1
|
Zhao H, Song X, Yan L, Ren M, Cui X, Li Y, Gao R, Zhang W, Liu M, Liu B, Hu Y, Wang J. IgE induces hypotension in asthma mice by down-regulating vascular NCX1 expression through activating MiR-212-5p. Biochim Biophys Acta Mol Basis Dis 2017; 1864:189-196. [PMID: 28988887 DOI: 10.1016/j.bbadis.2017.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023]
Abstract
Immunoglobulin E (IgE) has been suggested as a risk factor for allergy-induced low blood pressure, which has not been well explained in molecular details. Our current study shows a novel mechanism involving IgE, FcɛR1, miRNA-212-5p (miR-212-5p), and sodium/calcium exchanger protein 1(NCX1) for asthma to induce hypotension. In arterial smooth muscle cells, IgE up-regulated miR212-5p via its receptor FcɛR1, which resulted in down-regulation of NCX1 that is a regulating factor for blood pressure. In mice, asthma induced hypotension by interfering vasoconstrictive function; knockout of FcɛR1 kept the asthmatic mice from developing hypotension; knock-down of miR-212-5p in asthmatic mice resulted in a significant restoration of blood pressure. In human, asthma and IgE were positively correlated with hypotension in cohort study on NIH epidemiological data. This study suggests a novel therapeutic target (miR-212-5p) for treatment of asthma-induced hypotension.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Li Yan
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Meng Ren
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Xingxing Cui
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Wei Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Marobian Liu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Bin Liu
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China.
| |
Collapse
|
2
|
Liu B, Yang L, Zhang B, Kuang C, Huang S, Guo R. NF-κB-Dependent Upregulation of NCX1 Induced by Angiotensin II Contributes to Calcium Influx in Rat Aortic Smooth Muscle Cells. Can J Cardiol 2016; 32:1356.e11-1356.e20. [DOI: 10.1016/j.cjca.2016.02.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022] Open
|
3
|
Acsai K, Ördög B, Varró A, Nánási PP. Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies? Eur J Pharmacol 2016; 779:91-101. [PMID: 26970182 DOI: 10.1016/j.ejphar.2016.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Abnormal Ca(2+)homeostasis is often associated with chronic cardiovascular diseases, such as hypertension, heart failure or cardiac arrhythmias, and typically contributes to the basic ethiology of the disease. Pharmacological targeting of cardiac Ca(2+)handling has great therapeutic potential offering invaluable options for the prevention, slowing down the progression or suppression of the harmful outcomes like life threatening cardiac arrhythmias. In this review we outline the existing knowledge on the involvement of malfunction of the ryanodine receptor and the Na(+)-Ca(2+)exchanger in disturbances of Ca(2+)homeostasis and discuss important proof of concept pharmacological studies targeting these mechanisms in context of hypertension, heart failure, atrial fibrillation and ventricular arrhythmias. We emphasize the promising results of preclinical studies underpinning the potential benefits of the therapeutic strategies based on ryanodine receptor or Na(+)-Ca(2+)exchanger inhibition.
Collapse
Affiliation(s)
- Károly Acsai
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter P Nánási
- Department of Physiology, University of Debrecen, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Chen L, Song H, Wang Y, Lee JC, Kotlikoff MI, Pritchard TJ, Paul RJ, Zhang J, Blaustein MP. Arterial α2-Na+ pump expression influences blood pressure: lessons from novel, genetically engineered smooth muscle-specific α2 mice. Am J Physiol Heart Circ Physiol 2015. [PMID: 26209057 DOI: 10.1152/ajpheart.00430.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial myocytes express α1-catalytic subunit isoform Na(+) pumps (75-80% of total), which are ouabain resistant in rodents, and high ouabain affinity α2-Na(+) pumps. Mice with globally reduced α2-pumps (but not α1-pumps), mice with mutant ouabain-resistant α2-pumps, and mice with a smooth muscle (SM)-specific α2-transgene (α2 (SM-Tg)) that induces overexpression all have altered blood pressure (BP) phenotypes. We generated α2 (SM-DN) mice with SM-specific α2 (not α1) reduction (>50%) using nonfunctional dominant negative (DN) α2. We compared α2 (SM-DN) and α2 (SM-Tg) mice to controls to determine how arterial SM α2-pumps affect vasoconstriction and BP. α2 (SM-DN) mice had elevated basal mean BP (mean BP by telemetry: 117 ± 4 vs. 106 ± 1 mmHg, n = 7/7, P < 0.01) and enhanced BP responses to chronic ANG II infusion (240 ng·kg(-1)·min(-1)) and high (6%) NaCl. Several arterial Ca(2+) transporters, including Na(+)/Ca(2+) exchanger 1 (NCX1) and sarcoplasmic reticulum and plasma membrane Ca(2+) pumps [sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 (SERCA2) and plasma membrane Ca(2+)-ATPase 1 (PMCA1)], were also reduced (>50%). α2 (SM-DN) mouse isolated small arteries had reduced myogenic reactivity, perhaps because of reduced Ca(2+) transporter expression. In contrast, α2 (SM-Tg) mouse aortas overexpressed α2 (>2-fold), NCX1, SERCA2, and PMCA1 (43). α2 (SM-Tg) mice had reduced basal mean BP (104 ± 1 vs. 109 ± 2 mmHg, n = 15/9, P < 0.02) and attenuated BP responses to chronic ANG II (300-400 ng·kg(-1)·min(-1)) with or without 2% NaCl but normal myogenic reactivity. NCX1 expression was inversely related to basal BP in SM-α2 engineered mice but was directly related in SM-NCX1 engineered mice. NCX1, which usually mediates arterial Ca(2+) entry, and α2-Na(+) pumps colocalize at plasma membrane-sarcoplasmic reticulum junctions and functionally couple via the local Na(+) gradient to help regulate cell Ca(2+). Altered Ca(2+) transporter expression in SM-α2 engineered mice apparently compensates to minimize Ca(2+) overload (α2 (SM-DN)) or depletion (α2 (SM-Tg)) and attenuate BP changes. In contrast, Ca(2+) transporter upregulation, observed in many rodent hypertension models, should enhance Ca(2+) entry and signaling and contribute significantly to BP elevation.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hong Song
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Youhua Wang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jane C Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Tracy J Pritchard
- College of Nursing, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Richard J Paul
- Department of Molecular and Cell Physiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
| |
Collapse
|
5
|
Lim S, Chang W, Cha MJ, Song BW, Ham O, Lee SY, Lee C, Park JH, Lee SK, Jang Y, Hwang KC. PLCδ1 protein rescues ischemia-reperfused heart by the regulation of calcium homeostasis. Mol Ther 2014; 22:1110-1121. [PMID: 24637455 DOI: 10.1038/mt.2014.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/09/2014] [Indexed: 01/01/2023] Open
Abstract
Myocardial Ca(2+) overload induced by ischemia/reperfusion (I/R) is a major element of myocardial dysfunction in heart failure. Phospholipase C (PLC) plays important roles in the regulation of the phosphoinositol pathway and Ca(2+) homeostasis in various types of cells. Here, we investigated the protective role of PLCδ1 against myocardial I/R injury through the regulation of Ca(2+) homeostasis. To investigate its role, PLCδ1 was fused to Hph1, a cell-permeable protein transduction domain (PTD), and treated into rat neonatal cardiomyocytes and rat hearts under respective hypoxia-reoxygenation (H/R) and ischemia-reperfusion conditions. Treatment with Hph1-PLCδ1 significantly inhibited intracellular Ca(2+) overload, reactive oxygen species generation, mitochondrial permeability transition pore opening, and mitochondrial membrane potential elevation in H/R neonatal cardiomyocytes, resulting in the inhibition of apoptosis. Intravenous injections of Hph1-PLCδ1 in rats with I/R-injured myocardium caused significant reductions in infarct size and apoptosis and also improved systolic and diastolic cardiac functioning. Furthermore, a small ions profile obtained using time-of-flight secondary ion mass spectrometry showed that treatment with Hph1-PLCδ1 leads to significant recovery of calcium-related ions toward normal levels in I/R-injured myocardium. These results suggest that Hph1-PLCδ1 may manifest as a promising cardioprotective drug due to its inhibition of the mitochondrial apoptotic pathway in cells suffering from I/R injury.
Collapse
Affiliation(s)
- Soyeon Lim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Republic of Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Min-Ji Cha
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byeong-Wook Song
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Incheon, Republic of Korea
| | - Onju Ham
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se-Yeon Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changyoun Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yangsoo Jang
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki-Chul Hwang
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Li Q, Cui N, Du Y, Ma H, Zhang Y. Anandamide reduces intracellular Ca2+ concentration through suppression of Na+/Ca2+ exchanger current in rat cardiac myocytes. PLoS One 2013; 8:e63386. [PMID: 23667607 PMCID: PMC3646750 DOI: 10.1371/journal.pone.0063386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/03/2013] [Indexed: 11/22/2022] Open
Abstract
Purpose Anandamide, one of the endocannabinoids, has been reported to exhibit cardioprotective properties, particularly in its ability to limit the damage produced by ischemia reperfusion injury. However, the mechanisms underlying the effect are not well known. This study is to investigate whether anandamide alter Na+/Ca2+ exchanger and the intracellular free Ca2+ concentration ([Ca2+]i). Methods Na+/Ca2+ exchanger current (INCX) was recorded and analysed by using whole-cell patch-clamp technique and [Ca2+]i was measured by loading myocytes with the fluorescent Ca2+ indicator Fura-2/AM. Results We found that INCX was enhanced significantly after perfusion with simulated ischemic external solution; [Ca2+]i was also significantly increased by simulated ischemic solution. The reversal potential of INCX was shifted to negative potentials in simulated ischemic external solution. Anandamide (1–100 nM) failed to affect INCX and [Ca2+]i in normal solution. However, anandamide (1–100 nM) suppressed the increase in INCX in simulated ischemic external solution concentration-dependently and normalized INCX reversal potential. Furthermore, anandamide (100 nM) significantly attenuated the increase in [Ca2+]i in simulated ischemic solution. Blocking CB1 receptors with the specific antagonist AM251 (500 nM) failed to affect the effects of anandamide on INCX and [Ca2+]i in simulated ischemic solution. CB2 receptor antagonist AM630 (100 nM) eliminated the effects of anandamide on INCX and [Ca2+]i in simulated ischemic solution, and CB2 receptor agonist JWH133 (100 nM) simulated the effects of anandamide that suppressed the increase in INCX and [Ca2+]i in simulated ischemic solution. In addition, pretreatment with the Gi/o-specific inhibitor pertussis toxin (PTX, 500 ng/ml) eliminated the effects of anandamide and JWH133 on INCX in simulated ischemic solution. Conclusions Collectively, these findings suggest that anandamide suppresses calcium overload through inhibition of INCX during perfusion with simulated ischemic solution; the effects may be mediated by CB2 receptor via PTX-sensitive Gi/o proteins. This mechanism is importantly involved in the anti-ischemia injury caused by endocannabinoids.
Collapse
Affiliation(s)
- Qian Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Na Cui
- Department of Reproduction, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanjie Du
- Department of Reproduction, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
7
|
Blaustein MP. Livin' with NCX and lovin' it: a 45 year romance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:3-15. [PMID: 23224865 PMCID: PMC3884827 DOI: 10.1007/978-1-4614-4756-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
This conference commemorates, almost to the day, the 45th anniversary of the discovery of the Na(+)/Ca(2+) exchanger (NCX). The discovery was serendipitous, as is so often the case with scientific breakthroughs. Indeed, that is what is so fascinating and romantic about scientific research. I will describe the discovery of NCX, but will begin by explaining how I got there, and will then discuss how the discovery influenced my career path.
Collapse
|
8
|
Pulina MV, Zulian A, Baryshnikov SG, Linde CI, Karashima E, Hamlyn JM, Ferrari P, Blaustein MP, Golovina VA. Cross talk between plasma membrane Na(+)/Ca (2+) exchanger-1 and TRPC/Orai-containing channels: key players in arterial hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:365-74. [PMID: 23224895 DOI: 10.1007/978-1-4614-4756-6_31] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial smooth muscle (ASM) Na(+)/Ca(2+) exchanger type 1 (NCX1) and TRPC/Orai-containing receptor/store-operated cation channels (ROC/SOC) are clustered with α2 Na(+) pumps in plasma membrane microdomains adjacent to the underlying junctional sarcoplasmic reticulum. This arrangement enables these transport proteins to function as integrated units to help regulate local Na(+) metabolism, Ca(2+) signaling, and arterial tone. They thus influence vascular resistance and blood pressure (BP). For instance, upregulation of NCX1 and TRPC6 has been implicated in the pathogenesis of high BP in several models of essential hypertension. The models include ouabain-induced hypertensive rats, Milan hypertensive rats, and Dahl salt-sensitive hypertensive rats, all of which exhibit elevated plasma ouabain levels. We suggest that these molecular mechanisms are key contributors to the increased vascular resistance ("whole body autoregulation") that elevates BP in essential hypertension. Enhanced expression and function of ASM NCX1 and TRPC/Orai1-containing channels in hypertension implies that these proteins are potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Maria V Pulina
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang J. New insights into the contribution of arterial NCX to the regulation of myogenic tone and blood pressure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:329-43. [PMID: 23224892 DOI: 10.1007/978-1-4614-4756-6_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plasma membrane protein Na(+)/Ca(2+) exchanger (NCX) in vascular smooth muscle (VSM) cells plays an important role in intracellular Ca(2+) homeostasis, Ca(2+) signaling, and arterial contractility. Recent evidence in intact animals reveals that VSM NCX type 1 (NCX1) is importantly involved in the control of arterial blood pressure (BP) in the normal state and in hypertension. Increased expression of vascular NCX1 has been implicated in human primary pulmonary hypertension and several salt-dependent hypertensive animal models. Our aim is to determine the molecular and physiological mechanisms by which vascular NCX influences vasoconstriction and BP normally and in salt-dependent hypertension. Here, we describe the relative contribution of VSM NCX1 to Ca(2+) signaling and arterial contraction, including recent data from transgenic mice (NCX1(smTg/Tg), overexpressors; NCX1(sm-/-), knockouts) that has begun to elucidate the specific contributions of NCX to BP regulation. Arterial contraction and BP correlate with the level of NCX1 expression in smooth muscle: NCX1(sm-/-) mice have decreased arterial myogenic tone (MT), vasoconstriction, and low BP. NCX1(smTg/Tg) mice have high BP and are more sensitive to salt; their arteries exhibit upregulated transient receptor potential canonical channel 6 (TRPC6) protein, increased MT, and vasoconstriction. These observations suggest that NCX is a key component of certain distinct signaling pathways that activate VSM contraction in response to stretch (i.e., myogenic response) and to activation of certain G-protein-coupled receptors. Arterial NCX expression and mechanisms that control the local (sub-plasma membrane) Na(+) gradient, including cation-selective receptor-operated channels containing TRPC6, regulate arterial Ca(2+) and constriction, and thus BP.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Linde CI, Antos LK, Golovina VA, Blaustein MP. Nanomolar ouabain increases NCX1 expression and enhances Ca2+ signaling in human arterial myocytes: a mechanism that links salt to increased vascular resistance? Am J Physiol Heart Circ Physiol 2012; 303:H784-94. [PMID: 22842068 DOI: 10.1152/ajpheart.00399.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms by which NaCl raises blood pressure (BP) in hypertension are unresolved, but much evidence indicates that endogenous ouabain is involved. In rodents, arterial smooth muscle cell (ASMC) Na(+) pumps with an α(2)-catalytic subunit (ouabain EC(50) ≤1.0 nM) are crucial for some hypertension models, even though ≈80% of ASMC Na(+) pumps have an α(1)-subunit (ouabain EC(50) ≈ 5 μM). Human α(1)-Na(+) pumps, however, have high ouabain affinity (EC(50) ≈ 10-20 nM). We used immunoblotting, immunocytochemistry, and Ca(2+) imaging (fura-2) to examine the expression, distribution, and function of Na(+) pump α-subunit isoforms in human arteries and primary cultured human ASMCs (hASMCs). hASMCs express α(1)- and α(2)-Na(+) pumps. Further, α(2)-, but not α(1)-, pumps are confined to plasma membrane microdomains adjacent to sarcoplasmic reticulum (SR), where they colocalize with Na/Ca exchanger-1 (NCX1) and C-type transient receptor potential-6 (receptor-operated channels, ROCs). Prolonged inhibition (72 h) with 100 nM ouabain (blocks nearly all α(1)- and α(2)-pumps) was toxic to most cultured hASMCs. Treatment with 10 nM ouabain (72 h), however, increased NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and augmented ATP (10 μM)-induced SR Ca(2+) release in 0 Ca(2+), ouabain-free media, and Ca(2+) influx after external Ca(2+) restoration. The latter was likely mediated primarily by ROCs and store-operated Ca(2+) channels. These hASMC protein expression and Ca(2+) signaling changes are comparable with previous observations on myocytes isolated from arteries of many rat hypertension models. We conclude that the same structurally and functionally coupled mechanisms (α(2)-Na(+) pumps, NCX1, ROCs, and the SR) regulate Ca(2+) homeostasis and signaling in hASMCs and rodent ASMCs. These ouabain/endogenous ouabain-modulated mechanisms underlie the whole body autoregulation associated with increased vascular resistance and elevation of BP in human, salt-sensitive hypertension.
Collapse
Affiliation(s)
- Cristina I Linde
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
11
|
Blaustein MP, Leenen FHH, Chen L, Golovina VA, Hamlyn JM, Pallone TL, Van Huysse JW, Zhang J, Wier WG. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 2011; 302:H1031-49. [PMID: 22058154 DOI: 10.1152/ajpheart.00899.2011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na(+) and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na(+)]. This leads, via the Na(+)-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na(+) pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na(+)]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na(+) channels, EO, ouabain-sensitive α(2) Na(+) pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na(+) channel-EO-α(2) Na(+) pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α(2) Na(+) pump-Na(+)/Ca(2+) exchanger-Ca(2+) signaling pathway. Circulating EO also activates an EO-α(2) Na(+) pump-Src kinase signaling cascade. This increases the expression of the Na(+)/Ca(2+) exchanger-transient receptor potential cation channel Ca(2+) signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhao D, Zhang J, Blaustein MP, Navar LG. Attenuated renal vascular responses to acute angiotensin II infusion in smooth muscle-specific Na+/Ca2+ exchanger knockout mice. Am J Physiol Renal Physiol 2011; 301:F574-9. [PMID: 21697239 DOI: 10.1152/ajprenal.00065.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies in smooth muscle-specific Na(+)/Ca(2+) exchanger-1 knockout (NCX1(sm-/-)) mice reveal reduced arterial pressure and impaired myogenic responses compared with heterozygous littermates. In this study, we determined renal function in male anesthetized NCX1(sm-/-) mice and NCX1 heterozygous (NCX1(+/-)) littermates before and during acute ANG II infusions. Systolic blood pressure in awake mice was lower in NCX1(sm-/-) mice compared with NCX1(+/-) mice (119 ± 4 vs. 131 ± 3 mmHg, P < 0.05). Acute ANG II infusions (5 ng·min(-1)·g(-1) body wt) increased mean arterial pressure in anesthetized NCX1(+/-) (109 ± 2 to 134 ± 3 mmHg, P < 0.001, n = 8) and NCX1(sm-/-) (101 ± 8 to 129 ± 8 mmHg, P < 0.01, n = 6) mice to a similar extent (Δ25 ± 1 vs. Δ28 ± 4 mmHg, P > 0.05). In response to ANG II infusions, PAH clearance (C(PAH)) decreased from 1.39 ± 0.27 to 0.98 ± 0.22 ml·min(-1)·g(-1) (P < 0.05) and glomerular filtration rate (GFR) was reduced from 0.50 ± 0.09 to 0.32 ± 0.06 ml·min(-1)·g(-1) (P < 0.05) in NCX1(+/-) mice. In contrast, the NCX1(sm-/-) did not exhibit significant reductions in either C(PAH) (1.16 ± 0.30 to 1.22 ± 0.34 ml·min(-1)·g(-1), P > 0.05) or GFR (0.48 ± 0.08 to 0.41 ± 0.05 ml·min(-1)·g(-1), P > 0.05) during acute ANG II infusions. Using flometry to measure renal blood flow continuously, NCX1(sm-/-) mice had significantly attenuated responses to ANG II infusions (-34.2 ± 3.9%, P < 0.05) compared with those in NCX1(+/-) mice (-48 ± 2%) or in wild-type mice (-69 ± 7%). These data indicate that renal vascular responses to ANG II are attenuated in NCX1(sm-/-) mice compared with NCX1(+/-) mice and that NCX1 contributes to the renal vasoconstriction response to acute ANG II infusions.
Collapse
Affiliation(s)
- Di Zhao
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane Univ. Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
13
|
Pritchard TJ, Bowman PS, Jefferson A, Tosun M, Lynch RM, Paul RJ. Na(+)-K(+)-ATPase and Ca(2+) clearance proteins in smooth muscle: a functional unit. Am J Physiol Heart Circ Physiol 2010; 299:H548-56. [PMID: 20543086 DOI: 10.1152/ajpheart.00527.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Na(+)-K(+)-ATPase (NKA) can affect intracellular Ca(2+) concentration regulation via coupling to the Na(+)-Ca(2+) exchanger and may be important in myogenic tone. We previously reported that in mice carrying a transgene for the NKA alpha(2)-isoform in smooth muscle (alpha(2sm+)), the alpha(2)-isoform protein as well as the alpha(1)-isoform (not contained in the transgene) increased to similar degrees (2-7-fold). Aortas from alpha(2sm+) mice relaxed faster from a KCl-induced contraction, hypothesized to be related to more rapid Ca(2+) clearance. To elucidate the mechanisms underlying this faster relaxation, we therefore measured the expression and distribution of proteins involved in Ca(2+) clearance. Na(+)-Ca(2+) exchanger, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), and plasma membrane Ca(2+)-ATPase (PMCA) proteins were all elevated up to approximately fivefold, whereas actin, myosin light chain, and calponin proteins were not changed in smooth muscle from alpha(2sm+) mice. Interestingly, the corresponding Ca(2+) clearance mRNA levels were unchanged. Immunocytochemical data indicate that the Ca(2+) clearance proteins are distributed similarly in wild-type and alpha(2sm+) aorta cells. In studies measuring relaxation half-times from a KCl-induced contraction in the presence of pharmacological inhibitors of SERCA and PMCA, we estimated that together these proteins were responsible for approximately 60-70% of relaxation in aorta. Moreover, the percent contribution of SERCA and PMCA to relaxation rates in alpha(2sm+) aorta was not significantly different from that in wild-type aorta. The coordinate expressions of NKA and Ca(2+) clearance proteins without change in the relative contributions of each individual protein to smooth muscle function suggest that NKA may be but one component of a larger functional Ca(2+) clearance system.
Collapse
Affiliation(s)
- Tracy J Pritchard
- Molecular and Cellular Physiology, Univ. of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0576, USA
| | | | | | | | | | | |
Collapse
|
14
|
Amphotericin B-induced renal tubular cell injury is mediated by Na+ Influx through ion-permeable pores and subsequent activation of mitogen-activated protein kinases and elevation of intracellular Ca2+ concentration. Antimicrob Agents Chemother 2009; 53:1420-6. [PMID: 19139282 DOI: 10.1128/aac.01137-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amphotericin B (AMB) is one of the most effective antifungal agents; however, its use is often limited by the occurrence of adverse events, especially nephrotoxicity. The present study was designed to determine the possible mechanisms underlying the nephrotoxic action of AMB. The exposure of a porcine proximal renal tubular cell line (LLC-PK1 cells) to AMB caused cell injury, as assessed by mitochondrial enzyme activity, the leakage of lactate dehydrogenase, and tissue ATP depletion. Propidium iodide uptake was enhanced, while terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was not affected by AMB, suggesting a lack of involvement of apoptosis in AMB-induced cell injury. The cell injury was inhibited by the depletion of membrane cholesterol with methyl-beta-cyclodextrin, which lowered the extracellular Na(+) concentration or the chelation of intracellular Ca(2+). The rise in the intracellular Ca(2+) concentration may be mediated through the activation of the ryanodine receptor (RyR) on the endoplasmic reticulum and the mitochondrial Na(+)-Ca(2+) exchanger, since cell injury was attenuated by dantrolene (an RyR antagonist) and CGP37157 (an Na(+)-Ca(2+) exchanger inhibitor). Moreover, AMB-induced cell injury was reversed by PD169316 (a p38 mitogen-activated protein [MAP] kinase inhibitor), c-Jun N-terminal kinase inhibitor II, and PD98059 (a MEK1/2 inhibitor). The phosphorylations of these MAP kinases were enhanced by AMB in a calcium-independent manner, suggesting the involvement of MAP kinases in AMB-induced cell injury. These findings suggest that Na(+) entry through membrane pores formed by the association of AMB with membrane cholesterol leads to the activation of MAP kinases and the elevation of the intracellular Ca(2+) concentration, leading to renal tubular cell injury.
Collapse
|
15
|
Seya K, Motomura S, Furukawa KI. Cardiac mitochondrial cGMP stimulates cytochrome c release. Clin Sci (Lond) 2007; 112:113-21. [PMID: 16961461 DOI: 10.1042/cs20060144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the existence of cardiac mitochondrial cGMP has been reported previously [Kimura and Murad (1974) J. Biol. Chem. 249, 6910-6916], the physiological and pathophysiological properties of cGMP in cardiac mitochondria have remained unknown. The aim of the present study was to clarify whether cardiac mitochondrial cGMP regulates the apoptosis of cardiomyocytes. In the presence of GTP, the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine; 1 mmol/l) and SNP (sodium nitroprusside; 1 mmol/l) each markedly increased the cGMP level in a highly purified mitochondrial protein fraction prepared from left ventricular myocytes of male Wistar rats, and these increases were inhibited by 1 micromol/l ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), an inhibitor of NO-sensitive guanylate cyclase. In purified mitochondria, both SNAP (1 mmol/l) and the membrane-permeant cGMP analogue 8-Br-cGMP (8-bromo-cGMP; 1 mmol/l), but not cGMP (1 mmol/l), increased cytochrome c release from succinate-energized mitochondria without inducing mitochondrial swelling and depolarization of the mitochondrial membrane as factors of activation of MPT (mitochondrial permeability transition). The cytochrome c release mediated by SNAP was inhibited in the presence of 1 micromol/l ODQ. On the other hand, 1 mmol/l SNAP induced apoptosis in primary cultured adult rat cardiomyocytes in a time-dependent manner, and this induction was significantly inhibited in the presence of ODQ. Furthermore, apoptosis induced in primary cultured cardiomyocytes by hypoxia/re-oxygenation was also inhibited by ODQ. These results suggest that the acceleration of cGMP production in cardiac mitochondria stimulates cytochrome c release from mitochondria in an MPT-independent manner, resulting in apoptosis.
Collapse
Affiliation(s)
- Kazuhiko Seya
- Department of Pharmacology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | |
Collapse
|
16
|
Abstract
The expression and function of the Na+/Ca2+ exchanger (NCX) in the regulation of intracellular Ca2+ homeostasis have been well studied in cardiac, skeletal, and systemic vascular myocytes, but not in pulmonary artery smooth muscle cells (SMCs). We have recently demonstrated that the NCX current is present in freshly isolated pulmonary artery SMCs using the patch-clamp technique. The current has a mean amplitude of 13 pA under near physiological resting conditions. The NCX may function in the forward mode to make a significant contribution to the decay of intracellular Ca2+ following Ca2+ release and/or depolarization. Hypoxic stimulation inhibits the NCX current, reduces the removal of intracellular Ca2+, and enhances Ca2+ release from the sarcoplasmic reticulum. Using RT-PCR, subcloning and sequence analysis, we have shown that three NCX1 splice variants: NCX1.2 (containing exons B, C, and D), NCX1.3 (exons B and D), and NCX1.7 (exons B, D, and F) are expressed in pulmonary artery smooth muscle. Each of these splice variants expressed in HEK293 cells it likely to show a distinct activity in the removal of intracellular Ca2+. Taken together, we provide clear evidence that NCX1 is functionally and molecularly expressed and plays a physiological role in pulmonary artery SMCs.
Collapse
Affiliation(s)
- Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | |
Collapse
|
17
|
Ishida Y, Paul RJ. Ca2+ clearance in smooth muscle: lessons from gene-altered mice. J Smooth Muscle Res 2005; 41:235-45. [PMID: 16428863 DOI: 10.1540/jsmr.41.235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The regulation of intracellular [Ca(2+)](i) is important for all cells, but in particular for smooth muscle, as [Ca(2+)](i) is a key second messenger leading to contraction. Mechanisms for the cellular clearance of [Ca(2+)](i) form one side of Ca(2+) homeostasis and include: Plasma Membrane Ca(2+) ATPases (PMCA), Sarcoplasmic/Endoplasmic Reticulum Ca(2+) ATPases (SERCA), Na(+)-Ca(2+)-exchangers (NCX) when coupled to the Na(+)-K(+) ATPases (NKA) and in some cases mitochondria. The nature and relative contribution of these various components of cytosolic Ca(2+) clearance have long been an important topic for study in smooth muscle, particularly as related to regulation of contractility. These studies have largely depended on inhibition of the various components. Recently advances in gene-targeting and transgenesis have made it possible to add or delete individual components, and importantly specific isoforms from the cell. In this brief review, we will focus on new information on Ca(2+) clearance in smooth muscle gained from studies on gene-altered mice models. These provide a deeper understanding of distinct functional roles for individual isoforms and the interactions between various components.
Collapse
Affiliation(s)
- Yukisato Ishida
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH 45267, USA
| | | |
Collapse
|