1
|
Klimas J, Vaja V, Vercinska M, Kyselovic J, Krenek P. Discrepant regulation of QT (QTc) interval duration by calcium channel blockade and angiotensin converting enzyme inhibition in experimental hypertension. Basic Clin Pharmacol Toxicol 2012; 111:279-88. [PMID: 22626243 DOI: 10.1111/j.1742-7843.2012.00901.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/10/2012] [Indexed: 11/27/2022]
Abstract
Antihypertensive treatment may reduce prolonged QT duration in hypertension. Generally, the reductions of blood pressure and/or of cardiac mass are believed to be the responsible factors. However, drugs are not equivalent in QT modulation despite similar antihypertensive and antihypertrophic action. We investigated the effect of a calcium channel blocker, lacidipine and an angiotensin-converting enzyme inhibitor, enalapril on QT duration in rats. Normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were treated with lacidipine (at the dose of 1.5 mg/kg per day for WKY and 3 mg/kg per day for SHR) or enalapril (5 mg/kg per day for WKY and 10 mg/kg per day for SHR) during 8 weeks. Tail-cuff systolic blood pressure (sBP), left ventricular weight (LVW), vascular function of isolated aorta and mesenteric artery and duration of QT (and QTc) interval on Frank electrocardiograms were evaluated. As expected, untreated SHR showed elevated sBP, impaired vascular reactivity, increased LVW and prolonged QT when compared with WKY (p < 0.05). After treatment, both agents markedly improved vascular reactivity and reduced sBP in SHR (p < 0.05). Additionally, enalapril reduced LVW in both hypertensive (by 17%; p < 0.05) and normotensive rats (by 13%; p < 0.05) and, consequently, corrected QT duration in SHR. Interestingly, lacidipine also reduced LVW in SHR (by 9%; p < 0.05), but without influence on prolonged QT. Moreover, lacidipine had no effect on LVW in WKYs but prolonged their QT interval (by 10%; p < 0.05). In conclusion, lacidipine did not reverse a progressive prolongation of QT in SHR, despite sBP lowering and LVW reduction. Thus, the lowering of blood pressure and/or reduction of LVW are not sufficient per se to normalize ventricular repolarization in hypertensive cardiac disease. More likely, modulation of QT prolongation by antihypertensive drugs is a function of their complex action on blood pressure, vascular function, cardiac mass and on reflex neurohumoral activation.
Collapse
Affiliation(s)
- Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
2
|
Mackovicova K, Gazova A, Kucerova D, Gajdacova B, Klimas J, Ochodnicky P, Goncalvesova E, Kyselovic J, Krenek P. Enalapril decreases cardiac mass and fetal gene expression without affecting the expression of endothelin-1, transforming growth factor β-1, or cardiotrophin-1 in the healthy normotensive rat. Can J Physiol Pharmacol 2011; 89:197-205. [DOI: 10.1139/y11-014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II can induce cardiac hypertrophy by stimulating the release of growth factors. ACE inhibitors reduce angiotensin II levels and cardiac hypertrophy, but their effects on the healthy heart are largely unexplored. We hypothesized that ACE inhibition decreases left ventricular mass in normotensive animals and that this is associated with altered expression of cardiac fetal genes, growth factors, and endothelial nitric oxide synthase (eNOS). Wistar rats (n = 7 per group) were orally administered with enalapril twice daily for a total daily dose of 5 mg·kg–1·d–1 (ENAP5) or 15 mg·kg–1·d–1 (ENAP15) or vehicle. Systolic blood pressure was measured by the tail-cuff method. Left ventricular expression of cardiac myosin heavy chain-α (MYH6) and -β (MYH7), atrial natriuretic peptide (ANP), endothelin-1 (ET-1), transforming growth factor β-1 (TGFβ-1), cardiotrophin-1 (CT-1), and renal renin were examined by real-time PCR, and eNOS using Western blot. Blood pressure was decreased only in ENAP15 animals (p < 0.05 vs. Control), whereas left ventricular mass decreased after both doses of enalapril (p < 0.05 vs. Control). MYH7 and ANP were reduced in ENAP15, while no changes in ET-1, TGFβ-1, CT-1, and MYH6 mRNA or eNOS protein were observed. Renal renin dose-dependently increased after enalapril treatment. Enalapril significantly decreased left ventricular mass even after 1 week treatment in the normotensive rat. This was associated with a decreased expression of the fetal genes MYH7 and ANP, but not expression of ET-1, CT-1, or TGFβ-1.
Collapse
Affiliation(s)
- Katarina Mackovicova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Andrea Gazova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Dana Kucerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Beata Gajdacova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Peter Ochodnicky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Eva Goncalvesova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Jan Kyselovic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| |
Collapse
|
3
|
PKD1 haploinsufficiency is associated with altered vascular reactivity and abnormal calcium signaling in the mouse aorta. Pflugers Arch 2008; 457:845-56. [PMID: 18679710 DOI: 10.1007/s00424-008-0561-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/11/2008] [Accepted: 07/15/2008] [Indexed: 12/17/2022]
Abstract
Mutations in PKD1 are associated with autosomal dominant polycystic kidney disease (ADPKD), which leads to major cardiovascular complications. We used mice with a heterozygous deletion of Pkd1 (Pkd1+/-) and wild-type (Pkd1+/+) littermates to test whether Pkd1 haploinsufficiency is associated with a vascular phenotype in different age groups. Systolic blood pressure measured by the tail-cuff method was similar up to 20 weeks of age, but significantly higher in 30-week-old Pkd1+/- compared to Pkd1+/+. By contrast, similar telemetric recordings were obtained in unrestrained Pkd1+/- and Pkd1+/+ mice. The contractile responses evoked by KCl or phenylephrine were similar in young animals but increased in abdominal aortas of 30-week-old Pkd1+/- mice, and acetylcholine-evoked relaxation was depressed. Basal cytosolic calcium, KCl, and phenylephrine-evoked calcium signals were significantly lower in the Pkd1+/- aortas, whereas calcium release evoked by caffeine or thapsigargin was significantly larger. These changes were paralleled with a significant change in the mRNA expression of Pkd2, Trpc1, Orai1, and Serca2a in the aortas from Pkd1+/- vs. Pkd1+/+. These results are the first to indicate that haploinsufficiency in Pkd1 is associated with altered intracellular calcium homeostasis and increased vascular reactivity in the aorta with compensatory changes in transport proteins involved in the calcium signaling network.
Collapse
|
4
|
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59:251-87. [PMID: 17878513 DOI: 10.1124/pr.59.3.3] [Citation(s) in RCA: 867] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Director of the Molecular Core in Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | |
Collapse
|