1
|
Pontes RB, Lisboa MRP, Pereira AF, Lino JA, de Oliveira FFB, de Mesquita AKV, de Freitas Alves BW, Lima-Júnior RCP, Vale ML. Involvement of Endothelin Receptors in Peripheral Sensory Neuropathy Induced by Oxaliplatin in Mice. Neurotox Res 2019; 36:688-699. [PMID: 31228092 DOI: 10.1007/s12640-019-00074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the participation of the endothelin ETA and ETB receptors and the effects of bosentan in oxaliplatin-induced peripheral sensory neuropathy (OIN) in mice. Adult male Swiss mice received 1 mg/kg of oxaliplatin intravenously, twice a week for 5 weeks. Dorsal root ganglia (DRG) and spinal cords were removed for evaluation of the endothelin ETA and ETB receptor expression. Afterwards, selective (BQ-123 and BQ-788; 10 nmol in 30 μL, intraplantarly) and non-selective (bosentan, 100 mg/kg, orally) antagonists were administered in order to evaluate the involvement of the endothelin receptors in OIN. Mechanical and thermal nociception tests were performed once a week for 56 days. Oxaliplatin induced mechanical and thermal hypersensitivity and increased the endothelin ETA receptor expression in both the DRG and spinal cord (P < 0.05). Endothelin ETB receptor expression was increased in the DRG (P < 0.05) but not in the spinal cord. Both endothelin ETA and ETB receptor selective antagonists partially prevented mechanical hyperalgesia in mice with OIN (P < 0.05). Moreover, bosentan prevented mechanical and thermal hypersensitivity in oxaliplatin-treated mice (P < 0.05). In conclusion, both endothelin ETA and ETB receptors seem to be involved in the OIN in mice and they should be considered possible targets for the management of this clinical feature.
Collapse
Affiliation(s)
- Renata Bessa Pontes
- Department of Physical Therapy, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-160, Brazil
| | - Mario Roberto Pontes Lisboa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Juliana Arcanjo Lino
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-140, Brazil
| | - Francisco Fábio Bezerra de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | | | | | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Mariana Lima Vale
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil.
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil.
| |
Collapse
|
2
|
Peeters CF, Thomas CM, Sweep FC, Span PN, Wobbes T, Ruers TM. Elevated Serum Endothelin-1 Levels in Patients with Colorectal Cancer; Relevance for Prognosis. Int J Biol Markers 2018; 15:288-93. [PMID: 11192823 DOI: 10.1177/172460080001500402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background It has been demonstrated that the Doppler Perfusion Index (DPI) is increased in patients who are at risk of developing liver metastases from colorectal cancer. It has been postulated that a circulating hormonal factor is involved in the relative vasoconstriction throughout the splanchnic bed. Endothelin-1 (ET-1), a potent vasoconstrictor which has been associated with tumor growth and is produced by colorectal tumors, may play an important role in this phenomenon. In this paper the prognostic value of serum ET-1 in colorectal cancer is discussed. Methods Preoperative serum levels of ET-1 were assessed in three groups of patients: group A underwent resection of the colorectal tumor and remained free of recurrence (n=20); group B developed metachronous liver metastases at least six months after colorectal resection (n=14); and group C presented with colorectal cancer and synchronous liver metastases (n=22). Results The mean (SD) serum ET-1 levels in groups A, B and C were 1.59 (0.41) pmol/L, 1.70 (0.32) pmol/L and 1.85 (0.47) pmol/L, respectively. These values were significantly different from those of healthy controls (1.22 (0.31), p<0.05). Kaplan-Meier analyses revealed no prognostic value of preoperative serum ET-1 levels. Conclusions These preliminary results demonstrate that serum ET-1 levels are raised in patients with colorectal cancer. Serum ET-1 levels do not seem to be of prognostic value for survival.
Collapse
Affiliation(s)
- C F Peeters
- Department of Surgery, University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
3
|
Nouguerède E, Berenguer C, Garcia S, Bennani B, Delfino C, Nanni I, Dahan L, Gasmi M, Seitz JF, Martin PM, Ouafik L. Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo. Cancer Med 2013; 2:196-207. [PMID: 23634287 PMCID: PMC3639658 DOI: 10.1002/cam4.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022] Open
Abstract
Adrenomedullin (AM) is a multifunctional peptide vasodilator that transduces its effects through calcitonin receptor-like receptor/receptor activity-modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). In this study, real-time quantitative reverse transcription demonstrated a significant expression of AM mRNA in tumor samples from colorectal cancer (CRC) patients in clinical stage II, III, and IV when compared with normal colorectal tissue. AM, CLR, RAMP2, and RAMP3 proteins were immunohistochemically localized in the carcinomatous epithelial compartment of CRC tissue. Tissue microarray analysis revealed a clear increase of AM, CLR, RAMP2, and RAMP3 staining in lymph node and distant metastasis when compared with primary tumors. The human colon carcinoma cells HT-29 expressed and secreted AM into the culture medium with a significant increase under hypoxia. Treatment of HT-29 cells with synthetic AM stimulated cell proliferation and invasion in vitro. Incubation with anti-AM antibody (αAM), anti-AM receptors antibodies (αAMR), or AM antagonist AM22-52 inhibited significantly basal levels of proliferation of HT-29 cells, suggesting that AM may function as an autocrine growth factor for CRC cells. Treatment with αAM significantly suppressed the growth of HT-29 tumor xenografts in vivo. Histological examination of αAM-treated tumors showed evidence of disruption of tumor vascularity with decreased microvessel density, depletion of endothelial cells and pericytes, and increased tumor cell apoptosis. These findings highlight the potential importance of AM and its receptors in the progression of CRC and support the conclusion that αAM treatment inhibits tumor growth by suppression of angiogenesis and tumor growth, suggesting that AM may be a useful therapeutic target.
Collapse
Affiliation(s)
| | | | - Stéphane Garcia
- Laboratoire d'Anapathologie, CHU Nord (AP-HM)Marseille, F-13000, France
| | - Bahia Bennani
- Laboratoire de Biologie du Cancer, Faculté de Médecine et de PharmacieBP 1893, Route de Sidi Harazem, Fès, Maroc
| | | | - Isabelle Nanni
- Laboratoire de Transfert d'Oncologie Biologique (AP-HM)Marseille, F-13000, France
| | - Laetitia Dahan
- Service d'oncologie digestive, CHU la Timone (AP-HM)Marseille, F-13000, France
| | - Mohamed Gasmi
- Service de Gastro-entérologie, CHU Nord (AP-HM)Marseille, F-13000, France
| | - Jean-François Seitz
- Service d'oncologie digestive, CHU la Timone (AP-HM)Marseille, F-13000, France
| | - Pierre-Marie Martin
- Inserm, UMR 911-CRO2Marseille, F-13000, France
- Laboratoire de Transfert d'Oncologie Biologique (AP-HM)Marseille, F-13000, France
| | - L'Houcine Ouafik
- Inserm, UMR 911-CRO2Marseille, F-13000, France
- Laboratoire de Transfert d'Oncologie Biologique (AP-HM)Marseille, F-13000, France
| |
Collapse
|
4
|
Keleg S, Kayed H, Jiang X, Penzel R, Giese T, Büchler MW, Friess H, Kleeff J. Adrenomedullin is induced by hypoxia and enhances pancreatic cancer cell invasion. Int J Cancer 2007; 121:21-32. [PMID: 17290391 DOI: 10.1002/ijc.22596] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adrenomedullin (ADM) is synthesized by different types of cells and acts by binding calcitonin receptor-like receptor (CRLR) and members of the receptor activity-modifying protein (RAMP) family. In this study, the expression and functional role of ADM and its signaling components were investigated in pancreatic adenocarcinoma (PDAC). By QRT-PCR, median mRNA levels of ADM and CRLR were 1.5- and 2.4-fold higher, respectively, in PDAC tissues compared to normal pancreatic tissues. By immunohistochemistry, ADM, CRLR, RAMP1 and RAMP2, but not RAMP3, were expressed in pancreatic cancer cells. ADM serum levels were significantly increased in PDAC patients compared to healthy controls and chronic pancreatitis (CP) patients, with an area under the ROC curve of 0.83 and 0.98, respectively. At a cut-off level of 30.6 ng/ml, the specificity of ADM to differentiate PDAC from controls and CP patients was 85.5 and 83.6%, with a sensitivity of 80 and 100%. All 5 evaluated pancreatic cancer cells lines expressed ADM, CRLR, RAMP1 and RAMP2, whereas RAMP3 was expressed in only 1/5 pancreatic cancer cell lines. ADM was strongly induced by hypoxia and significantly increased invasiveness in 3/5 human pancreatic cancer cells. Blocking of CRLR decreased invasiveness in 4/5 human pancreatic cancer cells. In addition, rADM slightly up-regulated vascular endothelial growth factor secretion in 3/5 cell lines. In conclusion, ADM is induced by hypoxia and over-expressed in PDAC and might therefore serve as a potential tumor marker. Furthermore, ADM increases invasiveness of some pancreatic cancer cells and might influence angiogenesis, suggesting that blocking this pathway might have a therapeutic potential.
Collapse
Affiliation(s)
- Shereen Keleg
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Hans G, Deseure K, Robert D, De Hert S. Neurosensory changes in a human model of endothelin-1 induced pain: a behavioral study. Neurosci Lett 2007; 418:117-21. [PMID: 17403578 DOI: 10.1016/j.neulet.2007.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/04/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Although pain is a frequent feature in patients with cancer, its etiology is still poorly understood. In recent years, endothelin-1 (ET-1) has become a major target molecule in the etiology of cancer pain. In this randomised, double-blind study the effects of intradermal injection of ET-1 on spontaneous pain, temperature perception and sensation of punctate stimulation were evaluated. Thirty-five subjects were randomised to receive either placebo or one of four concentrations of ET-1 (ranging from 10(-10) to 10(-6)M). Besides assessment of spontaneous pain, three neurosensory testings were performed: (1) cold and warm sensation, (2) cold and heat pain, and (3) punctate stimulation using a von Frey monofilament. ET-1 produced a dose-dependent flare zone that was absent after placebo injection. Subjects reported a short-lasting spontaneous pain upon administration of the highest concentrations of ET-1. Injection of ET-1 induced a long-lasting and dose-dependent punctate hyperalgesia in an area around the injection site (secondary hyperalgesia). Thermal testing revealed a short period of hypoesthesia to non-noxious warm and cold stimuli after some doses of ET-1. In addition to the mechanical hyperalgesia, intradermal injection of ET-1 almost instantaneously induced a state of cold hyperalgesia outlasting the study period (120 min). No development of heat hyperalgesia was observed. The observed psychophysical characteristics of this new model of ET-1 induced nociception indicate its potential as a human experimental model for cancer pain.
Collapse
Affiliation(s)
- Guy Hans
- Multidisciplinary Pain Center, Antwerp University Hospital, Edegem, Belgium.
| | | | | | | |
Collapse
|
6
|
López J, Martínez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:1-92. [PMID: 12455746 DOI: 10.1016/s0074-7696(02)21010-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenomedullin (AM) is a recently discovered regulatory peptide involved in many functions including vasodilatation, electrolyte balance, neurotransmission, growth, and hormone secretion regulation, among others. This 52-amino acid peptide is expressed by specific cell types in many organs throughout the body. A complex receptor system has been described for AM; it requires at least the presence of a seven-transmembrane-domain G-protein-coupled receptor, a single-transmembrane-domain receptor activity modifying protein, and a receptor component protein needed to establish the connection with the downstream signal transduction pathway, which usually involves cyclicAMP. In addition, a serum-binding protein regulates the biological actions of AM, frequently by increasing AM functional attributes. Changes in levels of circulating AM correlate with several critical diseases, including cardiovascular and renal disorders, sepsis, cancer, and diabetes. Whether AM is a causal agent, a protective reaction, or just a marker for these diseases is currently under investigation. New technologies seeking to elevate and/or reduce AM levels are being investigated as potential therapeutic avenues.
Collapse
Affiliation(s)
- José López
- Cell Biology Unit, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
7
|
Abasolo I, Yang L, Haleem R, Xiao W, Pio R, Cuttitta F, Montuenga LM, Kozlowski JM, Calvo A, Wang Z. Overexpression of adrenomedullin gene markedly inhibits proliferation of PC3 prostate cancer cells in vitro and in vivo. Mol Cell Endocrinol 2003; 199:179-87. [PMID: 12581889 DOI: 10.1016/s0303-7207(02)00229-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of the gene encoding adrenomedullin (AM), a multifunctional peptide hormone, in the prostate is localized to the epithelial cells. Prostate cancer cells are derived from prostatic epithelial cells. To elucidate the potential role of the AM gene in prostate cancer progression, we have stably-transfected the PC3 human prostate cancer cell line with an AM gene expression vector. The AM-transfected PC3 sublines were studied along with parental and empty vector transfected PC3 cells as controls. The average level of AM in the conditioned media of AM-transfected cells was 0.959+/-0.113 nM, a physiologically relevant concentration. The ectopic expression of AM gene inhibited the proliferation of PC3 cells in culture dishes. In addition, anchorage-independent growth of the transfected sublines was virtually abolished in soft agar assays. Flow cytometry studies showed that overexpression of AM gene caused a very significant G(1)/G(0) cell cycle arrest. In vivo experiments demonstrated that AM gene expression markedly inhibited the growth of xenograft tumors in nude mice. Our in vivo and in vitro studies suggest that AM could strongly suppress the malignancy of prostate cancer cells, via autocrine and/or paracrine mechanisms.
Collapse
Affiliation(s)
- Ibane Abasolo
- Department of Urology, Northwestern University Medical School, Tarry 11-715, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Adrenomedullin (AM) was originally identified in the extracts of human pheochromocytoma tissue, but this peptide is now known to be synthesized and secreted from many kinds of cells in the body, including vascular smooth muscle cells, endothelial cells, fibroblasts, cardiac myocytes, epithelial cells, and cancer cells. In this review, we summarize AM-secreting and AM gene-expressing cells in addition to the regulation of secretion and gene expression of AM. Although the data are still limited to deduce the general features of AM gene expression, synthesis, and secretion, AM is assumed to be classified into the new class of biologically active peptides, which is mainly expressed and secreted from non-endocrine type cells by the stimulation with inflammation-related substances. It is also interesting that serious physiological conditions such as inflammation or hypoxia potently stimulate AM expression and release, suggesting its unique physiological function distinct from other known biologically active peptides.
Collapse
Affiliation(s)
- Naoto Minamino
- National Cardiovascular Center Research Institute, Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | |
Collapse
|
9
|
Abstract
Characterization of immunoreactive adrenomedullin (AM) secreted from cultured human vascular smooth muscle cells and 7 other cells indicates that AM is synthesized and secreted from all cultured cells we surveyed. The secretion rate of AM measured ranges from 0.001-6.83 fmol/10(5) cells/h, and endothelial cells, vascular smooth muscle cells and fibroblasts generally secrete AM at high rates. Based on the results of regulation of AM secretion from vascular wall cells, fibroblasts, macrophages and other cells measured in this and previous studies, AM secretion is found to be generally stimulated by inflammatory cytokines, lipopolysaccharide (LPS) and hormones. Especially, vascular smooth muscle cells and fibroblasts elicited uniform and strong stimulatory responses of AM secretion to tumor necrosis factor (TNF), interleukin-1 (IL-1), LPS and glucocorticoid, but endothelial cells did not elicit such prominent responses. AM secretion of monocyte-macrophage was mainly regulated by the degree of differentiation into macrophage and activation by LPS and inflammatory cytokines including interferon-gamma. The other examined cells showed weaker responses to LPS and IL-1. Although cultured cells may have been transformed as compared with those in the tissue, these data indicate that AM is widely synthesized and secreted from most of the cells in the body and functions as a local factor regulating inflammation and related reactions in addition to as a potent vasodilator. The responses of AM secretion to LPS and inflammatory cytokines suggest that fibroblasts, vascular smooth muscle cells and macrophage are the major sources of AM in the septic shock.
Collapse
Affiliation(s)
- Y Tomoda
- National Cardiovascular Center Research Institute, Fujishirodai, Suita, 565-8565, Osaka, Japan
| | | | | | | |
Collapse
|
10
|
Pío R, Martínez A, Cuttitta F. Cancer and diabetes: two pathological conditions in which adrenomedullin may be involved. Peptides 2001; 22:1719-29. [PMID: 11754957 DOI: 10.1016/s0196-9781(01)00530-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adrenomedullin (AM) is a regulatory peptide involved in several physiological processes. Among them, AM has been implicated in the regulation of growth, both with mitogenic and antiproliferative activities on normal cells. AM is widely expressed during embryogenesis and may have a significant role in the proliferation and differentiation processes associated with development. AM is also expressed by cancer cell lines and tumors and has been implicated in the growth of malignant cells. Some additional activities associated with AM (antiapoptotic capabilities, angiogenic potential, and upregulation in hypoxic conditions), together with its wide distribution in cancer, suggest that AM may be an important factor in carcinogenesis. Besides its implication in growth, embryogenesis and tumor biology, AM is also involved in pancreatic regulation and diabetes. AM regulates insulin secretion and is overexpressed in the plasma of diabetic patients. Several findings indicate that AM may participate in the pathogenesis and/or clinical complications of this disease.
Collapse
Affiliation(s)
- R Pío
- Department of Biochemistry, School of Medicine, University of Navarra, 31080, Pamplona, Spain
| | | | | |
Collapse
|
11
|
Abstract
Since the discovery of adrenomedullin in 1993 several hundred papers have been published regarding the regulation of its secretion and the multiplicity of its actions. It has been shown to be an almost ubiquitous peptide, with the number of tissues and cell types synthesizing adrenomedullin far exceeding those that do not. In Section II of this paper we give a comprehensive review both of tissues and cell lines secreting adrenomedullin and of the mechanisms regulating gene expression. The data on circulating adrenomedullin, obtained with the various assays available, are also reviewed, and the disease states in which plasma adrenomedullin is elevated are listed. In Section III the pharmacology and biochemistry of adrenomedullin binding sites, both specific sites and calcitonin gene-related peptide (CGRP) receptors, are discussed. In particular, the putative adrenomedullin receptor clones and signal transduction pathways are described. In Section IV the various actions of adrenomedullin are discussed: its actions on cellular growth, the cardiovascular system, the central nervous system, and the endocrine system are all considered. Finally, in Section V, we consider some unresolved issues and propose future areas for research.
Collapse
Affiliation(s)
- J P Hinson
- Department of Molecular and Cellular Biology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, University of London, United Kingdom.
| | | | | |
Collapse
|
12
|
Takahashi K, Satoh F, Sone M, Totsune K, Arihara Z, Noshiro T, Mouri T, Murakami O. Expression of adrenomedullin mRNA in adrenocortical tumors and secretion of adrenomedullin by cultured adrenocortical carcinoma cells. Peptides 1998; 19:1719-24. [PMID: 9880077 DOI: 10.1016/s0196-9781(98)00128-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunoreactive-adrenomedullin concentrations and the expression of adrenomedullin mRNA were studied in the tumor tissues of adrenocortical tumors. Northern blot analysis showed the expression of adrenomedullin mRNA in tumor tissues of adrenocortical tumors, including aldosterone-producing adenomas, cortisol-producing adenomas, a non-functioning adenoma and adrenocortical carcinomas, as well as normal parts of adrenal glands and pheochromocytomas. On the other hand, immunoreactive-adrenomedullin was not detected in about 90% cases of adrenocortical tumors (<0.12 pmol/g wet weight (ww)). Immunoreactive-adrenomedullin concentrations ranged from 0.44 to 198.2 pmol/g ww in tumor tissues of pheochromocytomas and were 9.2 +/- 1.2 pmol/g ww (mean +/- SD, n = 4) in normal parts of adrenal glands. Adrenomedullin mRNA was expressed in an adrenocortical adenocarcinoma cell line, SW-13 and immunoreactive-adrenomedullin was detected in the culture medium of SW-13 (48.9 +/- 1.8 fmol/10(5) cells/24h, mean +/- SEM, n = 4). On the other hand, immunoreactive-adrenomedullin was not detectable in the extract of SW-13 cells (<0.09 fmol/10(5) cells), suggesting that adrenomedullin was actively secreted from SW-13 cells without long-term storage. These findings indicate that adrenomedullin is produced and secreted, not only by pheochromocytomas, but also by adrenocortical tumors. Undetectable or low levels of immunoreactive-adrenomedullin in the tumor tissues of adrenocortical tumors may be due to very rapid secretion of this peptide soon after the translation from these tumors.
Collapse
Affiliation(s)
- K Takahashi
- Department of Molecular Biology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|