1
|
Zhang X, Zou L, Li J, Xu B, Wu T, Fan H, Xu W, Yao W, Yang Y, Liu Y, Cui L. Salvianolic acid B and danshensu induce osteogenic differentiation of rat bone marrow stromal stem cells by upregulating the nitric oxide pathway. Exp Ther Med 2017; 14:2779-2788. [PMID: 28966669 PMCID: PMC5615234 DOI: 10.3892/etm.2017.4914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/10/2017] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the effect of salvianolic acid B (Sal B) and danshensu (DSU) on the osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) and the mechanisms of the effects. The osteogenic differentiation of MSCs in culture was assessed by measuring alkaline phosphatase (ALP) activity, osteocalcin (OCN) production, nitric oxide (NO) production and the mRNA expression levels of osteoprotegerin (OPG) and its ligand by MSCs. MSCs were successfully induced to differentiate into osteoblasts and adipocytes. Sal B and DSU increased the ALP activity and the production of OCN in the absence of an ossification inducer. The increase in ALP activity was more pronounced when induction was combined with the osteogenic inducer, Sal B, which enhanced the expression of OPG; however, Sal B reduced the expression of receptor activator of nuclear factor-κB ligand (RANKL) by MSCs. Sal B reversed the inhibitory effect of N-nitro L-arginine methylester on the MSCs and increased ALP activity, OCN content and the OPG/RANKL ratio. Based on these results, it was concluded that Sal B increases the osteogenic differentiation of MSCs, most likely by regulating the nitric oxide pathway.
Collapse
Affiliation(s)
- Xinle Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Tie Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Huanqiong Fan
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Weiming Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Weimin Yao
- Department of Respiratory Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
2
|
Miyawaki S, Imai H, Hayasaka T, Masaki N, Ono H, Ochi T, Ito A, Nakatomi H, Setou M, Saito N. Imaging mass spectrometry detects dynamic changes of phosphatidylcholine in rat hippocampal CA1 after transient global ischemia. Neuroscience 2016; 322:66-77. [DOI: 10.1016/j.neuroscience.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
|
3
|
Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM. Purinergic signalling in brain ischemia. Neuropharmacology 2015; 104:105-30. [PMID: 26581499 DOI: 10.1016/j.neuropharm.2015.11.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Alessia Melani
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
4
|
Bhuiyan MIH, Kim YJ. Mechanisms and prospects of ischemic tolerance induced by cerebral preconditioning. Int Neurourol J 2010; 14:203-12. [PMID: 21253330 PMCID: PMC3021810 DOI: 10.5213/inj.2010.14.4.203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
In the brain, brief episodes of ischemia induce tolerance against a subsequent severe episode of ischemia. This phenomenon of endogenous neuroprotection is known as preconditioning-induced ischemic tolerance. The purpose of this review is to summarize the current state of knowledge about mechanisms and potential applications of cerebral preconditioning and ischemic tolerance. Articles related to the terms ischemic preconditioning and ischemic tolerance were systematically searched via MEDLINE/PubMed, and articles published in English related to the nervous system were selected and analyzed. The past two decades have provided interesting insights into the molecular mechanisms of this neuroprotective phenomenon. Although both rapid and delayed types of tolerance have been documented in experimental settings, the delayed type has been found to be more prominent in the case of neuronal ischemic tolerance. Many intracellular signaling pathways have been implicated regarding ischemic preconditioning. Most of these are associated with membrane receptors, kinase cascades, and transcription factors. Moreover, ischemic tolerance can be induced by exposing animals or cells to diverse types of endogenous and exogenous stimuli that are not necessarily hypoxic or ischemic in nature. These cross-tolerances raise the hope that, in the future, it will be possible to pharmacologically activate or mimic ischemic tolerance in the human brain. Another promising approach is remote preconditioning in which preconditioning of one organ or system leads to the protection of a different (remote) organ that is difficult to target, such as the brain. The preconditioning strategy and related interventions can confer neuroprotection in experimental ischemia, and, thus, have promise for practical applications in cases of vascular neurosurgery and endo-vascular therapy.
Collapse
Affiliation(s)
| | - Youn Jung Kim
- Kyung Hee University College of Nursing Science, Seoul, Korea
| |
Collapse
|
5
|
Ischemic tolerance as an active and intrinsic neuroprotective mechanism. HANDBOOK OF CLINICAL NEUROLOGY 2008; 92:171-95. [PMID: 18790275 DOI: 10.1016/s0072-9752(08)01909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Abstract
There have been over 2000 publications in the last year addressing the topic of neuroprotection. Novel and emerging therapeutic targets that have been explored include cerebral inflammation, hypothermia, neural transplantation and repair and gene therapy. Unfortunately, with few exceptions, the successes of experimental neuroprotection have not been translated into clinical practice. The possible reasons for the discrepancy between experimental success and clinical benefit are explored.
Collapse
Affiliation(s)
- D K Menon
- Department of Anaesthesiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|
7
|
Blanco M, Lizasoain I, Sobrino T, Vivancos J, Castillo J. Ischemic preconditioning: a novel target for neuroprotective therapy. Cerebrovasc Dis 2006; 21 Suppl 2:38-47. [PMID: 16651813 DOI: 10.1159/000091702] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ischemic preconditioning involves a brief exposure to ischemia in order to develop a tolerance to injurious effects of prolonged ischemia. The molecular mechanisms of neuroprotection that lead to ischemic tolerance are not yet completely understood. However, it seems that two distinct phases are involved. Firstly, a cellular defense function against ischemia may be developed by the mechanisms inherent to neurons such as posttranslational modification of proteins or expression of new proteins via a signal transduction system to the nucleus. Secondly, a stress response and synthesis of stress proteins (heat shock proteins) may be activated. These mechanisms are mediated by chaperones. The objective of ischemic preconditioning research is to identify the underlying endogenous protective cellular receptors and signaling cascades, with the long-term goal of allowing therapeutic augmentation of the endogenous protective mechanisms in cerebral ischemia and possibly development of new neuroprotective strategies for ischemic stroke treatment.
Collapse
Affiliation(s)
- Miguel Blanco
- Department of Neurology, Division of Vascular Neurology, Laboratory of Neurovascular Research, Hospital Clínico Universitario, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
8
|
Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW. Cortical spreading depression (CSD)-induced tolerance to transient focal cerebral ischemia in halothane anesthetized rats is affected by anesthetic level but not ATP-sensitive potassium channels. Brain Res 2005; 1062:127-33. [PMID: 16256083 DOI: 10.1016/j.brainres.2005.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 09/06/2005] [Accepted: 09/25/2005] [Indexed: 11/25/2022]
Abstract
We investigated the participation of ATP-sensitive potassium (K(ATP)) channels, adenosine A1 receptors, and the effects of different levels of halothane anesthesia in the development of CSD-induced ischemic tolerance. To elicit CSD, 0.5 M KCl was applied for 2 h to the right hemisphere of halothane anesthetized male Wistar rats. The inhalation concentration of halothane during CSD was maintained at 0.5% (n = 8), 1.0% (n = 8), or 2.0% (n = 8). For control animals, saline was applied instead of KCl (n = 8). To inhibit K(ATP) channels or adenosine A1 receptors, glibenclamide (0.1 mg/kg icv; n = 8), 5-hydroxydeconaoate (5-HD; 100 mg/kg ip; n = 12), or 8-Cyclopentyl-1, 3-dipropylxanthine (DPCPX) (1.0 mg/kg ip; n = 8) was applied before preconditioning during 1.0% halothane anesthesia. Temporary occlusion (120 min) of the right middle cerebral artery was induced 4 days after preconditioning and the infarct volume was measured. Preconditioning elicited under 1.0% halothane reduced cortical infarct volume from 277 +/- 15 mm3 in the control group to 159 +/- 14 mm3 in the CSD group (mean +/- SEM, P < 0.05). In contrast, CSD induced during inhalation of 0.5% or 2.0% halothane did not confer ischemic tolerance. The reduction in infarct area with CSD during inhalation of 1% halothane was not changed in animals treated with glibenclamide or 5-HD or DPCPX. These results uncover a crucial role of halothane level but not of K(ATP) channels or adenosine A1 receptors in the preconditioning effects of CSD.
Collapse
Affiliation(s)
- Takashi Horiguchi
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | | | | | | | | |
Collapse
|
9
|
Nakamura H, Katsumata T, Nishiyama Y, Otori T, Katsura KI, Katayama Y. Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils. Life Sci 2005; 78:1713-9. [PMID: 16253278 DOI: 10.1016/j.lfs.2005.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 08/09/2005] [Indexed: 11/16/2022]
Abstract
Ischemic tolerance, the phenomenon where a sublethal ischemic preconditioning protects the brain against a subsequent lethal ischemia, has been widely studied. Studies have been done on cerebral blood flow levels prior to the lethal ischemia, but the hemodynamic pattern after global ischemia with ischemic preconditioning has not been reported. Sequential changes in regional cerebral blood flow (rCBF) in gerbil hippocampus after 5 min global ischemia with or without 2 min ischemic preconditioning were studied to determine if ischemic preconditioning affects rCBF. Four different treatments were given: (1) sham-operated, (2) 2 min ischemia, (3) non-preconditioned, and (4) preconditioned. Groups (1) and (2) (both groups n = 5) were given a 24-h recovery period and the rCBF was measured for baseline values. 24 h after sham-operation (3) and 2 min ischemia (4), gerbils were subjected to 5 min ischemia followed by 1 h, 6 h, 1-day or 7-day reperfusion periods (all groups n = 5). Although no regional difference was observed in the recovery pattern of rCBF, the values of rCBF were significantly higher in the preconditioned group throughout whole brain regions including hippocampus. These results indicate that ischemic preconditioning facilitated the recovery of rCBF after 5 min global ischemia. It needs further study to determine whether the protecting effects of preconditioning relate to the early recovery of rCBF or not. However, our results could be interpreted that the early recovery of rCBF may lead to benefits for cell survival in the CA1 neuron, probably facilitating other protecting mechanisms.
Collapse
Affiliation(s)
- Hidenori Nakamura
- The Second Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Endogenous tolerance to cerebral ischemia is nature's strategy for neuroprotection. Exploring the physiologic and molecular mechanism of this phenomenon may give us new means of protection against ischemia and other degenerative disorders. This article reviews the currently available experimental methods to induce ischemic tolerance in the brain and gives a brief summary of the potential mode of action.
Collapse
Affiliation(s)
- K J Kapinya
- Department of Experimental Neurology, Medical Faculty Charité, Humboldt-University, Berlin, Germany.
| |
Collapse
|
11
|
Horiguchi T, Snipes JA, Kis B, Shimizu K, Busija DW. The role of nitric oxide in the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Brain Res 2005; 1039:84-9. [PMID: 15781049 DOI: 10.1016/j.brainres.2005.01.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 11/30/2022]
Abstract
Cortical spreading depression (CSD) has been documented to confer ischemic tolerance on brain. Although nitric oxide (NO) is a crucial mediator in preconditioning under certain circumstances, the role of NO in CSD-induced neuroprotection is unclear. We examined the effect of L-NAME, an inhibitor of NO synthase, on CSD-induced tolerance against transient focal cerebral ischemia. A solution of 0.5 M KCl was applied for 2 h on the right hemisphere to induce CSD. Animals received either vehicle or L-NAME (4 mg/kg, iv) 30 min before CSD. Temporary occlusion (120 min) of the right middle cerebral artery was induced 4 days after preconditioning and the infarct volume was measured. Additionally, ERK 1/2 activation and cyclooxygenase-2 (COX-2) expression in the cerebral cortex were examined by Western blotting analysis immediately after cessation of CSD, or at 1, 2, 4, 8, and 24 h after CSD. CSD reduced infarct volume from 275 +/- 15 mm3 (mean +/- SEM) in the non-CSD group to 155 +/- 14 mm3 in the CSD group (P < 0.05). L-NAME abolished this protection (281 +/- 14 mm3; P < 0.05 vs. CSD group). Elevated ERK activation and COX-2 expression were observed immediately after or 8 h after preconditioning, respectively. Those responses are significantly augmented by L-NAME (3-fold for ERK and 4-fold for COX-2). These results suggest a crucial role of NO in the establishment of preconditioning with CSD.
Collapse
Affiliation(s)
- Takashi Horiguchi
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | | | | | | | | |
Collapse
|
12
|
Yoshida M, Nakakimura K, Cui YJ, Matsumoto M, Sakabe T. Adenosine A(1) receptor antagonist and mitochondrial ATP-sensitive potassium channel blocker attenuate the tolerance to focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2004; 24:771-9. [PMID: 15241185 DOI: 10.1097/01.wcb.0000122742.72175.1b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Involvement of adenosine and adenosine triphosphate-sensitive potassium (KATP) channels in the development of ischemic tolerance has been suggested in global ischemia, but has not been studied extensively in focal cerebral ischemia. This study evaluated modulating effects of adenosine A1 receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and mitochondrial KATP channel blocker 5HD (5-hydroxydecanoate) on the development of tolerance to focal cerebral ischemia in rats. Preconditioning with 30-minute middle cerebral artery occlusion (MCAO) reduced cortical and subcortical infarct volume following 120-minute MCAO (test ischemia) given 72 hours later. The neuroprotective effect of preconditioning was attenuated by 0.1 mg/kg DPCPX given before conditioning ischemia (30-minute MCAO), but no influence was provoked when it was administered before test ischemia. DPCPX had no effect on infarct volume after conditioning or test ischemia when given alone. The preconditioning-induced neuroprotection disappeared when 30 mg/kg 5HD was administered before test ischemia. These results suggest a possible involvement of adenosine A1 receptors during conditioning ischemia and of mitochondrial KATP channels during subsequent severe ischemia in the development of tolerance to focal cerebral ischemia.
Collapse
Affiliation(s)
- Mitsuyoshi Yoshida
- Department of Anesthesiology-Resuscitology, Yamaguchi University School of Medicine, Yamaguchi Rosai Hospital, Yamaguchi, Japan
| | | | | | | | | |
Collapse
|
13
|
Noji T, Karasawa A, Kusaka H. Adenosine uptake inhibitors. Eur J Pharmacol 2004; 495:1-16. [PMID: 15219815 DOI: 10.1016/j.ejphar.2004.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 04/30/2004] [Accepted: 05/10/2004] [Indexed: 12/23/2022]
Abstract
Adenosine is a purine nucleoside and modulates a variety of physiological functions by interacting with cell-surface adenosine receptors. Under several adverse conditions, including ischemia, trauma, stress, seizures and inflammation, extracellular levels of adenosine are increased due to increased energy demands and ATP metabolism. Increased adenosine could protect against excessive cellular damage and organ dysfunction. Indeed, several protective effects of adenosine have been widely reported (e.g., amelioration of ischemic heart and brain injury, seizures and inflammation). However, the effects of adenosine itself are insufficient because extracellular adenosine is rapidly taken up into adjacent cells and subsequently metabolized. Adenosine uptake inhibitors (nucleoside transport inhibitors) could retard the disappearance of adenosine from the extracellular space by blocking adenosine uptake into cells. Therefore, it is expected that adenosine uptake inhibitors will have protective effects in various diseases, by elevating extracellular adenosine levels. Protective or ameliorating effects of adenosine uptake inhibitors in ischemic cardiac and cerebral injury, organ transplantation, seizures, thrombosis, insomnia, pain, and inflammatory diseases have been reported. Preclinical and clinical results indicate the possibility of therapeutic application of adenosine uptake inhibitors.
Collapse
Affiliation(s)
- Tohru Noji
- Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi, Sunto, Shizuoka 411-8731, Japan.
| | | | | |
Collapse
|
14
|
Sorimachi T, Nowak TS. Pharmacological manipulations of ATP-dependent potassium channels and adenosine A1 receptors do not impact hippocampal ischemic preconditioning in vivo: evidence in a highly quantitative gerbil model. J Cereb Blood Flow Metab 2004; 24:556-63. [PMID: 15129188 DOI: 10.1097/00004647-200405000-00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ischemic preconditioning models have been characterized in brain, heart, and other tissues, and previous pharmacologic studies have suggested an involvement of adenosine and ATP dependent potassium (KATP) channels in such tolerance phenomena. This question was reexamined in a reproducible gerbil model in which the duration of ischemic depolarization defined the severity of preconditioning and test insults. Agents studied were glibenclamide, a blocker of KATP channels; 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist; and N6-cyclopentyladenosine (CPA), an A1 agonist. Intraventricular glibenclamide injections aggravated neuron damage after brief priming insults, in parallel with a dose-dependent prolongation of ischemic depolarization. However, the depolarization thresholds for ischemic neuronal injury were identical in vehicle- and glibenclamide-treated animals, and glibenclamide did not affect preconditioning when equivalent insult severity was maintained during priming insults. Neither DPCPX nor CPA had any effect on the onset or duration of depolarization after intraperitoneal injection in this model, and neither drug affected neuron damage. In the case of CPA, it was necessary to maintain temperature for 4 to 6 hours of recirculation to avoid significant confounding hypothermia. These results fail to support a direct involvement of A1 receptors or KATP channels during early stages in the development of ischemic tolerance in vivo, and emphasize the need for robust, well-controlled, and quantitative models in such studies.
Collapse
Affiliation(s)
- Takatoshi Sorimachi
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
15
|
Zhou AM, Li WB, Li QJ, Liu HQ, Feng RF, Zhao HG. A short cerebral ischemic preconditioning up-regulates adenosine receptors in the hippocampal CA1 region of rats. Neurosci Res 2004; 48:397-404. [PMID: 15041193 DOI: 10.1016/j.neures.2003.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 12/18/2003] [Indexed: 11/28/2022]
Abstract
Pharmacologically blocking or stimulating studies have showed the crucial role of adenosine receptors in the protective effect of cerebral ischemic preconditioning (CIP). However, little is know about whether the adenosine receptors are up-regulated in the process. In the present study, changes in expression of adenosine receptors in the CA1 hippocampus after a short CIP in a period of 3 min were investigated in rat four-vessel occluding (4VO) brain ischemic model using immunohistochemistry. The experiments were performed on groups of sham, 4 h, 1, 3, and 7 days (n = 6 in each group) after the CIP. The number and immunostaining density of immunoreactive cells for A1 and A2b adenosine receptors in the CA1 hippocampus were significantly increased after the CIP. For A1 adenosine receptor, the increase occurred in CA1 pyramidal neurons. While for A2b adenosine receptor, the increase occurred in the stratum radiatum of the CA1. The immunoreactive cells for A2b receptor showed distinct morphological characteristics of astrocytes. The increases were consistent in time course (1-7 days) with the development of the ischemic tolerance induced by the CIP. It was concluded that up-regulation of adenosine receptors may also play an important role in the protective effect of CIP.
Collapse
Affiliation(s)
- Ai-Min Zhou
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Gadalla AE, Pearson T, Currie AJ, Dale N, Hawley SA, Sheehan M, Hirst W, Michel AD, Randall A, Hardie DG, Frenguelli BG. AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. J Neurochem 2004; 88:1272-82. [PMID: 15009683 DOI: 10.1046/j.1471-4159.2003.02253.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
5-Aminoimidazole-4-carboxamide riboside (AICA riboside; Acadesine) activates AMP-activated protein kinase (AMPK) in intact cells, and is reported to exert protective effects in the mammalian CNS. In rat cerebrocortical brain slices, AMPK was activated by metabolic stress (ischaemia > hypoxia > aglycaemia) and AICA riboside (0.1-10 mm). Activation of AMPK by AICA riboside was greatly attenuated by inhibitors of equilibrative nucleoside transport. AICA riboside also depressed excitatory synaptic transmission in area CA1 of the rat hippocampus, which was prevented by an adenosine A1 receptor antagonist and reversed by application of adenosine deaminase. However, AICA riboside was neither a substrate for adenosine deaminase nor an agonist at adenosine receptors. We conclude that metabolic stress and AICA riboside both stimulate AMPK activity in mammalian brain, but that AICA riboside has an additional effect, i.e. competition with adenosine for uptake by the nucleoside transporter. This results in an increase in extracellular adenosine and subsequent activation of adenosine receptors. Neuroprotection by AICA riboside could be mediated by this mechanism as well as, or instead of, by AMPK activation. Caution should therefore be exercised in ascribing an effect of AICA riboside to AMPK activation, especially in systems where inhibition of adenosine re-uptake has physiological consequences.
Collapse
Affiliation(s)
- Anne E Gadalla
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nishimura M, Sugino T, Nozaki K, Takagi Y, Hattori I, Hayashi J, Hashimoto N, Moriguchi T, Nishida E. Activation of p38 kinase in the gerbil hippocampus showing ischemic tolerance. J Cereb Blood Flow Metab 2003; 23:1052-9. [PMID: 12973021 DOI: 10.1097/01.wcb.0000084251.20114.65] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ischemic tolerance is a phenomenon in which brief episodes of ischemia protect against the lethal effects of subsequent periods of prolonged ischemia. The authors investigated the activation of p38 mitogen-activated protein kinase (p38) in the gerbil hippocampus by Western blotting and immunohistochemistry to clarify the role of p38 kinase in ischemic tolerance. After the 2-minute global ischemia, immunoreactivity indicating active p38 was enhanced at 6 hours of reperfusion and continuously demonstrated 72 hours after ischemia in CA1 and CA3 neurons. Pretreatment with SB203580, an inhibitor of active p38 (0-30 micromol/l), 30 minutes before the 2-minute ischemia reduced the ischemic tolerance effect in a dose-dependent manner. Immunoblot analysis indicated that alteration of the phosphorylation pattern of p38 kinase in the hippocampus after subsequent lethal ischemia was induced by the preconditioning. These findings suggest that lasting activation of p38 may contribute to ischemic tolerance in CA1 neurons of the hippocampus and that components of the p38 cascade can be target molecules to modify neuronal survival after ischemia.
Collapse
Affiliation(s)
- Masaki Nishimura
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
A brief period of cerebral ischemia confers transient tolerance to a subsequent ischemic challenge in the brain. This phenomenon of ischemic tolerance has been confirmed in various animal models of forebrain ischemia and focal cerebral ischemia. Since the ischemic tolerance afforded by preceding ischemia can bring about robust protection of the brain, the mechanism of tolerance induction has been extensively studied. It has been elucidated that ischemic tolerance protects neurons, and at the same time, it preserves brain function. Further experiments have shown that metabolic and physical stresses can also induce cross-tolerance to cerebral ischemia, but the protection by cross-tolerance is relatively modest. The underlying mechanism of ischemic tolerance still is not fully understood. Potential mechanisms may be divided into two categories: (1) A cellular defense function against ischemia may be enhanced by the mechanisms inherent to neurons. They may arise by posttranslational modification of proteins or by expression of new proteins via a signal transduction system to the nucleus. These cascades of events may strengthen the influence of survival factors or may inhibit apoptosis. (2) A cellular stress response and synthesis of stress proteins may lead to an increased capacity for health maintenance inside the cell. These proteins work as cellular "chaperones" by unfolding misfolded cellular proteins and helping the cell to dispose of unneeded denatured proteins. Recent experimental data have demonstrated the importance of the processing of unfolded proteins for cell survival and cell death. The brain may be protected from ischemia by using multiple mechanisms that are available for cellular survival. If tolerance induction can be manipulated and accelerated by a drug treatment that is safe and effective enough, it could greatly improve the treatment of stroke.
Collapse
Affiliation(s)
- Takaaki Kirino
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan.
| |
Collapse
|
19
|
Hiraide T, Katsura K, Muramatsu H, Asano G, Katayama Y. Adenosine receptor antagonists cancelled the ischemic tolerance phenomenon in gerbil. Brain Res 2001; 910:94-8. [PMID: 11489258 DOI: 10.1016/s0006-8993(01)02647-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pretreatment of the brain with sublethal ischemia has been reported to induce neuronal resistance to otherwise lethal ischemia, a phenomenon designated as ischemic tolerance. The protective mechanisms of the phenomenon are not known yet, however, recent experimental data suggest the involvement of adenosine receptor activation in the acquisition of tolerance. In this study, the effect of theophylline, a non-selective adenosine receptor antagonist, and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an adenosine A1 receptor antagonist, were investigated to ascertain if these drugs could cancel the protective effect of ischemic tolerance in the gerbil. DPCPX or theophylline was administered at 3 h after a short preconditioning ischemia, and 21 h later animals were subjected to lethal ischemia of 5 min duration. DPCPX at a dose of 1.0 mg/kg (i.p) and theophylline at a dose of 20 mg/kg (i.p) significantly reduced the protective effect of preconditioning in the CA1 hippocampal neurons. These findings suggest the involvement of adenosine receptor activation for the development of ischemic tolerance phenomenon.
Collapse
Affiliation(s)
- T Hiraide
- The Second Department of Internal Medicine, Nippon Medical School, 1-1-5 Bunkyo-ku, Sendagi, Tokyo 113-8603, Japan. hiraide-tomoharu/
| | | | | | | | | |
Collapse
|
20
|
Newman JP, Peebles DM, Hanson MA. Adenosine produces changes in cerebral hemodynamics and metabolism as assessed by near-infrared spectroscopy in late-gestation fetal sheep in utero. Pediatr Res 2001; 50:217-21. [PMID: 11477206 DOI: 10.1203/00006450-200108000-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rises in fetal adenosine during hypoxia may have a metabolic inhibitory role that helps the fetus adapt to periods of low arterial partial pressure of oxygen (P(a)O(2)). We examined the fetal cerebral hemodynamic and metabolic responses to exogenous adenosine infusion and compared this with previous studies. Six fetal sheep at ca. 125 d gestation were instrumented under general anesthesia with catheters, flow probes, and near-infrared optodes and allowed to recover. After 3 d, adenosine was infused at a level known to reproduce fetal levels during hypoxia. Fetal hemodynamics and cerebral near-infrared spectroscopic (NIRS) variables were monitored and paired blood samples taken for oxygen delivery and consumption calculation. Fetal heart rate, mean arterial pressure, and carotid flow showed no change during adenosine infusion. Cerebral oxyhemoglobin (HbO(2)), deoxyhemoglobin (Hb), and blood volume rose, suggesting venous pooling in the brain. Cerebral cytochrome oxidase (CcO) became more oxidized, indicating reduction in electron flow down the mitochondrial electron transfer chain and, thus, a fall in metabolic rate. Blood sample analysis revealed that there was no change in oxygen delivery to the head but that cerebral oxygen consumption fell during adenosine infusion. These data indicate that fetal cerebral metabolism fell during infusion of adenosine at a level known to reproduce fetal plasma concentrations during hypoxia.
Collapse
Affiliation(s)
- J P Newman
- Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, United Kingdom.
| | | | | |
Collapse
|
21
|
Turcáni P, Turèáni M. Effect of propentofylline on cerebral blood flow in a gerbil focal cerebral ischemia. J Neurol Sci 2001; 183:57-60. [PMID: 11166795 DOI: 10.1016/s0022-510x(00)00477-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Neuroprotection and improvement of cerebral blood flow are two basic principles of pharmacological intervention in acute stroke. Propentofylline, an adenosine uptake and phosphodiesterase inhibitor, has been shown to be neuroprotective in various models of cerebral ischemia. However, its effect on cerebral circulation in ischemic conditions is not yet fully elucidated. Present experiments were designed to investigate the effect of propentofylline on regional cerebral blood flow (rCBF) in the gerbil permanent focal cerebral ischemia model. METHODS Focal cerebral ischemia in gerbils was produced by clipping one common carotid artery and contralateral external carotid artery. rCBF was measured in both parietal cortices concurrently by the hydrogen clearance. RESULTS Propentofylline at 10 mg/kg administered intraperitoneally 30 min after induction of cerebral ischemia significantly increased rCBF in ischemic regions (increase of 94.6%). Effects were dose dependent. Higher dosage (30 mg/kg) induced reductions of ischemic rCBF, which were associated with significant decreases of mean arterial blood pressure. Lower dosage (5 mg/kg) was without significant effect. CONCLUSIONS Results suggest that propentofylline at suitable dosage improves rCBF in ischemic brain areas. Taking into account neuroprotective potentials of propentofylline, results offer additional rationale for clinical trials investigating efficacy of propentofylline in treatment of acute stroke.
Collapse
Affiliation(s)
- P Turcáni
- Department of Neurology, Medical School, Comenius University, Mickiewiczova 13, SK-813 69, Bratislava, Slovak Republic.
| | | |
Collapse
|
22
|
Aketa S, Nakase H, Kamada Y, Hiramatsu K, Sakaki T. Chemical preconditioning with 3-nitropropionic acid in gerbil hippocampal slices: therapeutic window and the participation of adenosine receptor. Exp Neurol 2000; 166:385-91. [PMID: 11085903 DOI: 10.1006/exnr.2000.7507] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic tolerance induced by a subtoxic dose of neurotoxin, 3-nitropropionic acid (3-NPA), was recently reported as "chemical preconditioning." We electrophysiologically investigated the therapeutic window and the effect via action at the adenosine receptor using a gerbil hippocampal slice model of the tolerance phenomenon. 3-NPA at the dose of 4 mg/kg was administered intraperitoneally at 3, 24, and 72 h prior to slice preparation. Prolonged delay to hypoxic depolarization (HD) and improvement of the field excitatory postsynaptic potential recovery following a fixed period of hypoxia (8 min) were observed in the groups pretreated at 3 and 24 h compared with the control (P < 0.05). Correlation between the delay to HD and the recovery was highly significant (r = 0.37, P < 0.001). These effects were completely reversed by administration of theophylline (20 mg/kg), an adenosine receptor blocker. These findings indicate that chemical preconditioning with 3-NPA induces early onset (3 h) and long-lasting (24 h) tolerance of hypoxic damage to excitatory synaptic mechanisms in the hippocampus by delayed calcium entry, and the activation of adenosine receptor contributes to this neuroprotective effect.
Collapse
Affiliation(s)
- S Aketa
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| | | | | | | | | |
Collapse
|
23
|
de Mendonça A, Sebastião AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:258-74. [PMID: 11011069 DOI: 10.1016/s0165-0173(00)00033-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A neuroprotective role for adenosine is commonly assumed. Recent studies revealed that adenosine may unexpectedly, under certain circumstances, have the opposite effects contributing to neuronal damage and death. The basis for this duality may be the activation of distinct subtypes of adenosine receptors, interactions between these receptors, differential actions on neuronal and glial cells, and various time frames of adenosinergic compounds administration. If these aspects are understood, adenosine should remain an interesting target for therapeutical neuroprotective approaches after all.
Collapse
Affiliation(s)
- A de Mendonça
- Laboratory of Neurosciences, Faculty of Medicine of Lisbon, Av. Professor Egas Moniz, 1649-035, Lisbon, Portugal.
| | | | | |
Collapse
|
24
|
Namura S, Nagata I, Kikuchi H, Andreucci M, Alessandrini A. Serine-threonine protein kinase Akt does not mediate ischemic tolerance after global ischemia in the gerbil. J Cereb Blood Flow Metab 2000; 20:1301-5. [PMID: 10994851 DOI: 10.1097/00004647-200009000-00004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The protein kinase Akt/PKB has been implicated in antiapoptosis and neuronal survival. The authors now show that Akt is phosphorylated in the hippocampus during the early reperfusion period after 3.5 minutes bilateral carotid artery occlusion (BCAO) in the gerbil. Repeated sublethal ischemia induces ischemic tolerance, which is known as ischemic preconditioning. Ischemic preconditioning does not affect the amount of Akt protein, but rather decreases the phosphorylation of Akt at Ser-473 after 10 minutes reperfusion after 3.5 minutes BCAO. These results suggest that although Akt may play a role in neuronal survival after ischemia, it may not play a role in ischemic tolerance by preconditioning.
Collapse
Affiliation(s)
- S Namura
- Stroke and Brain Protection, Research Institute, and Department of Neurosurgery, National Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
25
|
Johnston WE. Preconditioning the Brain and Heart: Implications for Cardiac Surgery. Semin Cardiothorac Vasc Anesth 2000. [DOI: 10.1053/vc.2000.6483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite many recent advances in emboli detection, aortic imaging, myocardial preservation, and perfusion equipment, ischemic injury to the heart and brain remains a serious complications after cardiac surgery. Hypoperfusion (particularly in the heart) and microem boli (particularly in the brain) during cardiopulmonary bypass constitute the etiology of ischemia. Although hypothermia has traditionally been the mainstay for systemic protection from transient ischemia, there has been a general trend to accept warmer heart and core temperatures during bypass, which increases the poten tial for ischemic injury to various organs. This article discusses recent advances in the understanding of myocardial and brain preconditioning and their poten tial role to provide additional protection during cardiac surgery.
Collapse
Affiliation(s)
- William E. Johnston
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
26
|
Shan HQ, Cheng JS. Effect of adenosine on adenosine triphosphate-sensitive potassium channel during hypoxia in rat hippocampal neurons. Neurosci Lett 2000; 286:45-8. [PMID: 10822149 DOI: 10.1016/s0304-3940(00)01083-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using the whole-cell patch clamp method, we explored the effect of adenosine on the K(ATP) current and its regulatory mechanisms in acutely dissociated rat hippocampal neurons. A chemical hypoxia model was made using 0.2 mmol/l 2,4dinitrophenol (2,4DNP). During hypoxia, the K(ATP) current was not raised significantly by adenosine alone, but was accelerated significantly by adenosine in combination with the selective A(2) receptor blocker 3, 7-dimethl-1-propargylxanth-ine. The selective A(1) receptor agonist N6-cyclopentyladenosine also accelerated the K(ATP) current. These results suggest that activation of the adenosine A(1) receptor can accelerate opening of the K(ATP) channel during hypoxia, and that the A(2) receptor may have an opposing effect to the A(1) receptor.
Collapse
Affiliation(s)
- H Q Shan
- National Laboratory of Medical Neurobiology, Department of Neurobiology, Shanghai Medical University, 138 YiXueYuan Road, 200032, People's Republic of, Shanghai, China.
| | | |
Collapse
|
27
|
Abstract
The phenomenon of ischemic tolerance has been closely associated with the expression of heat shock proteins but recently, stress tolerance not related to hsp72 has been reported. In the present study, we focused on ischemic tolerance induced by hypoxia and hyperthermia in neonatal rat brain and analyzed the expression of hsp72. In a neonatal rat model of hypoxic ischemia (H-I), preconditioning by whole-body hyperthermia or hypoxia was induced 24 h prior to the ischemia. Brain damage was histologically evaluated and the expressions of hsp72 were analyzed. Hyperthermic preconditioning at 41 degrees C for 15 min, as well as hypoxic preconditioning with 8% hypoxia for 3 h, had almost complete neuroprotective effects. However, we failed to detect the expression of hsp72 in any of preconditioning. Only the H-I insult itself induced hsp72 in the dorsal striatum and slightly in the thalamus and the hippocampus. Hyperthermic preconditioning has neuroprotective effects which are comparable to hypoxic preconditioning in immature brain. The expression of hsp72 is not likely necessary for the ischemic tolerance in immature brain.
Collapse
Affiliation(s)
- T Wada
- Department of Neurosurgery, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan.
| | | | | |
Collapse
|