1
|
Asif M, Qusty NF, Alghamdi S. An Overview of Various Rifampicin Analogs against Mycobacterium tuberculosis and their Drug Interactions. Med Chem 2024; 20:268-292. [PMID: 37855280 DOI: 10.2174/0115734064260853230926080134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 10/20/2023]
Abstract
The success of the TB control program is hampered by the major issue of drug-resistant tuberculosis (DR-TB). The situation has undoubtedly been made more difficult by the widespread and multidrug-resistant (XDR) strains of TB. The modification of existing anti-TB medications to produce derivatives that can function on resistant TB bacilli is one of the potential techniques to overcome drug resistance affordably and straightforwardly. In comparison to novel pharmaceuticals for drug research and progress, these may have a better half-life and greater bioavailability, be more efficient, and serve as inexpensive alternatives. Mycobacterium tuberculosis, which is drugsusceptible or drug-resistant, is effectively treated by several already prescribed medications and their derivatives. Due to this, the current review attempts to give a brief overview of the rifampicin derivatives that can overcome the parent drug's resistance and could, hence, act as useful substitutes. It has been found that one-third of the global population is affected by M. tuberculosis. The most common cause of infection-related death can range from latent TB to TB illness. Antibiotics in the rifamycin class, including rifampicin or rifampin (RIF), rifapentine (RPT), and others, have a special sterilizing effect on M. tuberculosis. We examine research focused on evaluating the safety, effectiveness, pharmacokinetics, pharmacodynamics, risk of medication interactions, and other characteristics of RIF analogs. Drug interactions are especially difficult with RIF because it must be taken every day for four months to treat latent TB infection. RIF continues to be the gold standard of treatment for drug-sensitive TB illness. RIF's safety profile is well known, and the two medicines' adverse reactions have varying degrees of frequency. The authorized once-weekly RPT regimen is insufficient, but greater dosages of either medication may reduce the amount of time needed to treat TB effectively.
Collapse
Affiliation(s)
- Mohammad Asif
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Naeem F Qusty
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al‒Qura University, Makkah, 21955, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al‒Qura University, Makkah, 21955, Saudi Arabia
| |
Collapse
|
2
|
Grover S, Laxmi R, Jagota G. Drug interaction between anti-tubercular medication and clozapine leading to relapse of psychosis: A case report. Asian J Psychiatr 2022; 77:103279. [PMID: 36202004 DOI: 10.1016/j.ajp.2022.103279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Sandeep Grover
- Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| | - Raj Laxmi
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Gopika Jagota
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
3
|
Li W, Liu Y, Jiang H, Du J, Zhao Y, Du Z, Li S, Wang H. A Case Report of Excessive Use of Clozapine Combined With Clonazepam. Front Psychiatry 2022; 13:831276. [PMID: 35242065 PMCID: PMC8885542 DOI: 10.3389/fpsyt.2022.831276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION For patients with schizophrenia, clozapine (CLZ) in combination with clonazepam (CLNAZ) is one of the viable therapeutic options. We successfully reduced the doses of CLZ and CLNAZ to the safe range of a polydrug abuse patient. As far as we know, this is the first case of this problem. As there are no relevant guidelines to reduce CLZ or CLNAZ, we hope to share this case to provide a reference for the prevention and treatment of similar patients with multidrug abuse. CASE PRESENTATION This case report describes a 46-year-old male with a 24-year history of schizophrenia. His main clinical manifestations are auditory hallucinations, persecutory delusion, and emotional instability. In 2012, the patient started taking rifampicin due to tuberculosis and gradually overused CLZ and CLNAZ. Before admission, he took 1,275 mg of CLZ every day and 26 mg of CLNAZ every night. With the help of Therapeutic Drug Monitoring (TDM) and pharmacogenetic testing, we gradually reduced his daily dose of CLZ and CLNAZ and formulated a more reasonable dosing schedule for him. At the time of discharge, the patient took CLZ 450 mg per day and CLNAZ 2 mg per night, with no obvious symptoms of psychosis. CONCLUSION In the process of drug maintenance treatment of schizophrenia, it is necessary to adopt TDM strategy to reduce and treat the abuse of multiple prescription drugs.
Collapse
Affiliation(s)
- Wei Li
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Alzheimer's Disease and Related Disease Center, Shanghai Jiaotong University, Shanghai, China
| | - Yan Liu
- Shanghai Baoshan Mental Health Center, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Mental Health Center Clinical Research Center, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Zhao
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zheyi Du
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuo Li
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haihong Wang
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
4
|
Clinically Relevant Interactions between Atypical Antipsychotics and Anti-Infective Agents. Pharmaceuticals (Basel) 2020; 13:ph13120439. [PMID: 33276675 PMCID: PMC7761579 DOI: 10.3390/ph13120439] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
This is a comprehensive review of the literature on drug interactions (DIs) between atypical antipsychotics and anti-infective agents that focuses on those DIs with the potential to be clinically relevant and classifies them as pharmacokinetic (PK) or pharmacodynamic (PD) DIs. PubMed searches were conducted for each of the atypical antipsychotics and most commonly used anti-infective agents (13 atypical antipsychotics by 61 anti-infective agents/classes leading to 793 individual searches). Additional relevant articles were obtained from citations and from prior review articles written by the authors. Based on prior DI articles and our current understanding of PK and PD mechanism, we developed tables with practical recommendations for clinicians for: antibiotic DIs, antitubercular DIs, antifungal DIs, antiviral DIs, and other anti-infective DIs. Another table reflects that in clinical practice, DIs between atypical antipsychotics and anti-infective agents occur in patients also suffering an infection that may also influence the PK and PD mechanisms of both drugs (the atypical antipsychotic and the anti-infective agent(s)). These tables reflect the currently available literature and our current knowledge of the field and will need to be updated as new DI information becomes available.
Collapse
|
5
|
Given the Data of Hommers and Colleagues, Valproic Acid Is Not an Unequivocal Inducer of Clozapine Metabolism. J Clin Psychopharmacol 2019; 39:419-420. [PMID: 31188239 DOI: 10.1097/jcp.0000000000001072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Abstract
The predictable pharmacokinetic drug interaction between clozapine and rifampicin is listed in most standard reference texts but little detail is given or emphasis on its clinical significance. The interaction is based on theoretical knowledge of both drugs; to date just two case reports have been published. This article describes a third case demonstrating the significance of this interaction. This was potentially devastating for the patient who required an extended psychiatric admission. The enzyme induction was so potent that the dose of clozapine had to be increased approximately sixfold. Careful management of this significant interaction is essential for effective patient care.
Collapse
|
7
|
Spina E, Hiemke C, de Leon J. Assessing drug-drug interactions through therapeutic drug monitoring when administering oral second-generation antipsychotics. Expert Opin Drug Metab Toxicol 2016; 12:407-22. [DOI: 10.1517/17425255.2016.1154043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Gee S, Dixon T, Docherty M, Shergill SS. Optimising plasma levels of clozapine during metabolic interactions: a review and case report with adjunct rifampicin treatment. BMC Psychiatry 2015; 15:195. [PMID: 26265348 PMCID: PMC4542109 DOI: 10.1186/s12888-015-0536-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/18/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Clozapine is the only licensed medication for treatment-resistant schizophrenia. The metabolism of clozapine is affected by multiple pharmacokinetic interactions, so the co-administration of adjunct medications can have a significant clinical effect. The anti- tuberculosis medication rifampicin is a potent inducer of the cytochrome P450 system and therefore can cause a reduction in the plasma concentration of clozapine. There is limited clinical evidence regarding co-administration of these medications; in particular there is a lack of data regarding the effect on plasma clozapine levels, which is the key factor determining clinical efficacy. This is clinically relevant given evidence of an increased risk of tuberculosis in patients with schizophrenia. CASE PRESENTATION We present a case of a 28 year old British man with a diagnosis of schizoaffective disorder who presented with persistent psychotic symptoms. He developed a systemic inflammatory condition, diagnosed as tuberculosis, and was commenced on a six month course of treatment that included rifampicin. This case presents comprehensive data to illustrate the effect on clozapine plasma levels of a complete course of tuberculosis therapy. CONCLUSION This case report provides guidance to clinicians in managing drug interactions between clozapine and rifampicin to enable safe and effective treatment. The co-administration of these medications is likely to increase as the existing underuse of clozapine is recognised whilst the incidence of tuberculosis increases.
Collapse
Affiliation(s)
- Siobhan Gee
- Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust, Monks Orchard Road, Beckenham, BR3 3BX, UK.
| | - Thomas Dixon
- Springfield University Hospital, South West London and St George's Mental Health NHS Trust, 61 Glenburnie Road, London, SW17 7DJ, UK.
| | - Mary Docherty
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Sukhwinder S Shergill
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
9
|
Doherty AM, Kelly J, McDonald C, O'Dywer AM, Keane J, Cooney J. A review of the interplay between tuberculosis and mental health. Gen Hosp Psychiatry 2013; 35:398-406. [PMID: 23660587 DOI: 10.1016/j.genhosppsych.2013.03.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 01/05/2023]
Abstract
AIMS Tuberculosis and mental illness share common risk factors including homelessness, HIV positive serology, alcohol/substance abuse and migrant status leading to frequent comorbidity. We sought to generate a comprehensive literature review that examines the complex relationship between tuberculosis and mental illness. METHODS A literature search was conducted in MedLine, Ovid and Psychinfo, with further examination of the references of these articles. In total 316 articles were identified. It was not possible to conduct a formal meta-analysis due to the absence of randomised controlled data. RESULTS Rates of mental illness of up to 70% have been identified in tuberculosis patients. Medications used in the treatment of common mental illnesses, such as depression, may have significant interactions with anti-tuberculosis agents, especially isoniazid and increasingly linezolid. Many medications used in the treatment of tuberculosis can have significant adverse psychiatric effects and some medications such as rifampicin may reduce the effective doses of anti-psychotics y their enzyme induction actions. Treatment with agents such as cycloserine has been associated with depression, and there have been reported cases of psychosis with most anti-tuberculous agents. Mental illness and substance abuse may also affect compliance with treatment, with attendant public health concerns. CONCLUSIONS As a result of the common co-morbidity of mental illness and tuberculosis, it is probable that physicians will encounter previously undiagnosed mental illness among patients with tuberculosis. Similarly, psychiatrists are likely to meet tuberculosis among their patients. It is important that both psychiatrists and physicians are aware of the potential for interactions between the drugs used to treat tuberculosis and psychiatric conditions.
Collapse
|
10
|
Abstract
Multidrug resistance P-glycoprotein (P-gp; also known as MDR1 and ABCB1) is expressed in the luminal membrane of the small intestine and blood-brain barrier, and the apical membranes of excretory cells such as hepatocytes and kidney proximal tubule epithelia. P-gp regulates the absorption and elimination of a wide range of compounds, such as digoxin, paclitaxel, HIV protease inhibitors and psychotropic drugs. Its substrate specificity is as broad as that of cytochrome P450 (CYP) 3A4, which encompasses up to 50 % of the currently marketed drugs. There has been considerable interest in variations in the ABCB1 gene as predictors of the pharmacokinetics and/or treatment outcomes of several drug classes, including antidepressants and antipsychotics. Moreover, P-gp-mediated transport activity is saturable, and is subject to modulation by inhibition and induction, which can affect the pharmacokinetics, efficacy or safety of P-gp substrates. In addition, many of the P-gp substrates overlap with CYP3A4 substrates, and several psychotropic drugs that are P-gp substrates are also CYP3A4 substrates. Therefore, psychotropic drugs that are P-gp substrates may cause a drug interaction when P-gp inhibitors and inducers are coadministered, or when psychotropic drugs or other medicines that are P-gp substrates are added to a prescription. Hence, it is clinically important to accumulate data about drug interactions through studies on P-gp, in addition to CYP3A4, to assist in the selection of appropriate psychotropic medications and in avoiding inappropriate combinations of therapeutic agents. There is currently insufficient information available on the psychotropic drug interactions related to P-gp, and therefore we summarize the recent clinical data in this review.
Collapse
Affiliation(s)
- Yumiko Akamine
- Department of Hospital Pharmacy, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | | | | | | |
Collapse
|
11
|
Murray M. Role of CYP pharmacogenetics and drug-drug interactions in the efficacy and safety of atypical and other antipsychotic agents. J Pharm Pharmacol 2010; 58:871-85. [PMID: 16805946 DOI: 10.1211/jpp.58.7.0001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Cytochrome P450 (CYP) drug oxidases play a pivotal role in the elimination of antipsychotic agents, and therefore influence the toxicity and efficacy of these drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes with antipsychotic agents. In particular, aspects of CYP pharmacogenetics, and the processes of CYP induction and inhibition all influence in-vivo rates of drug elimination. Certain CYPs that mediate the oxidation of antipsychotic drugs exhibit genetic variants that may influence in-vivo activity. Thus, single nucleotide polymorphisms (SNPs) in CYP genes have been shown to encode enzymes that have decreased drug oxidation capacity. Additionally, psychopharmacotherapy has the potential for drug-drug inhibitory interactions involving CYPs, as well as drug-mediated CYP induction. Literature evidence supports a role for CYP1A2 in the clearance of the atypical antipsychotics clozapine and olanzapine; CYP1A2 is inducible by certain drugs and environmental chemicals. Recent studies have suggested that specific CYP1A2 variants possessing individual SNPs, and possibly also SNP combinations (haplotypes), in the 5′-regulatory regions may respond differently to inducing chemicals. CYP2D6 is an important catalyst of the oxidation of chlorpromazine, thioridazine, risperidone and haloperidol. Certain CYP2D6 allelic variants that encode enzymes with decreased drug oxidation capacity are more common in particular ethnic groups, which may lead to adverse effects with standard doses of psychoactive drugs. Thus, genotyping may be useful for dose optimization with certain psychoactive drugs that are substrates for CYP2D6. However, genotyping for inducible CYPs is unlikely to be sufficient to direct therapy with all antipsychotic agents. In-vivo CYP phenotyping with cocktails of drug substrates may assist at the commencement of therapy, but this approach could be complicated by pharmacokinetic interactions if applied when an antipsychotic drug regimen is ongoing.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
12
|
Peritogiannis V, Pappas D, Antoniou K, Hyphantis T, Mavreas V. Clozapine-rifampicin interaction in a patient with pulmonary tuberculosis. Gen Hosp Psychiatry 2007; 29:281-2. [PMID: 17484952 DOI: 10.1016/j.genhosppsych.2007.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/28/2007] [Accepted: 02/28/2007] [Indexed: 11/16/2022]
|
13
|
Spina E, de Leon J. Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol 2007; 100:4-22. [PMID: 17214606 DOI: 10.1111/j.1742-7843.2007.00017.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Newer antipsychotics introduced in clinical practice in recent years include clozapine, risperidone, olanzapine, quetiapine, sertindole, ziprasidone, aripiprazole and amisulpride. These agents are subject to drug-drug interactions with other psychotropic agents or with medications used in the treatment of concomitant physical illnesses. Most pharmacokinetic interactions with newer antipsychotics occur at the metabolic level and usually involve changes in the activity of the major drug-metabolizing enzymes involved in their biotransformation, i.e. the cytochrome P450 (CYP) monooxygenases and/or uridine diphosphate-glucuronosyltransferases (UGT). Clozapine is metabolized primarily by CYP1A2, with additional contribution by other CYP isoforms. Risperidone is metabolized primarily by CYP2D6 and, to a lesser extent, CYP3A4. Olanzapine undergoes both direct conjugation and CYP1A2-mediated oxidation. Quetiapine is metabolized by CYP3A4, while sertindole and aripiprazole are metabolized by CYP2D6 and CYP3A4. Ziprasidone pathways include aldehyde oxidase-mediated reduction and CYP3A4-mediated oxidation. Amisulpride is primarily excreted in the urine and undergoes relatively little metabolism. While novel antipsychotics are unlikely to interfere with the elimination of other drugs, co-administration of inhibitors or inducers of the major enzymes responsible for their metabolism may modify their plasma concentrations, leading to potentially significant effects. Most documented metabolic interactions involve antidepressant and anti-epileptic drugs. Of a particular clinical significance is the interaction between fluvoxamine, a potent CYP1A2 inhibitor, and clozapine. Differences in the interaction potential among the novel antipsychotics currently available may be predicted based on their metabolic pathways. The clinical relevance of these interactions should be interpreted in relation to the relative width of their therapeutic index. Avoidance of unnecessary polypharmacy, knowledge of the interaction profiles of individual agents, and careful individualization of dosage based on close evaluation of clinical response and, possibly, plasma drug concentrations are essential to prevent and minimize potentially adverse drug interactions in patients receiving newer antipsychotics.
Collapse
Affiliation(s)
- Edoardo Spina
- Section of Pharmacology, Department of Clinical and Experimental Medicine and Pharmacology, University of Messina and IRCCS Neurological Center Bonino-Pulejo, Messina, Italy, and Eastern State Hospital, Lexington, KY, USA.
| | | |
Collapse
|
14
|
Thallinger C, Joukhadar C. Cytochrom-P450 mediierte Arzneimittelinteraktionen mit Antibiotika. Wien Med Wochenschr 2006; 156:508-14. [PMID: 17041808 DOI: 10.1007/s10354-006-0336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
This review focuses on drug interactions with commonly prescribed antibiotics. With each drug coadministered, the likelihood of an adverse interaction increases exponentially. Thus, poly-pharmacotherapy possesses important clinical challenges for clinicians and exposes patients to potentially life-threatening risks. In particular, following co-administration of drugs such as tricyclic antidepressants, anticoagulants and antiarrhythmics, which are characterized by narrow therapeutic windows, even small changes in plasma levels can cause serious adverse reactions and/or therapeutic failure. The hepatic and intestinal cytochrome, or CYP-450 enzyme system is responsible for the biotransformation of a multitude of drugs and is frequently involved in drug interactions. The present review therefore presents a comprehensive overview on potential drug interactions with antibiotics, which are mediated by the cytochrome-P450-enzymes.
Collapse
Affiliation(s)
- Christiane Thallinger
- Universitätsklinik für Klinische Pharmakologie, Universitätsklinik für Innere Medizin I, Medizinische Universität Wien, Wien, Austria
| | | |
Collapse
|
15
|
Abstract
Drug-drug interactions or genetic variability may require using doses different from those recommended for atypical antipsychotics. Dosage alterations of olanzapine and clozapine, dependent on cytochrome P450 1A2 (CYP1A2) for clearance, and quetiapine, dependent on cytochrome P450 3A (CYP3A), may be necessary when used with other drugs that inhibit or induce their metabolic enzymes. Smoking cessation can significantly increase clozapine, and perhaps olanzapine, levels. Ziprasidone pharmacokinetic drug-drug interactions are not likely to be important. Genetic variations of cytochrome P450 2D6 (CYP2D6) and drug-drug interactions causing inhibition (CYP2D6 and/or CYP3A) or induction (CYP3A) may be important for risperidone, and perhaps for aripiprazole, dosing. Adding inhibitors may cause side effects more easily in drugs with a narrow therapeutic window, such as clozapine or risperidone, than in those with a wide therapeutic window, such as olanzapine or aripiprazole. Adding inducers may be associated with a gradual development of lost efficacy.
Collapse
Affiliation(s)
- Jose de Leon
- Mental Health Research Center at Eastern State Hospital, 627 West Fourth St., Lexington, KY 40508, USA.
| | | | | |
Collapse
|
16
|
Eap CB, Bender S, Jaquenoud Sirot E, Cucchia G, Jonzier-Perey M, Baumann P, Allorge D, Broly F. Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol 2004; 24:214-9. [PMID: 15206669 DOI: 10.1097/01.jcp.0000116646.91923.2f] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Clozapine (CLO), an atypical antipsychotic, depends mainly on cytochrome P450 1A2 (CYP1A2) for its metabolic clearance. Four patients treated with CLO, who were smokers, were nonresponders and had low plasma levels while receiving usual doses. Their plasma levels to dose ratios of CLO (median; range, 0.34; 0.22 to 0.40 ng x day/mL x mg) were significantly lower than ratios calculated from another study with 29 patients (0.75; 0.22 to 2.83 ng x day/mL x mg; P < 0.01). These patients were confirmed as being CYP1A2 ultrarapid metabolizers by the caffeine phenotyping test (median systemic caffeine plasma clearance; range, 3.85; 3.33 to 4.17 mL/min/kg) when compared with previous studies (0.3 to 3.33 mL/min/kg). The sequencing of the entire CYP1A2 gene from genomic DNA of these patients suggests that the -164C > A mutation (CYP1A2*1F) in intron 1, which confers a high inducibility of CYP1A2 in smokers, is the most likely explanation for their ultrarapid CYP1A2 activity. A marked (2 patients) or a moderate (2 patients) improvement of the clinical state of the patients occurred after the increase of CLO blood levels above the therapeutic threshold by the increase of CLO doses to very high values (ie, up to 1400 mg/d) or by the introduction of fluvoxamine, a potent CYP1A2 inhibitor, at low dosage (50 to 100 mg/d). Due to the high frequency of smokers among patients with schizophrenia and to the high frequency of the -164C > A polymorphism, CYP1A2 genotyping could have important clinical implications for the treatment of patients with CLO.
Collapse
Affiliation(s)
- Chin B Eap
- Unité de Biochimie et Psychopharmacologie Clinique, Département Universitaire de Psychiatrie Adulte, Hôpital de Cery, Prilly-Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT. Pharmacokinetic interactions with rifampicin : clinical relevance. Clin Pharmacokinet 2003; 42:819-50. [PMID: 12882588 DOI: 10.2165/00003088-200342090-00003] [Citation(s) in RCA: 525] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The antituberculosis drug rifampicin (rifampin) induces a number of drug-metabolising enzymes, having the greatest effects on the expression of cytochrome P450 (CYP) 3A4 in the liver and in the small intestine. In addition, rifampicin induces some drug transporter proteins, such as intestinal and hepatic P-glycoprotein. Full induction of drug-metabolising enzymes is reached in about 1 week after starting rifampicin treatment and the induction dissipates in roughly 2 weeks after discontinuing rifampicin. Rifampicin has its greatest effects on the pharmacokinetics of orally administered drugs that are metabolised by CYP3A4 and/or are transported by P-glycoprotein. Thus, for example, oral midazolam, triazolam, simvastatin, verapamil and most dihydropyridine calcium channel antagonists are ineffective during rifampicin treatment. The plasma concentrations of several anti-infectives, such as the antimycotics itraconazole and ketoconazole and the HIV protease inhibitors indinavir, nelfinavir and saquinavir, are also greatly reduced by rifampicin. The use of rifampicin with these HIV protease inhibitors is contraindicated to avoid treatment failures. Rifampicin can cause acute transplant rejection in patients treated with immunosuppressive drugs, such as cyclosporin. In addition, rifampicin reduces the plasma concentrations of methadone, leading to symptoms of opioid withdrawal in most patients. Rifampicin also induces CYP2C-mediated metabolism and thus reduces the plasma concentrations of, for example, the CYP2C9 substrate (S)-warfarin and the sulfonylurea antidiabetic drugs. In addition, rifampicin can reduce the plasma concentrations of drugs that are not metabolised (e.g. digoxin) by inducing drug transporters such as P-glycoprotein. Thus, the effects of rifampicin on drug metabolism and transport are broad and of established clinical significance. Potential drug interactions should be considered whenever beginning or discontinuing rifampicin treatment. It is particularly important to remember that the concentrations of many of the other drugs used by the patient will increase when rifampicin is discontinued as the induction starts to wear off.
Collapse
Affiliation(s)
- Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
18
|
Abstract
Since 1989, several novel antipsychotic drugs have become available for use including clozapine, risperidone, olanzapine, quetiapine and ziprasidone. These agents represent a substantial improvement in the treatment of schizophrenia and related disorders and are considered to have a favourable adverse effect profile relative to traditional antipsychotics. Nonetheless, in rare cases, people have died as a result of taking atypical antipsychotic drugs at therapeutic and supratherapeutic doses. Toxic doses of atypical antipsychotics are highly variable: some patients have died while taking therapeutic doses and others have survived massive overdoses. Toxicity may be increased by coingestion of other agents, particularly drugs with similar metabolic pathways. Atypical antipsychotics are metabolised predominantly by cytochrome p450 (CYP) isoenzymes, particularly CYP1A2 (clozapine and olanzapine), CYP3A4 (clozapine, quetiapine and ziprasidone) and CYP2D6 (olanzapine and risperidone). Concurrent prescription of other drugs that inhibit these isoenzymes may increase the probability of adverse events in patients taking atypical antipsychotics. Deaths due to atypical antipsychotic toxicity are often related to cardiovascular complications, but pulmonary, neurological, endocrine and gastrointestinal complications have also caused fatalities. Prevention and management of atypical antipsychotic overdose are of increased clinical relevance as prescription of these drugs increases.
Collapse
Affiliation(s)
- Adam Trenton
- Department of Psychiatry, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
19
|
Abstract
Because concomitant administration of psychoactive and antiepileptic drugs is increasing progressively in neurologic and psychiatric practice, the aim of the current study was to evaluate the pharmacokinetic interactions between risperidone (RISP) and carbamazepine (CBZ) plasma concentrations in a group of patients with epilepsy with behavioral disturbances. The authors assessed eight patients on CBZ monotherapy (CBZ extended-release capsules) at a mean dosage of 625 +/- 253 mg/day (range, 400-1,200 mg/day) for at least 1 year. RISP (1 mg in one daily dose) was added to CBZ therapy for the occurrence of behavior disturbances. CBZ blood levels were assessed before (T0), 24 hours after (T1), and 2 weeks after (T2) RISP administration. Steady-state plasma concentrations of CBZ increased from 6.67 +/- 0.41 microg/mL at baseline to 7.37 +/- 0.59 microg/mL (p < 0.01) at T1, to 7.95 +/- 0.47 microg/mL (p < 0.0001) at T2. The pharmacokinetic data suggest either a possible role of RISP in inhibiting the cytochrome P450 microsomal enzyme system (CYP)-3A4 pathway or a potential role of CYP2D6 in CBZ metabolism.
Collapse
Affiliation(s)
- Marco Mula
- Department of Neurology, Amedeo Avogadro University, Novara, Italy
| | | |
Collapse
|
20
|
Abstract
Glucuronidation is a phase II metabolic process and one of the most common pathways in the formation of hydrophilic drug metabolites. At least 33 families of uridine diphosphate-glucuronosyltransferases have been identified in vitro, and specific nomenclature similar to that used to classify the cytochrome (CYP) P450 system has been established. The UGT1 and UGT2 subfamilies represent the most important of these enzymes in human drug metabolism. Factors affecting glucuronidation include the following: cigarette smoking, obesity, age, and gender. In addition, several drugs have been found in vitro to be substrates, inhibitors, or inducers of UGT enzymes. Induction or inhibition of both UGT and CYP isoforms may occur simultaneously. Some important drug interactions involving glucuronidation have been documented and others can be postulated. This review summarizes the relevant literature pertaining to drug glucuronidation and its implications for clinical psychopharmacology.
Collapse
Affiliation(s)
- H L Liston
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA.
| | | | | |
Collapse
|
21
|
Eap CB, Bondolfi G, Zullino D, Bryois C, Fuciec M, Savary L, Jonzier-Perey M, Baumann P. Pharmacokinetic Drug Interaction Potential of Risperidone With Cytochrome P450 Isozymes as Assessed by the Dextromethorphan, the Caffeine, and the Mephenytoin Test. Ther Drug Monit 2001; 23:228-31. [PMID: 11360030 DOI: 10.1097/00007691-200106000-00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two published case reports showed that addition of risperidone (1 and 2 mg/d) to a clozapine treatment resulted in a strong increase of clozapine plasma levels. As clozapine is metabolized by cytochrome P450 isozymes, a study was initiated to assess the in vivo interaction potential of risperidone on various cytochrome P450 isozymes. Eight patients were phenotyped with dextromethorphan (CYP2D6), mephenytoin (CYP2C19), and caffeine (CYP1A2) before and after the introduction of risperidone. Before risperidone, all eight patients were phenotyped as being extensive metabolizers of CYP2D6 and CYP2C19. Risperidone at dosages between 2 and 6 mg/d does not appear to significantly inhibit CYP1A2 and CYP2C19 in vivo (median plasma paraxanthine/caffeine ratios before and after risperidone: 0.65, 0.69; p = 0.89; median urinary (S)/(R) mephenytoin ratios before and after risperidone:0.11, 0.12; p = 0.75). Although dextromethorphan metabolic ratio is significantly increased by risperidone (median urinary dextromethorphan/dextrorphan ratios before and after risperidone: 0.010, 0.018; p = 0.042), risperidone can be considered a weak in vivo CYP2D6 inhibitor, as this increase is modest and none of the eight patients was changed from an extensive to a poor metabolizer. The reported increase of clozapine concentrations by risperidone can therefore not be explained by an inhibition of CYP1A2, CYP2D6, CYP2C19 or by any combination of the three.
Collapse
Affiliation(s)
- C B Eap
- Unit of Biochemistry and Clinical Psychopharmacology, University Department of Adult Psychiatry, Cery Hospital, CH-Prilly-Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Patients with psychiatric illnesses may be at higher risk for the development of certain medical problems. Those with more severe psychiatric illnesses may encounter barriers to promoting good health and to obtaining good health care when comorbid illnesses do occur. This paper reviews some of the recent literature on health care practices and health system access for the mentally ill; HIV care and its relationship to mental disorders; drug interactions between general medical drugs and psychotropics; and certain medical conditions that appear to co-occur more frequently with psychiatric disorders.
Collapse
Affiliation(s)
- L S Goldman
- Department of Psychiatry, University of Chicago, 5841 South Maryland Avenue, MC3077, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Abstract
The introduction of the atypical antipsychotics clozapine, risperidone, olanzapine, quetiapine and sertindole for the treatment of schizophrenia has coincided with an increased awareness of the potential of drug-drug interactions, particularly involving the cytochrome P450 (CYP) enzymes. The current literature describing the pharmacokinetics of the metabolism of these agents, including their potential to influence the metabolism of other medications, is reviewed. Clozapine appears to be metabolized primarily by CYP1A2 and CYP3A4, with additional contributions by CYP2C19 and CYP2D6. In addition, clozapine may inhibit the activity of CYP2C9 and CYP2C19, and induce CYP1A, CYP2B and CYP3A. Risperidone is metabolized by CYP2D6, and possibly CYP3A4. In vitro data indicate that olanzapine is metabolized by CYP1A2 and CYP2D6. Quetiapine is metabolised by CYP3A4 and sertindole by CYP2D6. There is, however, a general paucity of in vivo data regarding the metabolism of the atypical antipsychotics, indicating a need for further research in this area.
Collapse
Affiliation(s)
- T I Prior
- Department of Psychiatry, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|