1
|
Abstract
The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| | - Robert S Balaban
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| |
Collapse
|
2
|
Poole DC. Edward F. Adolph Distinguished Lecture. Contemporary model of muscle microcirculation: gateway to function and dysfunction. J Appl Physiol (1985) 2019; 127:1012-1033. [PMID: 31095460 DOI: 10.1152/japplphysiol.00013.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review strikes at the very heart of how the microcirculation functions to facilitate blood-tissue oxygen, substrate, and metabolite fluxes in skeletal muscle. Contemporary evidence, marshalled from animals and humans using the latest techniques, challenges iconic perspectives that have changed little over the past century. Those perspectives include the following: the presence of contractile or collapsible capillaries in muscle, unitary control by precapillary sphincters, capillary recruitment at the onset of contractions, and the notion of capillary-to-mitochondrial diffusion distances as limiting O2 delivery. Today a wealth of physiological, morphological, and intravital microscopy evidence presents a completely different picture of microcirculatory control. Specifically, capillary red blood cell (RBC) and plasma flux is controlled primarily at the arteriolar level with most capillaries, in healthy muscle, supporting at least some flow at rest. In healthy skeletal muscle, this permits substrate access (whether carried in RBCs or plasma) to a prodigious total capillary surface area. Pathologies such as heart failure or diabetes decrease access to that exchange surface by reducing the proportion of flowing capillaries at rest and during exercise. Capillary morphology and function vary disparately among tissues. The contemporary model of capillary function explains how, following the onset of exercise, muscle O2 uptake kinetics can be extremely fast in health but slowed in heart failure and diabetes impairing contractile function and exercise tolerance. It is argued that adoption of this model is fundamental for understanding microvascular function and dysfunction and, as such, to the design and evaluation of effective therapeutic strategies to improve exercise tolerance and decrease morbidity and mortality in disease.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
3
|
Hirunsai M, Srikuea R. Differential effects of heat stress on fibre capillarisation in tenotomised soleus and plantaris muscles. Int J Hyperthermia 2017; 34:432-441. [DOI: 10.1080/02656736.2017.1350758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Ratchakrit Srikuea
- Department of Physiology Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Čebašek V, Ribarič S. Changes in the Capillarity of the Rat Extensor Digitorum Longus Muscle 4 Weeks after Nerve Injury Studied by 2D Measurement Methods. Cells Tissues Organs 2016; 201:211-9. [PMID: 27023720 DOI: 10.1159/000444140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2016] [Indexed: 11/19/2022] Open
Abstract
We have previously shown by 3D study that 2 weeks after nerve injury there was no change in the length of capillaries per muscle fibre length in rat extensor digitorum longus muscle (EDL). The primary goal of the present 2D study was to determine the capillarity of rat EDL 4 weeks after various modes of nerve injury. Additionally, we wished to calculate the same capillary/fibre parameters that were used in our 3D stereological study. EDL muscles derived from denervated (4 weeks after nerve injury), re-innervated (4 weeks after two successive nerve crushes) and age-matched controls from the beginning (CON-1) and the end (CON-2) of the experiment were analysed in two ways. Global indices of capillarity, such as capillary density (CD) and capillary/fibre (C/F) ratio, were determined by automatic analysis, local indices as the number (CAF) and the length of capillaries around individual muscle fibres (Lcap) in relation to muscle fibre size were estimated manually by tracing the muscle fibre outlines and the transversally and longitudinally cut segments of capillaries seen in 5-µm-thin muscle cross sections. Four weeks after both types of nerve injury, CD increased in comparison to the CON-2 group (p < 0.001) due to atrophied muscle fibres in denervated muscles and probably proliferation of capillaries in re-innervated ones. Higher C/F, CAF (both p < 0.001) and Lcap (p < 0.01) in re-innervated than denervated EDL confirmed this assumption. Calculated capillary/fibre parameters were comparable to our previous 3D study, which strengthens the practical value to the adapted 2D method used in this study.
Collapse
|
5
|
Glancy B, Hsu LY, Dao L, Bakalar M, French S, Chess DJ, Taylor JL, Picard M, Aponte A, Daniels MP, Esfahani S, Cushman S, Balaban RS. In vivo microscopy reveals extensive embedding of capillaries within the sarcolemma of skeletal muscle fibers. Microcirculation 2015; 21:131-47. [PMID: 25279425 DOI: 10.1111/micc.12098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. METHODS 3D volumes of in vivo murine TA muscles were imaged by MPM. Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of Mb-facilitated diffusion was examined in Mb KO mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. RESULTS MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by Mb KO. GLUT4 did not preferentially localize to embedded capillaries. CONCLUSIONS Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to PV regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria.
Collapse
Affiliation(s)
- Brian Glancy
- Laboratory of Cardiac Energetics, NHLBI, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS One 2014; 9:e103044. [PMID: 25121500 PMCID: PMC4133187 DOI: 10.1371/journal.pone.0103044] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 06/26/2014] [Indexed: 11/25/2022] Open
Abstract
PGC-1α regulates critical processes in muscle physiology, including mitochondrial biogenesis, lipid metabolism and angiogenesis. Furthermore, PGC-1α was suggested as an important regulator of fiber type determination. However, whether a muscle fiber type-specific PGC-1α content exists, whether PGC-1α content relates to basal levels of mitochondrial content, and whether such relationships are preserved between humans and classically used rodent models are all questions that have been either poorly addressed or never investigated. To address these issues, we investigated the fiber type-specific content of PGC-1α and its relationship to basal mitochondrial content in mouse, rat and human muscles using in situ immunolabeling and histochemical methods on muscle serial cross-sections. Whereas type IIa fibers exhibited the highest PGC-1α in all three species, other fiber types displayed a hierarchy of type IIx>I>IIb in mouse, type I = IIx> IIb in rat, and type IIx>I in human. In terms of mitochondrial content, we observed a hierarchy of IIa>IIx>I>IIb in mouse, IIa >I>IIx> IIb in rat, and I>IIa> IIx in human skeletal muscle. We also found in rat skeletal muscle that type I fibers displayed the highest capillarization followed by type IIa >IIx>IIb. Finally, we found in human skeletal muscle that type I fibers display the highest lipid content, followed by type IIa>IIx. Altogether, our results reveal that (i) the fiber type-specific PGC-1α and mitochondrial contents were only matched in mouse, (ii) the patterns of PGC-1α and mitochondrial contents observed in mice and rats do not correspond to that seen in humans in several respects, and (iii) the classical phenotypes thought to be regulated by PGC-1α do not vary exclusively as a function of PGC-1α content in rat and human muscles.
Collapse
|
7
|
Golub AS, Pittman RN. Bang-bang model for regulation of local blood flow. Microcirculation 2014; 20:455-83. [PMID: 23441827 DOI: 10.1111/micc.12051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 11/27/2022]
Abstract
The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2 (-) ) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the "bang-bang" or "on/off" regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2 (-) into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis, and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
8
|
Olenich SA, Gutierrez-Reed N, Audet GN, Olfert IM. Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice. J Physiol 2013; 591:5157-69. [PMID: 23878369 PMCID: PMC3810816 DOI: 10.1113/jphysiol.2013.254979] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/19/2013] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is controlled by a balance between positive and negative angiogenic factors, but temporal protein expression of many key angiogenic regulators in response to exercise are still poorly defined. In C57BL/6 mice, we evaluated the temporal protein expression of several pro-angiogenic and anti-angiogenic factors in response to (1) a single acute bout of exercise and (2) chronic exercise training resulting from 3, 5, 7, 14 and 28 days of voluntary wheel running. Following acute exercise, protein levels of vascular endothelial growth factor-A (VEGF), endostatin and nucleolin were increased at 2-4 h (P < 0.05), whereas matrix metalloproteinase (MMP)-2 was elevated within a 12-24 h window (P < 0.05). Training increased muscle capillarity 11%, 15% and 22% starting with 7, 14 and 28 days of training, respectively (P < 0.01). Basal VEGF and MMP-2 were increased by 31% and 22%, respectively, compared to controls (P < 0.05) after 7 days (7d) training, but decreased to back to baseline after 14d training. After 28d training VEGF fell 49% below baseline control (P < 0.01). Basal muscle expression of thrombospondin 1 (TSP-1) was ∼900% greater in 14d- and 28d-trained mice compared to either 5d- and 7d-trained mice (P < 0.05), and tended to increase by ∼180-258% compared to basal control levels (P < 0.10). The acute responsiveness of VEGF to exercise in untrained mice (i.e. 161% increase, P < 0.001) was lost with capillary adaptation occurring after 7, 14 and 28d training. Taken together, these data support the notion that skeletal muscle angiogenesis is controlled by a balance between positive and negative mitogens, and reveals a complex, highly-coordinated, temporal scheme whereby these factors can differentially influence capillary growth in response to acute versus chronic exercise.
Collapse
Affiliation(s)
- Sara A Olenich
- I. M. Olfert: West Virginia University School of Medicine, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, One Medical Center Dr., Morgantown, WV 26506-9105, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Terada N, Saitoh Y, Saitoh S, Ohno N, Fujishita K, Koizumi S, Ohno S. Visualization of ATP with luciferin-luciferase reaction in mouse skeletal muscles using an "in vivo cryotechnique". MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:1030-1036. [PMID: 23058452 DOI: 10.1017/s1431927612001316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Adenosine triphosphate (ATP) is a well-known energy source for muscle contraction. In this study, to visualize localization of ATP, a luciferin-luciferase reaction (LLR) was performed in mouse skeletal muscle with an "in vivo cryotechnique" (IVCT). First, to confirm if ATP molecules could be trapped and detected after glutaraldehyde (GA) treatment, ATP was directly attached to glass slides with GA, and LLR was performed. The LLR was clearly detected as an intentional design of the ATP attachment. The intensity of the light unit by LLR was correlated with the concentration of the GA-treated ATP in vitro. Next, LLR was evaluated in mouse skeletal muscles with IVCT followed by freeze-substitution fixation (FS) in acetone-containing GA. In such tissue sections the histological structure was well maintained, and the intensity of LLR in areas between muscle fibers and connective tissues was different. Moreover, differences in LLR among muscle fibers were also detected. For the IVCT-FS tissue sections, diaminobenzidine (DAB) reactions were clearly detected in type I muscle fibers and erythrocytes in capillaries, which demonstrated flow shape. Thus, it became possible to perform microscopic evaluation of the numbers of ATP molecules in the mouse skeletal muscles with IVCT, which mostly reflect living states.
Collapse
Affiliation(s)
- N Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-city, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Taivassalo T, Ayyad K, Haller RG. Increased capillaries in mitochondrial myopathy: implications for the regulation of oxygen delivery. ACTA ACUST UNITED AC 2012; 135:53-61. [PMID: 22232594 DOI: 10.1093/brain/awr293] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human skeletal muscle respiratory chain defects restrict the ability of working muscle to extract oxygen from blood, and result in a hyperkinetic circulation during exercise in which oxygen delivery is excessive relative to oxygen uptake and oxygen levels within contracting muscle are abnormally high. To investigate the role of the muscle microcirculation in this anomalous circulatory response and possible implications for the regulation of muscle angiogenesis, we assessed muscle oxidative capacity during cycle exercise and determined capillary levels and distribution and vascular endothelial growth factor expression in quadriceps muscle biopsies in patients with mitochondrial myopathy attributable to heteroplasmic mitochondrial DNA mutations. We found that in patients with mitochondrial myopathy, muscle capillary levels were twice that of sedentary healthy subjects (3.0 ± 0.9% compared with 1.4 ± 0.3%, P < 0.001) despite the fact that oxygen utilization during peak cycle exercise was half that of control subjects (11.1 ± 4.0 ml/kg/min compared with 20.7 ± 7.9 ml/kg/min, P < 0.01); that capillary area was greatest in patients with the most severe muscle oxidative defects and was more than two times higher around muscle fibre segments with defective (i.e. cytochrome oxidase negative/succinic dehydrogenase-positive or 'ragged-red' fibres) compared with more preserved respiratory chain function; and that vascular endothelial growth factor expression paralleled capillary distribution. The increased muscle capillary levels in patients correlated directly (r(2) = 0.68, P < 0.05) with the severity of the mismatch between systemic oxygen delivery (cardiac output) and oxygen utilization during cycle exercise. Our results suggest that capillary growth is increased as a result of impaired muscle oxidative phosphorylation in mitochondrial myopathy, thus promoting increased blood flow to respiration-incompetent muscle fibres and a mismatch between oxygen delivery and utilization during exercise. Furthermore, the finding of high capillary levels despite elevated tissue oxygen levels during exercise in respiration-deficient muscle fibres implies that mitochondrial metabolism activates angiogenesis in skeletal muscle by a mechanism that is independent of hypoxia.
Collapse
Affiliation(s)
- Tanja Taivassalo
- Department of Kinesiology, McGill University, Montreal, QC H2W1S4, Canada
| | | | | |
Collapse
|
12
|
Green HJ, Burnett M, Kollias H, Ouyang J, Smith I, Tupling S. Malleability of human skeletal muscle sarcoplasmic reticulum to short-term training. Appl Physiol Nutr Metab 2011; 36:904-12. [DOI: 10.1139/h11-114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the hypothesis that adaptations would occur in the sarcoplasmic reticulum in vastus lateralis soon after the onset of aerobic-based training consistent with reduced Ca2+-cycling potential. Tissue samples were extracted prior to (0 days) and following 3 and 6 days of cycling performed for 2 h at 60%–65% of peak aerobic power (VO2peak) in untrained males (VO2peak = 47 ± 2.3 mL·kg–1·min–1; mean ± SE, n = 6) and assessed for changes (nmol·mg protein–1·min–1) in maximal Ca2+-ATPase activity (Vmax), Ca2+-uptake, and Ca2+-release (phase 1 and phase 2) as well as the sarcoplasmic (endoplasmic) reticulum Ca2+-ATPase (SERCA) isoforms. Training resulted in reductions (p < 0.05) in SERCA1a at 6 days (–14%) but not at 3 days. For SERCA2a, reductions (p < 0.05) were also noted only at 6 days (–7%). For Vmax, depressions (p < 0.05) were found at 6 days (172 ± 11) but not at 3 days (176 ± 13; p < 0.10) compared with 0 days (192 ± 11). These changes were accompanied by a lower (p < 0.05) Ca2+-uptake at both 3 days (–39%) and 6 days (–48%). A similar pattern was found for phase 1 Ca2+-release with reductions (p < 0.05) of 37% observed at 6 days and 23% (p = 0.21) at 3 days of training, respectively. In a related study using the same training protocol and participant characteristics, microphotometric determinations of Vmax indicated reductions (p < 0.05) in type I at 3 days (–27%) and at 6 days (–34%) and in type IIA fibres at 6 days (–17%). It is concluded that in response to aerobic-based training, sarcoplasmic reticulum Ca2+-cycling potential is reduced by adaptations that occur soon after training onset.
Collapse
Affiliation(s)
- Howard J. Green
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Margaret Burnett
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Helen Kollias
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Jing Ouyang
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Ian Smith
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Susan Tupling
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| |
Collapse
|
13
|
Gamboa JL, Andrade FH. Muscle endurance and mitochondrial function after chronic normobaric hypoxia: contrast of respiratory and limb muscles. Pflugers Arch 2011; 463:327-38. [PMID: 22113781 DOI: 10.1007/s00424-011-1057-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/25/2011] [Accepted: 10/30/2011] [Indexed: 11/29/2022]
Abstract
Skeletal muscle adaptation to chronic hypoxia includes loss of oxidative capacity and decrease in fiber size. However, the diaphragm may adapt differently since its activity increases in response to hypoxia. Thus, we hypothesized that chronic hypoxia would not affect endurance, mitochondrial function, or fiber size in the mouse diaphragm. Adult male mice were kept in normoxia (control) or hypoxia (hypoxia, FIO(2) = 10%) for 4 weeks. After that time, muscles were collected for histological, biochemical, and functional analyses. Hypoxia soleus muscles fatigued faster (fatigue index higher in control, 21.5 ± 2.6% vs. 13.4 ± 2.4%, p < 0.05), but there was no difference between control and hypoxia diaphragm bundles. Mean fiber cross-sectional area was unchanged in hypoxia limb muscles, but it was 25% smaller in diaphragm (p < 0.001). Ratio of capillary length contact to fiber perimeter was significantly higher in hypoxia diaphragm (28.6 ± 1.2 vs. 49.3 ± 1.4, control and hypoxia, p < 0.001). Mitochondrial respiration rates in hypoxia limb muscles were lower: state 2 decreased 19%, state 3 31%, and state 4 18% vs. control, p < 0.05 for all comparisons. There were similar changes in hypoxia diaphragm: state 3 decreased 29% and state 4 17%, p < 0.05. After 4 weeks of hypoxia, limb muscle mitochondria had lower content of complex IV (cytochrome c oxidase), while diaphragm mitochondria had higher content of complexes IV and V (F (1)/F (0) ATP synthase) and less uncoupling protein 3 (UCP-3). These data demonstrate that diaphragm retains its endurance during chronic hypoxia, apparently due to a combination of morphometric changes and optimization of mitochondrial energy production.
Collapse
Affiliation(s)
- Jorge L Gamboa
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| | | |
Collapse
|
14
|
Murias JM, Kowalchuk JM, Paterson DH. Speeding of VO2 kinetics with endurance training in old and young men is associated with improved matching of local O2 delivery to muscle O2 utilization. J Appl Physiol (1985) 2010; 108:913-22. [PMID: 20150562 DOI: 10.1152/japplphysiol.01355.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The time course and mechanisms of adjustment of pulmonary oxygen uptake (V(O(2))) kinetics (time constant tauV(O(2p))) were examined during step transitions from 20 W to moderate-intensity cycling in eight older men (O; 68 +/- 7 yr) and eight young men (Y; 23 +/- 5 yr) before training and at 3, 6, 9, and 12 wk of endurance training. V(O(2p)) was measured breath by breath with a volume turbine and a mass spectrometer. Changes in deoxygenated hemoglobin concentration (Delta[HHb]) were measured by near-infrared spectroscopy. V(O(2p)) and Delta[HHb] were modeled with a monoexponential model. Training was performed on a cycle ergometer three times per week for 45 min at approximately 70% of peak V(O(2)). Pretraining tauV(O(2p)) was greater (P < 0.05) in O (43 +/- 10 s) than Y (34 +/- 8 s). tauV(O(2p)) decreased (P < 0.05) by 3 wk of training in both O (35 +/- 9 s) and Y (22 +/- 8 s), with no further changes thereafter. The pretraining overall adjustment of Delta[HHb] was faster than tauV(O(2p)) in both O and Y, resulting in Delta[HHb]/V(O(2p)) displaying an "overshoot" during the transient relative to the subsequent steady-state level. After 3 wk of training the Delta[HHb]/V(O(2p)) overshoot was attenuated in both O and Y. With further training, this overshoot persisted in O but was eliminated after 6 wk in Y. The training-induced speeding of V(O(2p)) kinetics in O and Y at 3 wk of training was associated with an improved matching of local O(2) delivery to muscle V(O(2)) (as represented by a lower Delta[HHb]/V(O(2p))). The continued overshoot in Delta[HHb]/V(O(2p)) in O may reflect a reduced vasodilatory responsiveness that may limit muscle blood flow distribution during the on-transient of exercise.
Collapse
Affiliation(s)
- Juan M Murias
- Canadian Centre for Activity and Aging, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
15
|
Remels AHV, Langen RCJ, Schrauwen P, Schaart G, Schols AMWJ, Gosker HR. Regulation of mitochondrial biogenesis during myogenesis. Mol Cell Endocrinol 2010; 315:113-20. [PMID: 19804813 DOI: 10.1016/j.mce.2009.09.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/27/2009] [Accepted: 09/28/2009] [Indexed: 11/26/2022]
Abstract
Pathways involved in mitochondrial biogenesis associated with myogenic differentiation are poorly defined. Therefore, C(2)C(12) myoblasts were differentiated into multi-nucleated myotubes and parameters/regulators of mitochondrial biogenesis were investigated. Mitochondrial respiration, citrate synthase- and beta-hydroxyacyl-CoA dehydrogenase activity as well as protein content of complexes I, II, III and V of the mitochondrial respiratory chain increased 4-8-fold during differentiation. Additionally, an increase in the ratio of myosin heavy chain (MyHC) slow vs MyHC fast protein content was observed. PPAR transcriptional activity and transcript levels of PPAR-alpha, the PPAR co-activator PGC-1alpha, mitochondrial transcription factor A and nuclear respiratory factor 1 increased during differentiation while expression levels of PPAR-gamma decreased. In conclusion, expression and activity levels of genes known for their regulatory role in skeletal muscle oxidative capabilities parallel the increase in oxidative parameters during the myogenic program. In particular, PGC-1alpha and PPAR-alpha may be involved in the regulation of mitochondrial biogenesis during myogenesis.
Collapse
Affiliation(s)
- A H V Remels
- Department of Respiratory Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Malek MH, Olfert IM, Esposito F. Detraining losses of skeletal muscle capillarization are associated with vascular endothelial growth factor protein expression in rats. Exp Physiol 2009; 95:359-68. [PMID: 19880536 DOI: 10.1113/expphysiol.2009.050369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purposes of this study were as follows: (1) to examine basal vascular endothelial growth factor (VEGF) protein concentrations following 10 weeks of endurance training and after 7 days of detraining; and (2) to examine the acute VEGF protein response to a single 1 h exercise work bout in trained and detrained animals in relationship to changes in capillary indices following training and detraining. Thirty-three Sprague-Dawley rats were randomized into the following six groups: (1) control-basal; (2) control-acute exercise; (3) trained-basal; (4) trained-acute exercise; (5) detrained-basal; and (6) detrained-acute exercise. Groups 3-6 performed endurance training on a rodent treadmill three times per week for 10 weeks. Following the training intervention, rats in groups 5 and 6 remained cage confined (i.e. detrained) for 7 days. As expected, training increased soleus and plantaris muscle capillarity and attenuated the VEGF response to acute exercise. Seven days of detraining, however, resulted in a regression of capillary contacts and individual capillary-to-fibre ratio in the plantaris and soleus muscles compared with the trained group (P < 0.05). Restoration of the VEGF protein response to acute exercise was evident in both muscles, but only statistically significant in the plantaris muscle (P < 0.05). This is the first study to demonstrate the temporal relationship between VEGF protein expression and skeletal muscle capillarity within the first week of detraining. The findings of the present investigation are consistent with the hypothesis that reduced capillarity impairs oxygen availability to the working muscles. The results indicated that training-induced angiogenic remodelling was reversible following 1 week of detraining and may be modulated by VEGF.
Collapse
Affiliation(s)
- Moh H Malek
- University of California, San Diego, School of Medicine, Division of Physiology, 9500 Gilman Drive, DEPT 0623A, La Jolla, CA 92093-0623A, USA.
| | | | | |
Collapse
|
17
|
Wong LE, Garland T, Rowan SL, Hepple RT. Anatomic capillarization is elevated in the medial gastrocnemius muscle of mighty mini mice. J Appl Physiol (1985) 2009; 106:1660-7. [PMID: 19286572 DOI: 10.1152/japplphysiol.91233.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
House mice selectively bred for high voluntary wheel running display a mini-muscle (MM) phenotype wherein mass-specific mitochondrial enzyme activities are double that of normal, but muscle mass is reduced by half. In addition, mini-muscles are characterized by small muscle fibers in the superficial region of the plantaris and medial gastrocnemius muscles. To determine the structural alterations facilitating aerobic metabolism in these mini-muscles, cross-sections of the medial gastrocnemius muscle of normal (N; n = 6) and mini-muscle (MM; n = 6) mice were histo- and immunochemically labeled and analyzed for fiber size, capillarization, and fiber type. On the basis of the higher mitochondrial enzyme activities in muscles of MM mice, we hypothesized that they would have greater fiber capillarization in the medial gastrocnemius than N mice. Furthermore, we hypothesized that augmented capillarization in MM would principally be a function of the smaller fibers in the superficial aspect of this muscle. On average, MM had higher capillary-to-fiber ratio and higher capillary density. Binning fibers according to size revealed that it was primarily the normal-sized fibers of the MM that had higher capillarity. The small fibers seen in the superficial region of MM were distinct from N mice in that they had heterogeneous myofibrillar ATPase staining and patchy succinate dehydrogenase staining in the interior of the fibers. These results support the hypothesis that the MM have higher indexes of capillarity, caused primarily by greater capillary number around normally sized fibers. These alterations are consistent with the superior mass-specific aerobic function of these muscles.
Collapse
Affiliation(s)
- Lisa E Wong
- Faculty of Kinesiology, Univ. of Calgary, 2500 Univ. Dr. NW, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
18
|
Smith C, Kruger MJ, Smith RM, Myburgh KH. The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med 2009; 38:947-69. [PMID: 18937524 DOI: 10.2165/00007256-200838110-00005] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Injury of skeletal muscle, and especially mechanically induced damage such as contusion injury, frequently occurs in contact sports, as well as in accidental contact sports, such as hockey and squash. The large variations with regard to injury severity and affected muscle group, as well as non-specificity of reported symptoms, complicate research aimed at finding suitable treatments. Therefore, in order to increase the chances of finding a successful treatment, it is important to understand the underlying mechanisms inherent to this type of skeletal muscle injury and the cellular processes involved in muscle healing following a contusion injury. Arguably the most important of these processes is inflammation since it is a consistent and lasting response. The inflammatory response is dependent on two factors, namely the extent of actual physical damage and the degree of muscle vascularization at the time of injury. However, long-term anti-inflammatory treatment is not necessarily effective in promoting healing, as indicated by various studies on NSAID treatment. Because of the factors named earlier, human studies on the inflammatory response to contusion injury are limited, but several experimental animal models have been designed to study muscle damage and regeneration. The early recovery phase is characterized by the overlapping processes of inflammation and occurrence of secondary damage. Although neutrophil infiltration has been named as a contributor to the latter, no clear evidence exists to support this claim. Macrophages, although forming part of the inflammatory response, have been shown to have a role in recovery, rather than in exacerbating secondary damage. Several probable roles for this cell type in the second phase of recovery, involving resolution processes, have been identified and include the following: (i) phagocytosis to remove cellular debris; (ii) switching from a pro- to anti-inflammatory phenotype in regenerating muscle; (iii) preventing muscle cells from undergoing apoptosis; (iv) releasing factors to promote muscle precursor cell activation and growth; and (v) secretion of cytokines and growth factors to facilitate vascular and muscle fibre repair. These many different roles suggest that a single treatment with one specific target cell population (e.g. neutrophils, macrophages or satellite cells) may not be equally effective in all phases of the post-injury response. To find the optimal targeted, but time-course-dependent, treatments requires substantial further investigations. However, the techniques currently used to induce mechanical injury vary considerably in terms of invasiveness, tools used to induce injury, muscle group selected for injury and contractile status of the muscle, all of which have an influence on the immune and/or cytokine responses. This makes interpretation of the complex responses more difficult. After our review of the literature, we propose that a standardized non-invasive contusion injury is the ideal model for investigations into the immune responses to mechanical skeletal muscle injury. Despite its suitability as a model, the currently available literature with respect to the inflammatory response to injury using contusion models is largely inadequate. Therefore, it may be premature to investigate highly targeted therapies, which may ultimately prove more effective in decreasing athlete recovery time than current therapies that are either not phase-specific, or not administered in a phase-specific fashion.
Collapse
Affiliation(s)
- Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa.
| | | | | | | |
Collapse
|
19
|
Fiber Capillary Supply Related To Fiber Size And Oxidative Capacity In Human And Rat Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 645:75-80. [DOI: 10.1007/978-0-387-85998-9_12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
DIETZ MAURINEW, PIERSMA THEUNIS, HEDENSTRÖM ANDERS, BRUGGE MAARTEN. Intraspecific variation in avian pectoral muscle mass: constraints on maintaining manoeuvrability with increasing body mass. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2006.01234.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Askew CD, Green S, Walker PJ, Kerr GK, Green AA, Williams AD, Febbraio MA. Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease. J Vasc Surg 2005; 41:802-7. [PMID: 15886664 DOI: 10.1016/j.jvs.2005.01.037] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To better understand the association between skeletal muscle and exercise intolerance in peripheral arterial disease (PAD), we assessed treadmill-walking performance and gastrocnemius muscle phenotype in healthy control subjects and in patients with PAD. We hypothesized that gastrocnemius muscle characteristics would be altered in PAD compared with control subjects and that exercise tolerance in patients PAD would be related to muscle phenotype. METHODS Sixteen patients with PAD and intermittent claudication and 13 healthy controls of the same age participated. Each subject completed a graded treadmill-walking test and underwent a resting muscle biopsy. Muscle biopsy samples were obtained from the medial gastrocnemius muscle of the most ischemic limb in PAD and a limb chosen at random in controls. Samples were analyzed for fiber type and cross-sectional area, capillary-to-fiber ratio, the number of capillaries in contact with each fiber type, and the optical density of glycogen within each fiber by using histochemical procedures. Total muscle glycogen content was determined biochemically. RESULTS Exercise capacity measured on the incremental walking test in the PAD group was only 30% to 40% of that observed in controls. The PAD group had a lower proportion of type I muscle fibers (P < .05), fewer capillaries per muscle fiber (P < .05), and tended to have smaller fiber areas (P = .08). The relative area of type I fibers, the capillary-to-fiber ratio, capillary contacts with type I and IIa fibers, and the optical density of glycogen in type I fibers were all positively correlated with exercise tolerance in the PAD group (P < .05) but not controls. CONCLUSIONS These data suggest that muscle phenotype is altered in PAD and that such alterations are associated with the exercise intolerance in these patients. In light of these findings, therapies such as resistance training or electrical stimulation that target skeletal muscle in PAD may prove beneficial, and further investigation of such therapies is warranted.
Collapse
Affiliation(s)
- Christopher D Askew
- Department of Surgery, University of Queensland, Royal Brisbane Hospital, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mathieu-Costello O, Ju Y, Trejo-Morales M, Cui L. Greater capillary-fiber interface per fiber mitochondrial volume in skeletal muscles of old rats. J Appl Physiol (1985) 2005; 99:281-9. [PMID: 15774695 DOI: 10.1152/japplphysiol.00750.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective was to examine whether muscle structural capacity for O2 flux (i.e., capillary-to-fiber surface ratio) relative to fiber mitochondrial volume deteriorates with the muscle atrophy of aging in predominantly slow- (soleus, S) and fast-twitch (extensor digitorum longus, EDL) muscles of old (24 mo) and very old (35 mo) F344BN rats compared with adult (12 mo old). Wet muscle mass decreased 29% (196 +/- 4 to 139 +/- 5 mg) in S and 22% (192 +/- 3 to 150 +/- 3 mg) in EDL between 12 and 35 mo of age, without decline in body mass. Capillary density increased 65% (1,387 +/- 54 to 2,291 +/- 238 mm(-2)) in S and 130% (964 +/- 95 to 2,216 +/- 311 mm(-2)) in EDL, because of the muscle fiber atrophy, whereas capillary per fiber number remained unchanged. Altered capillary geometry, i.e., lesser contribution of tortuosity and branching to capillary length, was found in S at 35 compared with 12 and 24 mo, and not in EDL. Accounting for capillary geometry revealed 55% (1,776 +/- 78 to 2,750 +/- 271 mm(-2)) and 113% (1,194 +/- 112 to 2,540 +/- 343 mm(-2)) increases in capillary length-to-fiber volume ratio between 12 and 35 mo of age in S and EDL, respectively. Fiber mitochondrial volume density was unchanged over the same period, causing mitochondrial volume per micrometer fiber length to decrease in proportion to the fiber atrophy in both muscles. As a result of the smaller fiber mitochondrial volume in the face of the unchanged capillary-to-fiber number ratio, capillary-to-fiber surface ratio relative to fiber mitochondrial volume not only did not deteriorate, but in fact increased twofold in both muscles between 12 and 35 mo of age, independent of their different fiber type.
Collapse
Affiliation(s)
- O Mathieu-Costello
- Dept. of Medicine, 0623A, Univ. of California, San Diego, La Jolla, CA 92093-0623, USA
| | | | | | | |
Collapse
|
23
|
Hepple RT, Vogell JE. Anatomic capillarization is maintained in relative excess of fiber oxidative capacity in some skeletal muscles of late middle-aged rats. J Appl Physiol (1985) 2004; 96:2257-64. [PMID: 14966023 DOI: 10.1152/japplphysiol.01309.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The anatomic size of the capillary-to-fiber (C/F) interface plays an important role in O(2) flux from blood to tissue by determining the surface area available for diffusion and is maintained in relative proportion to fiber mitochondrial volume across a wide range of muscle aerobic capacity. In the present study, we examined an estimate of the anatomic size of the C/F interface [the quotient of the individual C/F ratio and fiber perimeter, C/F perimeter exchange (CFPE) index] and fiber oxidative capacity in different skeletal muscles, or muscle regions, to test the hypothesis that capillarization would be maintained in relative excess of reduced fiber oxidative capacity in aged muscles. The right gastrocnemius, plantaris, and soleus muscles from young adult (8 mo old) and late middle-aged (28-30 mo old) Fischer 344 x Brown Norway F1 hybrid rats were excised for evaluation of flux through electron transport chain complexes I-III and/or morphometric estimation of capillarization. Muscle mass was lower in the gastrocnemius muscles of the older animals (2,076 +/- 32 vs. 1,825 +/- 47 mg in young adult vs. late middle-aged, respectively; mean +/- SE) but not the plantaris or soleus muscles. Fibers were smaller in the white region of gastrocnemius muscles but larger in the red region of gastrocnemius muscles of the older animals. There was no difference in the number of capillaries around a fiber, the individual C/F ratio, or the CFPE index between groups for any muscle/region, whereas flux through complexes I-III was reduced by 29-43% in late middle-aged animals. Thus the greater quotient of indexes of anatomic capillarity (individual C/F ratio or CFPE index) and fiber oxidative capacity in soleus and the white region of gastrocnemius muscles, but not in the red region of gastrocnemius muscles of the older animals, shows that anatomic capillarity is maintained in relative excess of oxidative capacity in some muscle regions in late middle-aged rats.
Collapse
Affiliation(s)
- Russell T Hepple
- Faculty of Kinesiology, University of Calgary, 2500 Univ. Dr. NW, Calgary, AB, Canada T2N 1N4.
| | | |
Collapse
|
24
|
Charifi N, Kadi F, Féasson L, Costes F, Geyssant A, Denis C. Enhancement of microvessel tortuosity in the vastus lateralis muscle of old men in response to endurance training. J Physiol 2004; 554:559-69. [PMID: 14578492 PMCID: PMC1664782 DOI: 10.1113/jphysiol.2003.046953] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 10/21/2003] [Indexed: 11/08/2022] Open
Abstract
Muscle microvascularization is usually quantified in transverse sections, in absolute terms (capillaries around fibres, CAF, or capillary-to-fibre ratio, C/F) or as CAF related to fibre area (CAF/area, CAFA). The capillary-to-fibre perimeter exchange ratio (CFPE) has been introduced in order to assess the role of the capillary-to-fibre interface in resistance to O(2) diffusion. The ratio between the length of capillaries in contact with fibres and fibre perimeter (LC/PF) has also been used as an index for capillary tortuosity. The possibility of change in capillary tortuosity with endurance training was not considered in previous studies. Consequently, this study investigated the effect of 14 weeks of endurance training on muscle microvascularization, including microvessel tortuosity, in 11 elderly men (8th decade). Microvessels were analysed using the CD31 antibody. Together with the significant increase in peak oxygen exchange and citrate synthase activity, there was a significant increase in C/F. While CFPE and CAFA remained unchanged, an important finding was the clear increase in LC/PF (56%; P < 0.001) for a same sarcomere length. We also found a strong correlation between oxidative enzyme activity and LC/PF both before and after training. These results indicate that endurance training induces significant remodelling in the microvessel network in elderly men and that an increase in the degree of microvessel tortuosity would be an important mechanism of adaptation to endurance training.
Collapse
Affiliation(s)
- N Charifi
- GIP Exercice-Sport-Santé, Research Group Physiology, Physiopathology of Exercise and Handicap, University Jean Monnet, Saint-Etienne, France.
| | | | | | | | | | | |
Collapse
|
25
|
Bernal D, Sepulveda C, Mathieu-Costello O, Graham JB. Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure. J Exp Biol 2003; 206:2831-43. [PMID: 12847127 DOI: 10.1242/jeb.00481] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tunas (family Scombridae) and sharks in the family Lamnidae are highly convergent for features commonly related to efficient and high-performance (i.e. sustained, aerobic) swimming. High-performance swimming by fishes requires adaptations augmenting the delivery, transfer and utilization of O(2) by the red myotomal muscle (RM), which powers continuous swimming. Tuna swimming performance is enhanced by a unique anterior and centrally positioned RM (i.e. closer to the vertebral column) and by structural features (relatively small fiber diameter, high capillary density and greater myoglobin concentration) increasing O(2) flux from RM capillaries to the mitochondria. A study of the structural and biochemical features of the mako shark (Isurus oxyrinchus) RM was undertaken to enable performance-capacity comparisons of tuna and lamnid RM. Similar to tunas, mako RM is positioned centrally and more anterior in the body. Another lamnid, the salmon shark (Lamna ditropis), also has this RM distribution, as does the closely related common thresher shark (Alopias vulpinus; family Alopiidae). However, in both the leopard shark (Triakis semifasciata) and the blue shark (Prionace glauca), RM occupies the position where it is typically found in most fishes; more posterior and along the lateral edge of the body. Comparisons among sharks in this study revealed no differences in the total RM quantity (approximately 2-3% of body mass) and, irrespective of position within the body, RM scaling is isometric in all species. Sharks thus have less RM than do tunas (4-13% of body mass). Relative to published data on other shark species, mako RM appears to have a higher capillary density, a greater capillary-to-fiber ratio and a higher myoglobin concentration. However, mako RM fiber size does not differ from that reported for other shark species and the total volume of mitochondria in mako RM is similar to that reported for other sharks and for tunas. Lamnid RM properties thus suggest a higher O(2) flux capacity than in other sharks; however, lamnid RM aerobic capacity appears to be less than that of tuna RM.
Collapse
Affiliation(s)
- D Bernal
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA.
| | | | | | | |
Collapse
|
26
|
Nakatani T, Nakashima T, Kita T, Ishihara A. Cell Size and Oxidative Enzyme Activity of Type-Identified Fibers in Rat Hindlimb Muscles: a Review. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Toshiaki Nakatani
- Department of Pharmacology, Nara Medical University
- Human Performance and Exercise Prescription Laboratory, Tenri University
| | | | - Taizo Kita
- Department of Pharmacology, Nara Medical University
- Department of Pharmacology, Daiichi College of Pharmaceutical Sciences
| | - Akihiko Ishihara
- Laboratory of Neurochemistry, Faculty of Integrated Human Studies, Kyoto University
| |
Collapse
|
27
|
Kano Y, Shimegi S, Furukawa H, Matsudo H, Mizuta T. Effects of aging on capillary number and luminal size in rat soleus and plantaris muscles. J Gerontol A Biol Sci Med Sci 2002; 57:B422-7. [PMID: 12456732 DOI: 10.1093/gerona/57.12.b422] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To clarify aging-related changes in the capillary network in skeletal muscle, we morphometrically examined the capillary supply to individual muscle fibers and capillary luminal size in young (3-month-old) and old (19-month-old) male Wistar rats. All morphometric parameters for capillary and muscle fiber were determined in the cross sections of the perfusion-fixed soleus (SOL) and plantaris (PL) muscles. The range of fiber size was larger in the old muscles because of hypertrophy and atrophy of fibers. However, the capillary supply to individual muscle fibers, assessed as the mean of capillary contacts around a muscle fiber, did not change with aging in SOL muscle (young rats = 7.8 +/- 0.4 vs old rats = 8.1 +/- 0.8) or PL muscle (young rats = 6.4 +/- 0.3 vs old rats = 7.0 +/- 0.9). The ratio of individual muscle fiber area to the number of capillary contacts around a muscle fiber did not differ between young rats (SOL = 361.7 +/- 76.0; PL = 264.7 +/- 20.9) and old rats (SOL = 350.2 +/- 61.3; PL = 296.8 +/- 44.9). The mean capillary luminal diameter did not differ statistically in young and old rats (SOL, young rats = 5.3 +/- 0.5 vs old rats = 5.1 +/- 0.1; PL, young rats = 5.0 +/- 0.3 vs old rats = 5.4 +/- 0.2). In conclusion, the relationship between capillary supply and muscle fiber size is similar for both young and old rats, and the luminal size of each capillary was maintained with advancing age.
Collapse
Affiliation(s)
- Yutaka Kano
- Department of Applied Physics & Chemistry, University of Electro-Communications, Tokyo, Japan.
| | | | | | | | | |
Collapse
|