1
|
Zhu N, Liu R, Xu MH, Li Y. Neuroprotective Actions of Different Exogenous Nucleotides in H 2O 2-Induced Cell Death in PC-12 Cells. Molecules 2023; 28:molecules28031226. [PMID: 36770893 PMCID: PMC9920452 DOI: 10.3390/molecules28031226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Exogenous nucleotides (NTs) are considered conditionally essential nutrients, and the brain cannot synthesize NTs de novo. Therefore, the external supplementation of exogenous NTs is of great significance for maintaining normal neuronal metabolism and function under certain conditions, such as brain aging. This study, therefore, sets out to assess the neuroprotective effect of four kinds of single exogenous NTs and a mixture of the NTs, and to elucidate the potential mechanism. A rat pheochromocytoma cell line PC-12 was treated with different concentrations of exogenous NTs after 4 h of exposure to 200 µM H2O2. We found that the exogenous NTs exerted significant neuroprotection through decreasing neuron apoptosis and DNA damage, ameliorating inflammation and mitochondrial dysfunction, promoting cell viability, and augmenting antioxidant activity, and that they tended to up-regulate the NAD+/SIRTI/PGC-1α pathway involved in mitochondrial biogenesis. Among the different NTs, the neuroprotective effect of AMP seemed to be more prominent, followed by the NT mixture, NMN, and CMP. AMP also exhibited the strongest antioxidant activity in H2O2-treated PC-12 cells. UMP was excellent at inhibiting neuronal inflammation and improving mitochondrial function, while GMP offered major advantages in stabilizing mitochondrial membrane potential. The mixture of NTs had a slightly better performance than NMN, especially in up-modulating the NAD+/SIRTI/PGC-1α pathway, which regulates mitochondrial biogenesis. These results suggest that antioxidant activity, anti-inflammatory activity, and protection of mitochondrial function are possible mechanisms of the neuroprotective actions of exogenous NTs, and that the optimization of the mixture ratio and the concentration of NTs may achieve a better outcome.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nutrition and Food Hygiene, College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Riu Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Mei-Hong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-1177
| |
Collapse
|
2
|
Li H, Chen X, Huang Z, Chen D, Yu B, Luo Y, He J, Zheng P, Yu J, Chen H. Ellagic acid enhances muscle endurance by affecting the muscle fiber type, mitochondrial biogenesis and function. Food Funct 2022; 13:1506-1518. [PMID: 35060577 DOI: 10.1039/d1fo02318g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ellagic acid (EA) is a natural polyphenolic compound, which shows various effects, such as anti-inflammatory and antioxidant effects and inhibition of platelet aggregation. In this study, we investigated the effect of EA on muscle endurance and explored its possible underlying mechanism. Our data showed that EA significantly improved muscle endurance in mice. EA increased the protein level of slow myosin heavy chain (MyHC) I and decreased the protein level of fast MyHC. We also found that the AMP-activated protein kinase (AMPK) signaling pathway was activated by EA. Finally, our data indicated that EA could increase mitochondrial biogenesis and function by increasing the content of mitochondrial DNA (mtDNA), the concentration of ATP, the activities of succinodehydrogenase (SDH) and malate dehydrogenase (MDH), and the mRNA levels of ATP synthase (ATP5G), mtDNA transcription factor A (TFAM), mitochondrial transcription factor b1 (Tfb1m) and citrate synthase (Cs) in mice and C2C12 myotubes. These results proved that EA could enhance muscle endurance via transforming the muscle fiber type and improving mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, P. R. China
| |
Collapse
|
3
|
Dietary Nucleotides Retard Oxidative Stress-Induced Senescence of Human Umbilical Vein Endothelial Cells. Nutrients 2021; 13:nu13093279. [PMID: 34579157 PMCID: PMC8472005 DOI: 10.3390/nu13093279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
Several lines of evidence suggest an inhibitory role of dietary nucleotides (NTs) against oxidative stress and inflammation, which promote senescence in age-associated cardiovascular diseases. We sought to test whether the dietary NTs could retard the hydrogen peroxide (H2O2)-induced senescence of human umbilical vein endothelial cells (HUVECs) and to elucidate the efficiency of different NTs as well as the potential mechanism. Senescence was induced in HUVECs by 4 h exposure to 200 µM H2O2 and was confirmed using senescence-associated-β-galactosidase staining (SA-β-gal), cell viability, and Western blot analyses of p16INK4A and p21Waf1/Cip1 after 24 h administration of growth medium. We find that NTs retards oxidative stress-induced HUVECs senescence, as shown by a lower percentage of SA-β-gal-positive cells, lower expression of p16INK4A, and p21Waf1/Cip1 as well as higher cell viability. GMP100 was the most excellent in delaying HUVECs senescence, which was followed by the NTs mixture, NMN, CMP50, and UMP50/100, while AMP retards HUVECs senescence by specifically reducing p15INK4b expression. NTs all have significant anti-inflammatory effects; AMP and CMP were more prominent in restoring mitochondrial function, GMP and CMP were more competent at eliminating ROS and MDA, while AMP and UMP were more efficient at enhancing antioxidant enzyme activity. The role of the NTs mixture in retarding HUVECs senescence is full-scaled. These results stated that the mechanisms of NTs retarding HUVECs senescence could be related to its antioxidant and anti-inflammation properties promoting cell proliferation and protecting mitochondrial function activities.
Collapse
|
4
|
Wang Z, Hu J, Zheng W, Yang T, Wang X, Xie C, Yan X. Lactobacillus frumenti mediates energy production via fatty acid β-oxidation in the liver of early-weaned piglets. J Anim Sci Biotechnol 2019; 10:95. [PMID: 31827788 PMCID: PMC6894312 DOI: 10.1186/s40104-019-0399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background Early-weaning of piglets is often accompanied by severe disorders, especially diarrhea. The gut microbiota and its metabolites play a critical role in the maintenance of the physiologic and metabolic homeostasis of the host. Our previous studies have demonstrated that oral administration of Lactobacillus frumenti improves epithelial barrier functions and confers diarrhea resistance in early-weaned piglets. However, the metabolic response to L. frumenti administration remains unclear. Then, we conducted simultaneous serum and hepatic metabolomic analyses in early-weaned piglets administered by L. frumenti or phosphate-buffered saline (PBS). Results A total of 100 6-day-old crossbred piglets (Landrace × Yorkshire) were randomly divided into two groups and piglets received PBS (sterile, 2 mL) or L. frumenti (suspension in PBS, 108 CFU/mL, 2 mL) by oral administration once per day from 6 to 20 days of age. Piglets were weaned at 21 days of age. Serum and liver samples for metabolomic analyses were collected at 26 days of age. Principal components analysis (PCA) showed that L. frumenti altered metabolism in serum and liver. Numerous correlations (P < 0.05) were identified among the serum and liver metabolites that were affected by L. frumenti. Concentrations of guanosine monophosphate (GMP), inosine monophosphate (IMP), and uric acid were higher in serum of L. frumenti administration piglets. Pathway analysis indicated that L. frumenti regulated fatty acid and amino acid metabolism in serum and liver. Concentrations of fatty acid β-oxidation related metabolites in serum (such as 3-hydroxybutyrylcarnitine, C4-OH) and liver (such as acetylcarnitine) were increased after L. frumenti administration. Conclusions Our findings suggest that L. frumenti regulates lipid metabolism and amino acid metabolism in the liver of early-weaned piglets, where it promotes fatty acid β-oxidation and energy production. High serum concentrations of nucleotide intermediates, which may be an alternative strategy to reduce the incidence of diarrhea in early-weaned piglets, were further detected. These findings broaden our understanding of the relationships between the gut microbiota and nutrient metabolism in the early-weaned piglets.
Collapse
Affiliation(s)
- Zhichang Wang
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Jun Hu
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Wenyong Zheng
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Tao Yang
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Xinkai Wang
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Chunlin Xie
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Xianghua Yan
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| |
Collapse
|
5
|
Sakurai T, Hayasaka T, Sekiguchi H, Satoh H, Chen Z, Chiba H, Hui SP. Dietary salmon milt extracts attenuate hepatosteatosis and liver dysfunction in diet-induced fatty liver model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1675-1681. [PMID: 30198086 DOI: 10.1002/jsfa.9352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Dietary nucleotides have several reported beneficial effects. Here, we report on a proteomic analysis of the effect of dietary nucleotides-rich salmon milt extract (SME) on the liver in a diet-induced fatty liver model. RESULTS Young male normal ddY mice were fed a normal chow diet, high carbohydrate diet (HCD), HCD containing 1% SME, or HCD containing 10% SME for 5 days following by a 2-day fast. Increased serum alanine transferase and aspartate transferase activities were observed in the HCD group and were significantly attenuated in the SME groups (P < 0.05). Hepatic steatosis was observed in all the HCD groups. Hepatic expression of Tnfα was significantly suppressed in the 10% SME group (P < 0.05). Comprehensive proteomic analysis of the liver in the SME groups revealed an increase in the levels of major proteins involved in mitochondrial bioenergetics, including peroxisome proliferator-activated receptor gamma co-activator 1 alpha, mitochondrial thioredoxin, cardiolipin synthase, peroxisome proliferator-activated receptor alpha, and carnitine palmitoyltransferase I. CONCLUSION Dietary SME improved liver function in the diet-induced fatty liver model. Activation of mitochondrial biogenetic function might be involved in this process. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
| | - Takahiro Hayasaka
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
| | - Hirotaka Sekiguchi
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
- R&D Planning and Administration Department, Life Science Institute Co., Ltd, Tokyo, Japan
| | - Hiroshi Satoh
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Abstract
The transition from liquid to solid feed during weaning results in morphological, histological and microbial changes in the young animal's intestinal tract and often is associated with diarrhoea. The ban of in-feed antibiotics in pig production in the European Union has led to increasing interest in alternatives to overcome weaning-associated problems. Among others, nucleotides may have the potential to alleviate health impairments due to weaning. Nucleotides are natural components of the non-protein fraction of milk and have important effects on the maintenance of health in young animals. Nucleotides and their related metabolic products play key roles in many biological processes and become essential dietary components when endogenous supply is insufficient for normal function. The present review summarises nucleotide composition of milk from different species, the biology of nucleotides and possible effects of dietary nucleotides on intestinal morphology and function, intestinal microbiota, immune function, nutrient metabolism, hepatic morphology and function as well as growth performance. Special attention is given to data available for pigs, and suggestions are made for inclusion of nucleotides in the diet to benefit piglets' health and reduce the consequences accompanying early weaning.
Collapse
|
7
|
Effect of a fermented brown rice extract on the gastrointestinal function in methotrexate-treated rats. Biosci Biotechnol Biochem 2013; 77:243-8. [PMID: 23391910 DOI: 10.1271/bbb.120638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the protective effect of a hydrous ethanol extract of brown rice fermented with Aspergillus oryzae (ERF) which contained nucleobases and low fiber on the methotrexate (MTX)-induced gastrointestinal damage in rats. The rats were assigned to three groups: control (CON), MTX, and MTX-ERF. The rats in the CON and MTX groups were fed for 4 weeks on a basal diet, and those in the MTX-ERF group were fed on a 9.16% ERF-containing basal diet. The rats in the MTX and MTX-ERF groups were administered with MTX after 3 weeks. The survival rate and incidence rate of diarrhea were monitored over 1 week. On day 4 after the administration, half of the rats in each group were killed, and gastrointestinal samples were collected. Feeding with ERF improved the incidence rate of diarrhea, increased the protein content in small intestinal mucosa, and also apparently improved the survival rate. These results indicate that dietary ERF could protect against MTX-induced gastrointestinal damage.
Collapse
|
8
|
Santandreu FM, Oliver J, Roca P. Improvement of mitochondrial energy and oxidative balance during intestinal differentiation. Mitochondrion 2010; 11:89-96. [PMID: 20696280 DOI: 10.1016/j.mito.2010.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/05/2010] [Accepted: 07/23/2010] [Indexed: 02/01/2023]
Abstract
Mitochondria vary in their number and function, but how these variations are associated with intestinal cell differentiation remains elusive. The object of this study was to investigate the underlying mechanisms of inosine-mediated intestinal cell maturation, analysing the effects of this nutrient on metabolic functionality, mitochondrial biogenesis and mitochondrial function in human colonic cells. The role of oxidative stress in the control of intestinal cell growth was also explored. We report the novel finding that inosine-mediated differentiation improves aerobic metabolism through an increase in mitochondrial bioenergetics and biogenesis in colonic cells, which probably confers them greater resistance to cytotoxic oxidative stress.
Collapse
Affiliation(s)
- Francisca M Santandreu
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | | | | |
Collapse
|
9
|
Abstract
Several studies have reported differing data on the effect of exogenous nucleosides and nucleotides on the proliferation and differentiation in various intestinal cell lines and explants. To study whether exogenous nucleosides modulate intestinal cell differentiation, IEC-6 cells were differentiated in the presence or absence of a nucleoside mixture (cytidine, uridine, guanosine and inosine, 30 microM each), and the concentrations of nucleoside derivatives were determined by HPLC. Cell differentiation was assessed by electron microscopy, alkaline phosphatase activity and Rnd3 gene expression. The present results showed that uridine, guanosine and inosine were cleared from culture media (up to 32, 63 and 100 % in proliferating cells, and 31, 80 and 94 % in differentiated cells, respectively) whereas cytidine concentrations increased. Differentiation of IEC-6 cells was associated with a significant increase in intracellular nucleotide concentrations. Clearance of nucleosides correlated with a significant increase in the intracellular nucleotide pool in proliferating and differentiated IEC-6 cells. Intracellular guanosine nucleotides increased 2.5- and 5-fold in nucleoside-supplemented proliferating and differentiated cells, respectively. At 24 h, nucleoside-supplemented differentiated IEC-6 cells had significantly higher energy charge and GTP levels than non-supplemented ones. These modifications paralleled changes in cell differentiation as indicated by increased alkaline phosphatase activity, prolonged microvilli formation and accelerated down-regulation of Rnd3 gene expression. The present findings suggest that exogenous nucleosides were selectively taken up by IEC-6 cells, increased the intracellular nucleotide pool, GTP and energy charge, and favoured cell morphological and functional changes during differentiation.
Collapse
|
10
|
Affiliation(s)
- J D Carver
- Department of Pediatrics, Division of Neonatology, University of South Florida College of Medicine, Tampa, 33606, USA
| | | |
Collapse
|
11
|
Evans ME, Tian J, Gu LH, Jones DP, Ziegler TR. Dietary supplementation with orotate and uracil increases adaptive growth of jejunal mucosa after massive small bowel resection in rats. JPEN J Parenter Enteral Nutr 2006; 29:315-20; discussion 320-1. [PMID: 16107594 DOI: 10.1177/0148607105029005315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Massive small-bowel resection (SBR) increases adaptive growth of residual intestine in animal models of short-bowel syndrome (SBS). Pyrimidine nucleotides are critical for DNA and RNA synthesis, but no previous study has evaluated whether supplementation of pyrimidines or their precursors in the diet enhances adaptive gut growth after SBR. This study determined growth responses in jejunal mucosa after 7 days of dietary supplementation with uracil, or its precursor, orotate, after massive SBR in rats. METHODS Sprague-Dawley rats ( approximately 200 g) underwent 80% jejunoileal resection (RX) or ileal transection (TX; control). Rats were pair-fed a purified (AIN-93G) powdered diet supplemented with or without 1% (wt/wt) orotate or uracil until killing at 7 days postsurgery. Defined jejunal segments were obtained for analysis of mucosal villus height (VH), crypt depth (CD), total mucosal height, bromodeoxyuridine (BrdU) incorporation, an index of cell proliferation, and full-thickness DNA and protein content as measures of intestinal adaptive growth. RESULTS Jejunal VH increased significantly with SBR, as expected, and orotate further stimulated this response. Jejunal CD and total mucosal height increased significantly with both orotate and uracil supplementation compared with resected animals receiving standard diet. Orotate administration also increased jejunal DNA content compared with the increase observed with SBR alone. Finally, orotate, but not uracil, supplementation increased BrdU incorporation compared with resected rats fed standard or uracil-supplemented diet after SBR. CONCLUSIONS Supplementation of oral diet with the pyrimidine precursor orotate and uracil stimulated adaptive jejunal growth after massive SBR in rats. Dietary orotate had more potent growth-stimulatory effects than uracil in this animal model. Dietary supplementation with orotate and uracil represents a novel nutrition approach to enhance small-bowel mucosal adaptive growth and absorptive capacity in SBS.
Collapse
Affiliation(s)
- Mary E Evans
- Department of Medicine and the Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
12
|
|