas P and S were present in stomach ALDH3A1. To confirm that these discrepancies would have general occurrence, coding sequences of HCC T-ALDH cDNAs from six patients and stomach ALDH3A1 cDNAs from two individuals were examined and all were found to encode ALDH3A1 having R, I and A at protein positions 12, 27 and 134, respectively, indicating HCC T-ALDH to be variant ALDH3A1 which is common in human stomach tissues.
Collapse
Affiliation(s)
- A Satomichi
- Department of Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
King G, Hirst L, Holmes R. Human Corneal and Lens Aldehyde Dehydrogenases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999. [DOI: 10.1007/978-1-4615-4735-8_23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Bilgihan K, Bilgihan A, Hasanreisoğlu B, Turkozkan N. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs. Br J Ophthalmol 1998; 82:300-2. [PMID: 9602629 PMCID: PMC1722526 DOI: 10.1136/bjo.82.3.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions. METHODS In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours. RESULTS The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p > 0.05). The corneal ALDH activities were found to be significantly decreased (p < 0.05) and GST activities increased (p < 0.05) in group III. CONCLUSION These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.
Collapse
Affiliation(s)
- K Bilgihan
- Gazi University Medical School, Ankara, Turkey
| | | | | | | |
Collapse
|