1
|
Pierroz DD, Bonnet N, Bianchi EN, Bouxsein ML, Baldock PA, Rizzoli R, Ferrari SL. Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res 2012; 27:1252-62. [PMID: 22407956 DOI: 10.1002/jbmr.1594] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As they age, mice deficient for the β2-adrenergic receptor (Adrb2(-/-) ) maintain greater trabecular bone microarchitecture, as a result of lower bone resorption and increased bone formation. The role of β1-adrenergic receptor signaling and its interaction with β2-adrenergic receptor on bone mass regulation, however, remains poorly understood. We first investigated the skeletal response to mechanical stimulation in mice deficient for β1-adrenergic receptors and/or β2-adrenergic receptors. Upon axial compression loading of the tibia, bone density, cancellous and cortical microarchitecture, as well as histomorphometric bone forming indices, were increased in both Adrb2(-/-) and wild-type (WT) mice, but not in Adrb1(-/-) nor in Adrb1b2(-/-) mice. Moreover, in the unstimulated femur and vertebra, bone mass and microarchitecture were increased in Adrb2(-/-) mice, whereas in Adrb1(-/-) and Adrb1b2(-/-) double knockout mice, femur bone mineral density (BMD), cancellous bone volume/total volume (BV/TV), cortical size, and cortical thickness were lower compared to WT. Bone histomorphometry and biochemical markers showed markedly decreased bone formation in Adrb1b2(-/-) mice during growth, which paralleled a significant decline in circulating insulin-like growth factor 1 (IGF-1) and IGF-binding protein 3 (IGF-BP3). Finally, administration of the β-adrenergic agonist isoproterenol increased bone resorption and receptor activator of NF-κB ligand (RANKL) and decreased bone mass and microarchitecture in WT but not in Adrb1b2(-/-) mice. Altogether, these results demonstrate that β1- and β2-adrenergic signaling exert opposite effects on bone, with β1 exerting a predominant anabolic stimulus in response to mechanical stimulation and during growth, whereas β2-adrenergic receptor signaling mainly regulates bone resorption during aging.
Collapse
Affiliation(s)
- Dominique D Pierroz
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
2
|
Kumar S, Enjamoori R, Jaiswal A, Ray R, Seth S, Maulik SK. Catecholamine-induced myocardial fibrosis and oxidative stress is attenuated by Terminalia arjuna (Roxb.). J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.11.0013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
Myocardial fibrosis and oxidative stress accompany a number of cardiac disorders such as hypertrophic cardiomyopathy, hypertensive heart disease and cardiac failure. Stem bark of Terminalia arjuna has been advocated for cardiac ailments. The present study evaluated the effects of T. arjuna bark extract on myocardial fibrosis and oxidative stress induced by chronic beta-adrenoceptor stimulation.
Methods
Aqueous extract of T. arjuna bark was evaluated at 63, 125 and 250 mg/kg given orally for antifibrotic and antioxidant effects in rats given the selective β-adrenoceptor agonist isoprenaline (5 mg/kg s.c.) for 28 days. Captopril (50 mg/kg per day, given orally), an inhibitor of angiotensin-converting enzyme used as a standard cardioprotective drug, was used as a positive control.
Key findings
Isoprenaline caused fibrosis, increased oxidative stress and cardiac hypertrophy (increased heart weight: body weight ratio and cardiomyocyte diameter). The T. arjuna bark extract and captopril significantly prevented the isoprenaline-induced increase in oxidative stress and decline in endogenous antioxidant level. Both also prevented fibrosis but not the increase in heart weight: body weight ratio.
Conclusions
T. arjuna protects against myocardial changes induced by chronic beta-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Enjamoori
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Amardeep Jaiswal
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruma Ray
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Subir Kumar Maulik
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Jiang Y, Steinle JJ. Systemic propranolol reduces b-wave amplitude in the ERG and increases IGF-1 receptor phosphorylation in rat retina. Invest Ophthalmol Vis Sci 2009; 51:2730-5. [PMID: 20042659 DOI: 10.1167/iovs.09-4779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether systemic application of propranolol, a nonselective beta-adrenergic receptor antagonist, with an osmotic pump will decrease the b-wave amplitude of the electroretinogram (ERG) and increase insulin-like growth factor (IGF)-1 receptor signaling. METHODS Young rats at 8 weeks of age were treated with saline, phentolamine, a nonselective alpha-adrenergic receptor antagonist, or propranolol, a nonselective beta-adrenergic receptor antagonist, delivered by osmotic pumps for 21 days. On the 21st day, all rats underwent electroretinographic analyses followed by collection of the retinas for protein assessment using Western blot analysis for IGF binding protein 3 (IGFBP3), IGF-1 receptor (IGF-1R), Akt, extracellular signal-related kinases 1 and 2 (ERK1/2), and vascular endothelial cell growth factor (VEGF). RESULTS Data indicate that 21 days of propranolol significantly decreased the b-wave amplitude of the ERG. The decrease in the b-wave amplitude occurred concurrently with a decrease in IGFBP3 levels and an increase in tyrosine phosphorylation of IGF-1 receptor on 1135/1136. This phosphorylation of IGF-1 receptor led to increased phosphorylation of Akt and ERK1/2. VEGF protein levels were also increased. CONCLUSIONS Overall, beta-adrenergic receptor antagonism produced a dysfunctional ERG, which occurred with an increase in IGF-1R phosphorylation and activation of VEGF. Systemic application of beta-adrenergic receptor antagonists may have detrimental effects on the retina.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
4
|
Nakajima-Takenaka C, Zhang GX, Obata K, Tohne K, Matsuyoshi H, Nagai Y, Nishiyama A, Takaki M. Left ventricular function of isoproterenol-induced hypertrophied rat hearts perfused with blood: mechanical work and energetics. Am J Physiol Heart Circ Physiol 2009; 297:H1736-43. [PMID: 19734357 DOI: 10.1152/ajpheart.00672.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated left ventricular (LV) mechanical work and energetics in the cross-circulated (blood-perfused) isoproterenol [Iso 1.2 mg x kg(-1).day(-1) for 3 days (Iso3) or 7 days (Iso7)]-induced hypertrophied rat heart preparation under isovolumic contraction-relaxation. We evaluated pressure-time curves per beat, end-systolic pressure-volume and end-diastolic pressure-volume relations, and myocardial O(2) consumption per beat (Vo(2))-systolic pressure-volume area (PVA; a total mechanical energy per beat) linear relations at 240 beats/min, because Iso-induced hypertrophied hearts failed to completely relax at 300 beats/min. The LV relaxation rate at 240 beats/min in Iso-induced hypertrophied hearts was significantly slower than that in control hearts [saline 24 microl/day for 3 and 7 days (Sa)] with unchanged contraction rate. The Vo(2)-intercepts (composed of basal metabolism and Ca(2+) cycling energy consumption in excitation-contraction coupling) of Vo(2)-PVA linear relations were unchanged associated with their unchanged slopes in Sa, Iso3, and Iso7 groups. The oxygen costs of LV contractility were also unchanged in all three groups. The amounts of expression of sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban (PLB), phosphorylated-Ser(16) PLB, phospholemman, and Na(+)-K(+)-ATPase are significantly decreased in Iso3 and Iso7 groups, although the amount of expression of NCX1 is unchanged in all three groups. Furthermore, the marked collagen production (types I and III) was observed in Iso3 and Iso7 groups. These results suggested the possibility that lowering the heart rate was beneficial to improve mechanical work and energetics in isoproterenol-induced hypertrophied rat hearts, although LV relaxation rate was slower than in normal hearts.
Collapse
|
5
|
Shimizu J, Yamashita D, Misawa H, Tohne K, Matsuoka S, Kim B, Takeuchi A, Nakajima-Takenaka C, Takaki M. Increased O2 consumption in excitation-contraction coupling in hypertrophied rat heart slices related to increased Na+ -Ca2+ exchange activity. J Physiol Sci 2009; 59:63-74. [PMID: 19340563 PMCID: PMC10717199 DOI: 10.1007/s12576-008-0006-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/31/2008] [Indexed: 10/20/2022]
Abstract
The goal of our study was to evaluate the origin of the increased O(2) consumption in electrically stimulated left ventricular slices of isoproterenol-induced hypertrophied rat hearts with normal left ventricular pressure. O(2) consumption per minute (mVO(2)) of mechanically unloaded left ventricular slices was measured in the absence and presence of 1-Hz field stimulation. Basal metabolic mVO(2), i.e., mVO(2) without electrical stimulation, was significantly smaller, but mVO(2) for the total Ca(2+) handling in excitation-contraction coupling (E-C coupling mVO(2)), i.e., delta mVO(2) (=mVO(2) with stimulation - mVO(2) without stimulation), was significantly larger in the hypertrophied heart. Furthermore, the fraction of E-C coupling mVO(2) was markedly altered in the hypertrophied heart. Namely, mVO(2) consumed by sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2) was depressed by 40%; mVO(2) consumed by the Na(+)/K(+)-ATPase (NKA)-Na(+)/Ca(2+) exchange (NCX) coupling was increased by 100%. The depressed mVO(2) consumption by SERCA2 was supported by lower protein expressions of phosphorylated-Ser(16) phospholamban and SERCA2. The increase in NKA-NCX coupling mVO(2) was supported by marked augmentation of NCX current. However, the increase in NCX current was not due to the increase in NCX1 protein expression, but was attributable to attenuation of the intrinsic inactivation mechanisms. The present results demonstrated that the altered origin of the increased E-C coupling mVO(2) in hypertrophy was derived from decreased SERCA2 activity (1ATP: 2Ca(2+)) and increased NCX activity coupled to NKA activity (1ATP: Ca(2+)). Taken together, we conclude that the energetically less efficient Ca(2+) extrusion pathway evenly contributes to Ca(2+) handling in E-C coupling in the present hypertrophy model.
Collapse
Affiliation(s)
- Juichiro Shimizu
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Daisuke Yamashita
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Hiromi Misawa
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Kiyoe Tohne
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Satoshi Matsuoka
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Bongju Kim
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Ayako Takeuchi
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | | | - Miyako Takaki
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| |
Collapse
|
6
|
Osadchii OE. Cardiac hypertrophy induced by sustained β-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev 2007; 12:66-86. [PMID: 17387610 DOI: 10.1007/s10741-007-9007-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
Cardiac hypertrophy is promoted by adrenergic over-activation and represents an independent risk factor for cardiovascular morbidity and mortality. The basic knowledge about mechanisms by which sustained adrenergic activation promotes myocardial growth, as well as understanding how structural changes in hypertrophied myocardium could affect myocardial function has been acquired from studies using an animal model of chronic systemic beta-adrenoreceptor agonist administration. Sustained beta-adrenoreceptor activation was shown to enhance the synthesis of myocardial proteins, an effect mediated via stimulation of myocardial growth factors, up-regulation of nuclear proto-oncogenes, induction of cardiac oxidative stress, as well as activation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase. Sustained beta-adrenoreceptor activation contributes to impaired cardiac autonomic regulation as evidenced by blunted parasympathetically-mediated cardiovascular reflexes as well as abnormal storage of myocardial catecholamines. Catecholamine-induced cardiac hypertrophy is associated with reduced contractile responses to adrenergic agonists, an effect attributed to downregulation of myocardial beta-adrenoreceptors, uncoupling of beta-adrenoreceptors and adenylate cyclase, as well as modifications of downstream cAMP-mediated signaling. In compensated cardiac hypertrophy, these changes are associated with preserved or even enhanced basal ventricular systolic function due to increased sarcoplasmic reticulum Ca(2+) content and Ca(2+)-induced sarcoplasmic reticulum Ca(2+) release. The increased availability of Ca(2+) to maintain cardiomyocyte contraction is attributed to prolongation of the action potential due to inhibition of the transient outward potassium current as well as stimulation of the reverse mode of the Na(+)-Ca(2+) exchange. Further progression of cardiac hypertrophy towards heart failure is due to abnormalities in Ca(2+) handling, necrotic myocardial injury, and increased myocardial stiffness due to interstitial fibrosis.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Cardiology Group, School of Clinical Sciences, University Clinical Departments, University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK.
| |
Collapse
|
7
|
Miura S, Ohno I, Suzuki J, Suzuki K, Okada S, Okuyama A, Nawata J, Ikeda J, Shirato K. Inhibition of matrix metalloproteinases prevents cardiac hypertrophy induced by beta-adrenergic stimulation in rats. J Cardiovasc Pharmacol 2003; 42:174-81. [PMID: 12883319 DOI: 10.1097/00005344-200308000-00004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Insulin-like growth factor (IGF) -I is one of the candidates for cardiac hypertrophy induced by beta-adrenergic stimulation. However, the mechanisms by which the biologic actions of IGF-I are regulated under this condition remain unclear. IGF-I becomes bioavailable for its receptors upon its dissociation from IGF-binding protein (IGFBP) through IGFBP degradation. Because matrix metalloproteinases (MMPs) have been implicated in the degradation of IGFBPs, the authors investigated the role of MMPs in the regulation of the IGF-I action through the degradation of IGFBPs in cardiac hypertrophy induced by beta-adrenergic stimulation. They examined the expression of MMPs in cardiac tissues of rats infused with isoproterenol (3 mg/kg per day), the effect of a MMP inhibitor, SI-27 (5 mg/rat per day), on cardiac hypertrophy, and the expression of IGF-I and IGFBP-3. MMP-1 and -2 activities increased and IGFBP-3 was degraded in heart hypertrophied by isoproterenol. MMP inhibition caused a regression in the myocyte hypertrophy in association with the suppression of both IGF-I protein in myocytes and the degradation of IGFBP-3 protein. These results suggest that the induction of myocyte hypertrophy by isoproterenol is mediated, at least in part, by a modulation of the IGF-I axis.
Collapse
Affiliation(s)
- Shoko Miura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machio, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Haddad GE, Blackwell K, Bikhazi A. Regulation of insulin-like growth factor-1 by the renin-angiotensin system during regression of cardiac eccentric hypertrophy through angiotensin-converting enzyme inhibitor and AT1 antagonist. Can J Physiol Pharmacol 2003; 81:142-9. [PMID: 12710528 DOI: 10.1139/y02-154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (Ang II) mediates its effects through its non-tyrosine-kinase G protein coupled Ang-II type 1 receptor (AT1). Growing evidence indicates that a functional insulin-like growth factor-1 (IGF-1) tyrosine kinase receptor is required for Ang-II-induced mitogenesis. Along with Ang II, we have previously shown that changes in IGF-1 receptor binding at myofibers are causative agents for cardiac eccentric hypertrophy. This study investigated the interaction of the renin-angiotensin system with the IGF-1 receptor during the development and regression of cardiac hypertrophy. Alterations in IGF-1 binding were evaluated in the CHAPS-pretreated perfused heart. Four weeks of aortocaval shunt increased relative heart mass by 76% without a major change in body mass or systolic blood pressure. Binding studies showed that IGF-1 has a higher affinity for the cardiac myofibers of shunt than sham rats. Two weeks of treatment with the angiotensin-converting enzyme (ACE) inhibitor captopril (0.5 g/L in drinking water) or the AT1-antagonist losartan (10 mg/(kg x day)) reduced cardiac hypertrophy by 54 and 42%, respectively. However, while both ACE inhibition and AT1-antagonist treatments produced equivalent regression in ventricular hypertrophy, captopril was more efficacious than losartan in the regression of atrial hypertrophy. Regression of cardiac hypertrophy in the shunt by either captopril or losartan was accompanied with a reduction or normalization of the elevated IGF-1 affinity. Thus, the induction and regression of cardiac eccentric hypertrophy seems to be largely dependent on cross talk between the renin-angiotensin system and the IGF-1 axis at the receptor level.
Collapse
Affiliation(s)
- G E Haddad
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
9
|
Yeh T, Wechsler AS, Graham L, Loesser KE, Sica DA, Wolfe L, Jakoi ER. Central sympathetic blockade ameliorates brain death-induced cardiotoxicity and associated changes in myocardial gene expression. J Thorac Cardiovasc Surg 2002; 124:1087-98. [PMID: 12447173 DOI: 10.1067/mtc.2002.124887] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Brain death results in cardiac injury and hemodynamic instability. After brain death, catecholamine levels surge in concert with increased expression of select myocardial gene products. Sympathetic blockade was used to investigate the effects of the adrenergic nervous system on myocardial gene expression in a rabbit model of brain death. METHODS A balloon expansion model of brain death in rabbits (n = 42) was used with and without sympathetic blockade (xylazine, acetylpromazine, and ketamine). Sham-operated and naive rabbits served as control animals. Over 4 hours, mean arterial pressure, heart rate, electrocardiographic results, catecholamine levels, myocardial histology, and messenger RNA levels were assessed. RESULTS Sympathetic blockade decreased basal catecholamine levels and blocked the catecholamine surge accompanying brain death. The typical hemodynamic instability, adverse electrocardiographic changes, and myocellular injury associated with brain death were all significantly decreased. Sympathetic blockade not only suppressed the previously reported increases in myocardial gene expression (cardiac and skeletal alpha-actin, egr-1, and heat shock protein 70) but also suppressed the expression of multiple other genes (alpha and beta myosin heavy chain, calcium ATPase [sarcoplasmic reticulum Ca(2+)-adenosine triphosphatase pump, SERCA-2a], phospholamban [ryanodine receptor], and c-jun). CONCLUSION Central sympathetic blockade minimizes the hemodynamic instability associated with brain death and neutralizes the increased expression of multiple myocardial gene products associated with brain death.
Collapse
Affiliation(s)
- Thomas Yeh
- Jewish Hospital Cardiovascular Research Center at University of Louisville, Department of Surgery, Division of Cardiothoracic Surgery, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|