1
|
Yi H, Li X, Mao Z, Liu C, Hu X, Song R, Qi S, Zhou F. Higher PEEP versus lower PEEP strategies for patients in ICU without acute respiratory distress syndrome: A systematic review and meta-analysis. J Crit Care 2021; 67:72-78. [PMID: 34689064 DOI: 10.1016/j.jcrc.2021.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 01/20/2023]
Abstract
PURPOSE To evaluate the effects of high and low levels of PEEP on ICU patients without ARDS. METHODS We searched public databases (including PubMed, EMBASE, Cochrane Library and Clinicaltrial.gov). The Cochrane Risk of Bias Assessment tool was used to evaluate the quality of the included studies. RESULTS We included 2307 patients from 24 trials. Although no significant difference was found between high and low PEEP applications in in-hospital mortality (risk ratio[RR] 0.98, 95% confidence interval[CI] [0.81, 1.19], P = 0.87), high PEEP indeed decreased the incidence of ARDS, hypoxemia, and increased the level of PaO2/FIO2. In addition, although the overall results did not reveal any advantages of high PEEP in terms of secondary outcomes regarding 28-day mortality, the duration of ventilation, atelectasis, pulmonary barotrauma, hypotension, and so forth, the subgroup analysis concerning the level of low PEEP (ZEEP or not) and patient type (postoperative or medical ones) yielded different results. The TSA results suggested that more RCTs are needed. CONCLUSIONS Although ventilation with high PEEP in ICU patients without ARDS may not reduce in-hospital mortality, the decreased incidences of ARDS and hypoxemia and the improvement in PaO2/FIO2 were found in the high PEEP arm.
Collapse
Affiliation(s)
- Hongyu Yi
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Xiaoming Li
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xin Hu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rengjie Song
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Shuang Qi
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Zhou J, Lin Z, Deng X, Liu B, Zhang Y, Zheng Y, Zheng H, Wang Y, Lai Y, Huang W, Liu X, He W, Xu Y, Li Y, Huang Y, Sang L. Optimal Positive End Expiratory Pressure Levels in Ventilated Patients Without Acute Respiratory Distress Syndrome: A Bayesian Network Meta-Analysis and Systematic Review of Randomized Controlled Trials. Front Med (Lausanne) 2021; 8:730018. [PMID: 34540872 PMCID: PMC8440859 DOI: 10.3389/fmed.2021.730018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022] Open
Abstract
Background: To find the optimal positive end expiratory pressure (PEEP) in mechanical ventilated patients without Acute Respiratory Distress Syndrome (ARDS), we conducted a Bayesian network meta-analysis and systematic review of randomized controlled trials (RCTs) comparing different level of PEEP based on a novel classification of PEEP level: ZEEP group (PEEP = 0 cm H2O); lower PEEP group (PEEP = 1–6 cm H2O); intermediate PEEP group (PEEP = 7–10 cm H2O); higher PEEP group (PEEP > 10 cm H2O). Result: Twenty eight eligible studies with 2,712 patients were included. There were no significant differences in the duration of mechanical ventilation between higher and intermediate PEEP (MD: 0.020, 95% CI: −0.14, 0.28), higher and lower PEEP (MD: −0.010, 95% CI: −0.23, 0.22), higher PEEP and ZEEP (MD: 0.010, 95% CI: −0.40, 0.22), intermediate and lower PEEP (MD: −0.040, 95% CI: −0.18, 0.040), intermediate PEEP and ZEEP (MD: −0.010, 95% CI: −0.42, 0.10), lower PEEP and ZEEP (MD: 0.020, 95% CI: −0.32, 0.13), respectively. Higher PEEP was associated with significantly higher PaO2/FiO2 ratio(PFR) when compared to ZEEP (MD: 73.24, 95% CI: 11.03, 130.7), and higher incidence of pneumothorax when compared to intermediate PEEP, lower PEEP and ZEEP (OR: 2.91e + 12, 95% CI: 40.3, 1.76e + 39; OR: 1.85e + 12, 95% CI: 29.2, 1.18e + 39; and OR: 1.44e + 12, 95% CI: 16.9, 8.70e + 38, respectively). There was no association between PEEP levels and other secondary outcomes. Conclusion: We identified higher PEEP was associated with significantly higher PFR and higher incidence of pneumothorax. Nonetheless, in terms of other outcomes, no significant differences were detected among four levels of PEEP. Systematic Review Registration: The study had registered on an international prospective register of systematic reviews, PROSPERO, on 09 April 2021, identifier: [CRD42021241745].
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhimin Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiumei Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongxin Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haichong Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingzhi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weixiang Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanda Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Sang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Laboratory, Guangdong, China
| |
Collapse
|
3
|
Higher versus lower positive end-expiratory pressure in patients without acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:247. [PMID: 34266460 PMCID: PMC8280384 DOI: 10.1186/s13054-021-03669-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022]
Abstract
Background We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the association of higher positive end-expiratory pressure (PEEP), as opposed to lower PEEP, with hospital mortality in adult intensive care unit (ICU) patients undergoing invasive mechanical ventilation for reasons other than acute respiratory distress syndrome (ARDS). Methods We performed an electronic search of MEDLINE, EMBASE, Scopus, Cochrane Central Register of Controlled Trials, CINAHL, and Web of Science from inception until June 16, 2021 with no language restrictions. In addition, a research-in-progress database and grey literature were searched. Results We identified 22 RCTs (2225 patients) comparing higher PEEP (1007 patients) with lower PEEP (991 patients). No statistically significant association between higher PEEP and hospital mortality was observed (risk ratio 1.02, 95% confidence interval 0.89–1.16; I2 = 0%, p = 0.62; low certainty of evidence). Among secondary outcomes, higher PEEP was associated with better oxygenation, higher respiratory system compliance, and lower risk of hypoxemia and ARDS occurrence. Furthermore, barotrauma, hypotension, duration of ventilation, lengths of stay, and ICU mortality were similar between the two groups. Conclusions In our meta-analysis of RCTs, higher PEEP, compared with lower PEEP, was not associated with mortality in patients without ARDS receiving invasive mechanical ventilation. Further large high-quality RCTs are required to confirm these findings. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03669-4.
Collapse
|
4
|
Shao S, Kang H, Qian Z, Wang Y, Tong Z. Effect of different levels of PEEP on mortality in ICU patients without acute respiratory distress syndrome: systematic review and meta-analysis with trial sequential analysis. J Crit Care 2021; 65:246-258. [PMID: 34274832 PMCID: PMC8253690 DOI: 10.1016/j.jcrc.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether higher positive end- expiratory pressure (PEEP) could provide a survival advantage for patients without acute respiratory distress syndrome (ARDS) compared with lower PEEP. METHODS Eligible studies were identified through searches of Embase, Cochrane Library, Web of Science, Medline, and Wanfang database from inception up to 1 June 2021. Trial sequential analysis (TSA) was used in this meta-analysis. DATA SYNTHESIS Twenty-seven randomized controlled trials (RCTs) were identified for further evaluation. Higher and lower PEEP arms included 1330 patients and 1650 patients, respectively. A mean level of 9.6±3.4 cmH2O was applied in the higher PEEP groups and 1.9±2.6 cmH2O was used in the lower PEEP groups. Higher PEEP, compared with lower PEEP, was not associated with reduction of all-cause mortality (RR 1.03; 95% CI 0.91-1.18; P =0.627), and 28-day mortality (RR 1.07 ; 95% CI 0.92-1.24; P =0.365). In terms of risk of ARDS (RR 0.43; 95% CI 0.24-0.78; P =0.005), duration of intensive care unit (MD -1.04; 95%CI-1.36 to -0.73; P < 0.00001), and oxygenation (MD 40.30; 95%CI 0.94 to 79.65; P = 0.045), higher PEEP was superior to lower PEEP. Besides, the pooled analysis showed no significant differences between groups both in the duration of mechanical ventilation (MD 0.00; 95%CI-0.13 to 0.13; P = 0.996) and hospital stay (MD -0.66; 95%CI-1.94 to 0.61; P = 0.309). More importantly, lower PEEP did not increase the risk of pneumonia, atelectasis, barotrauma, hypoxemia, or hypotension among patients compared with higher PEEP. The TSA analysis showed that the results of all-cause mortality and 28-day mortality might be false-negative results. CONCLUSIONS Our results suggest that a lower PEEP ventilation strategy was non-inferior to a higher PEEP ventilation strategy in ICU patients without ARDS, with no increased risk of all-cause mortality and 28-day mortality. Further high-quality RCTs should be performed to confirm these findings.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhenbei Qian
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yingquan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
5
|
Schaefer MS, Serpa Neto A, Pelosi P, Gama de Abreu M, Kienbaum P, Schultz MJ, Meyer-Treschan TA. Temporal Changes in Ventilator Settings in Patients With Uninjured Lungs: A Systematic Review. Anesth Analg 2020; 129:129-140. [PMID: 30222649 DOI: 10.1213/ane.0000000000003758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In patients with uninjured lungs, increasing evidence indicates that tidal volume (VT) reduction improves outcomes in the intensive care unit (ICU) and in the operating room (OR). However, the degree to which this evidence has translated to clinical changes in ventilator settings for patients with uninjured lungs is unknown. To clarify whether ventilator settings have changed, we searched MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science for publications on invasive ventilation in ICUs or ORs, excluding those on patients <18 years of age or those with >25% of patients with acute respiratory distress syndrome (ARDS). Our primary end point was temporal change in VT over time. Secondary end points were changes in maximum airway pressure, mean airway pressure, positive end-expiratory pressure, inspiratory oxygen fraction, development of ARDS (ICU studies only), and postoperative pulmonary complications (OR studies only) determined using correlation analysis and linear regression. We identified 96 ICU and 96 OR studies comprising 130,316 patients from 1975 to 2014 and observed that in the ICU, VT size decreased annually by 0.16 mL/kg (-0.19 to -0.12 mL/kg) (P < .001), while positive end-expiratory pressure increased by an average of 0.1 mbar/y (0.02-0.17 mbar/y) (P = .017). In the OR, VT size decreased by 0.09 mL/kg per year (-0.14 to -0.04 mL/kg per year) (P < .001). The change in VTs leveled off in 1995. Other intraoperative ventilator settings did not change in the study period. Incidences of ARDS (ICU studies) and postoperative pulmonary complications (OR studies) also did not change over time. We found that, during a 39-year period, from 1975 to 2014, VTs in clinical studies on mechanical ventilation have decreased significantly in the ICU and in the OR.
Collapse
Affiliation(s)
- Maximilian S Schaefer
- From the Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Program of Post-Graduation, Innovation and Research, Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Peter Kienbaum
- From the Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, the Netherlands
| | | |
Collapse
|
6
|
Algera AG, Pisani L, Bergmans DCJ, den Boer S, de Borgie CAJ, Bosch FH, Bruin K, Cherpanath TG, Determann RM, Dondorp AM, Dongelmans DA, Endeman H, Haringman JJ, Horn J, Juffermans NP, van Meenen DM, van der Meer NJ, Merkus MP, Moeniralam HS, Purmer I, Tuinman PR, Slabbekoorn M, Spronk PE, Vlaar APJ, Gama de Abreu M, Pelosi P, Serpa Neto A, Schultz MJ, Paulus F. RELAx - REstricted versus Liberal positive end-expiratory pressure in patients without ARDS: protocol for a randomized controlled trial. Trials 2018; 19:272. [PMID: 29739430 PMCID: PMC5941564 DOI: 10.1186/s13063-018-2640-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/10/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Evidence for benefit of high positive end-expiratory pressure (PEEP) is largely lacking for invasively ventilated, critically ill patients with uninjured lungs. We hypothesize that ventilation with low PEEP is noninferior to ventilation with high PEEP with regard to the number of ventilator-free days and being alive at day 28 in this population. METHODS/DESIGN: The "REstricted versus Liberal positive end-expiratory pressure in patients without ARDS" trial (RELAx) is a national, multicenter, randomized controlled, noninferiority trial in adult intensive care unit (ICU) patients with uninjured lungs who are expected not to be extubated within 24 h. RELAx will run in 13 ICUs in the Netherlands to enroll 980 patients under invasive ventilation. In all patients, low tidal volumes are used. Patients assigned to ventilation with low PEEP will receive the lowest possible PEEP between 0 and 5 cm H2O, while patients assigned to ventilation with high PEEP will receive PEEP of 8 cm H2O. The primary endpoint is the number of ventilator-free days and being alive at day 28, a composite endpoint for liberation from the ventilator and mortality until day 28, with a noninferiority margin for a difference between groups of 0.5 days. Secondary endpoints are length of stay (LOS), mortality, and occurrence of pulmonary complications, including severe hypoxemia, major atelectasis, need for rescue therapies, pneumonia, pneumothorax, and development of acute respiratory distress syndrome (ARDS). Hemodynamic support and sedation needs will be collected and compared. DISCUSSION RELAx will be the first sufficiently sized randomized controlled trial in invasively ventilated, critically ill patients with uninjured lungs using a clinically relevant and objective endpoint to determine whether invasive, low-tidal-volume ventilation with low PEEP is noninferior to ventilation with high PEEP. TRIAL REGISTRATION ClinicalTrials.gov , ID: NCT03167580 . Registered on 23 May 2017.
Collapse
Affiliation(s)
- Anna Geke Algera
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
| | - Luigi Pisani
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
| | - Dennis C. J. Bergmans
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sylvia den Boer
- Department of Intensive Care, Spaarne Gasthuis, Haarlem and Hoofddorp, The Netherlands
| | | | - Frank H. Bosch
- Department of Intensive Care, Rijnstate, Arnhem, The Netherlands
| | - Karina Bruin
- Department of Intensive Care, Westfriesgasthuis, Hoorn, The Netherlands
| | - Thomas G. Cherpanath
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
| | - Rogier M. Determann
- Department of Intensive Care, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Arjen M. Dondorp
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
- Madihol–Oxford Research Unit (MORU), Madihol University, Bangkok, Thailand
| | - Dave A. Dongelmans
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | | | - Janneke Horn
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
| | - Nicole P. Juffermans
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
| | - David M. van Meenen
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | - Hazra S. Moeniralam
- Department of Intensive Care, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - Ilse Purmer
- Department of Intensive Care, Haga Hospital, The Hague, The Netherlands
| | - Pieter Roel Tuinman
- Department of Intensive Care, VU Medical Center, Amsterdam, The Netherlands
- REVIVE Research VU Medical Center, VU Medical Center, Amsterdam, The Netherlands
| | - Mathilde Slabbekoorn
- Department of Intensive Care, Haaglanden Medical Center, The Hague, The Netherlands
| | - Peter E. Spronk
- Department of Intensive Care, Gelre Hospital, Apeldoorn, The Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital – IRCCS for Oncology, University of Genoa, Genoa, Italy
| | - Ary Serpa Neto
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marcus J. Schultz
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
| | - Frederique Paulus
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
| | - for the RELAx Investigators and the PROVE Network Investigators
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Intensive Care, Spaarne Gasthuis, Haarlem and Hoofddorp, The Netherlands
- Clinical Research Unit, Academic Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care, Rijnstate, Arnhem, The Netherlands
- Department of Intensive Care, Westfriesgasthuis, Hoorn, The Netherlands
- Department of Intensive Care, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
- Madihol–Oxford Research Unit (MORU), Madihol University, Bangkok, Thailand
- Department of Intensive Care, Isala Clinics, Zwolle, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care, Amphia Hospital, Breda, The Netherlands
- Department of Intensive Care, Sint Antonius Hospital, Nieuwegein, The Netherlands
- Department of Intensive Care, Haga Hospital, The Hague, The Netherlands
- Department of Intensive Care, VU Medical Center, Amsterdam, The Netherlands
- REVIVE Research VU Medical Center, VU Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Intensive Care, Gelre Hospital, Apeldoorn, The Netherlands
- Department of Anesthesiology and Intensive Care, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital – IRCCS for Oncology, University of Genoa, Genoa, Italy
- Department of Intensive Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
7
|
Serpa Neto A, Filho RR, Cherpanath T, Determann R, Dongelmans DA, Paulus F, Tuinman PR, Pelosi P, de Abreu MG, Schultz MJ. Associations between positive end-expiratory pressure and outcome of patients without ARDS at onset of ventilation: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care 2016; 6:109. [PMID: 27813023 PMCID: PMC5095097 DOI: 10.1186/s13613-016-0208-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this investigation was to compare ventilation at different levels of positive end-expiratory pressure (PEEP) with regard to clinical important outcomes of intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) at onset of ventilation. Methods Meta-analysis of randomized controlled trials (RCTs) comparing a lower level of PEEP with a higher level of PEEP was performed. The primary outcome was in-hospital mortality. Results Twenty-one RCTs (1393 patients) were eligible. PEEP ranged from 0 to 10 cmH2O and from 5 to 30 cmH2O in the lower PEEP and the higher PEEP arms of included RCTs, respectively. In-hospital mortality was not different between the two PEEP arms in seven RCTs (risk ratio [RR] 0.87; 95% confidence interval [CI] 0.62–1.21; I2 = 26%, low quality of evidence [QoE]), as was duration of mechanical ventilation in three RCTs (standardized mean difference [SMD] 0.68; 95% CI −0.24 to 1.61; I2 = 82%, very low QoE). PaO2/FiO2 was higher in the higher PEEP arms in five RCTs (SMD 0.72; 95% CI 0.10–1.35; I2 = 86%, very low QoE). Development of ARDS and the occurrence of hypoxemia (2 RCTs) were lower in the higher PEEP arms in four RCTs and two RCTs, respectively (RR 0.43; 95% CI 0.21–0.91; I2 = 56%, low QoE; RR 0.42; 95%–CI 0.19–0.92; I2 = 19%, low QoE). There was no association between the level of PEEP and any hemodynamic parameter (four RCTs). Conclusion Ventilation with higher levels of PEEP in ICU patients without ARDS at onset of ventilation was not associated with lower in-hospital mortality or shorter duration of ventilation, but with a lower incidence of ARDS and hypoxemia, as well as higher PaO2/FiO2. These findings should be interpreted with caution, as heterogeneity was moderate to high, the QoE was low to very low, and the available studies prevented us from addressing the effects of moderate levels of PEEP. Electronic supplementary material The online version of this article (doi:10.1186/s13613-016-0208-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil. .,Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Roberto Rabello Filho
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Thomas Cherpanath
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier Determann
- Department of Critical Care, Westfriesgasthuis, Hoorn, The Netherlands
| | - Dave A Dongelmans
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,National Intensive Care Evaluation, Amsterdam, The Netherlands
| | - Frederique Paulus
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter Roel Tuinman
- Department of Intensive Care & REVIVE Research VUmc Intensive Care, Free University Medical Center, Amsterdam, The Netherlands
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino IST, University of Genoa, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Groups, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Prophylactic positive end-expiratory pressure and postintubation hemodynamics: an interventional, randomized study. Can Respir J 2011; 17:e45-50. [PMID: 20617214 DOI: 10.1155/2010/269581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the hemodynamic and outcome effects of implementing prophylactic positive end-expiratory pressure (PEEP) versus zero end-expiratory pressure (ZEEP) in patients during the postintubation period in the emergency setting. METHODS The present study was a prospective, single-centre, interventional, single-blinded randomized trial performed in a 16-bed medical intensive care unit. The study cohort consisted of consecutive patients who urgently required intubation. During the postintubation period, patients received either 5 cmH2O PEEP or ZEEP. The primary aim was to assess the variation in mean arterial pressure (MAP) from baseline up to 90 min postintubation. The secondary aim was to determine the mean duration of intubation, level of MAP support after intubation and 28-day mortality. RESULTS Seventy-five consecutive patients with similar mean (+/- SD) baseline characteristics and preintubation MAP (76+/-18 mmHg in the ZEEP group and 78.5+/-23 mmHg in the PEEP group, P=Not significant [NS]) were studied. The final analysis was performed in 33 patients in the ZEEP group and 30 patients in the PEEP group. Regarding outcome measures following intubation, delta MAP (ie, the difference between the lowest MAP values from baseline) was not differentially affected in either group (P=NS); the mean durations of intubation were similar (ZEEP 9.2+/-8.5 days versus PEEP 9.2+/-8.8 days, P=NS); 28-day mortality was not discriminative (ZEEP 14 of 33, PEEP nine of 30; P=NS); and levels of MAP support after intubation were comparable between the two groups. CONCLUSION In the present trial, there was no evidence that implementing a prophylactic PEEP of 5 cmH2O adversely affects short-term hemodynamics or outcome in medical intensive care patients during the postintubation period.
Collapse
|
9
|
Mascotto G, Bizzarri M, Messina M, Cerchierini E, Torri G, Carozzo A, Casati A. Prospective, randomized, controlled evaluation of the preventive effects of positive end-expiratory pressure on patient oxygenation during one-lung ventilation. Eur J Anaesthesiol 2003; 20:704-10. [PMID: 12974591 DOI: 10.1017/s0265021503001145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE This prospective, randomized, controlled study evaluated the effects on oxygenation by applying a selective and patient-specific value of positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation. METHODS Fifty patients undergoing thoracic surgery under combined epidural/general anaesthesia were randomly allocated to receive zero PEEP (Group ZEEP, n = 22), or the preventive application of PEEP, optimized on the best thoracopulmonary compliance (Group PEEP, n = 28). Patients' lungs were mechanically ventilated with the same setting during two- and one-lung ventilation (FiO2 = 0.5; VT = 9mL kg(-1), inspiratory :expiratory time = 1 : 1, inspiratory pause = 10%). RESULTS Lung-chest wall compliance decreased in both groups during one-lung ventilation, but patients of Group PEEP had 10% higher values than patients with no end-expiratory pressure (ZEEP) applied--Group ZEEP (P < 0.05). During closed chest one-lung ventilation, the PaO2 : FiO2 ratio was lower in Group PEEP (232 +/- 88) than in Group ZEEP (339 +/- 97) (P < 0.05); but no further differences were reported throughout the study. No differences were reported between the two groups in the need for 100% oxygen ventilation (10 patients of Group ZEEP (45%) and 14 patients of Group PEEP (50%) (P = 0.78)) or re-inflation of the operated lung during surgery (two patients of Group ZEEP (9%) and three patients of Group PEEP (10%) (P = 0.78)). Postanaesthesia care unit discharge required 48 min (25th-75th percentiles: 32-58 min) in Group PEEP and 45 min (30-57 min) in Group ZEEP (P = 0.60). CONCLUSIONS The selective application of PEEP to the dependent, non-operated lung increases the lung-chest wall compliance during one-lung ventilation, but does not improve patient oxygenation.
Collapse
Affiliation(s)
- G Mascotto
- Vita-Salute University of Milan, IRCCS H. San Raffaele, Department of Anaesthesiology, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Prospective, randomized, controlled evaluation of the preventive effects of positive end-expiratory pressure on patient oxygenation during one-lung ventilation. Eur J Anaesthesiol 2003. [DOI: 10.1097/00003643-200309000-00005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Johnson JL, Breen PH. How does positive end-expiratory pressure decrease pulmonary CO2 elimination in anesthetized patients? RESPIRATION PHYSIOLOGY 1999; 118:227-36. [PMID: 10647866 DOI: 10.1016/s0034-5687(99)00087-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In anesthetized, mechanically ventilated patients, 10 cm H2O positive end-expiratory pressure (PEEP10) immediately decreased the CO2 volume exhaled per breath (V(CO2,br)) by 96%, as exhaled tidal volume (VT) decreased to expand functional residual capacity during the first 8 breaths after PEEP10 began. Then, the sustained decrease in V(CO2,br) for over 10 min was due to the 19% decrease in cardiac output (QT, decreased CO2 delivery from tissues to lung) and to the decrease in alveolar ventilation (VA). In turn, decreased VA resulted from decreased VT (loss of inspired volume into the compressible volume of the ventilating circuit) and possibly from increased physiological dead space, due to the potential for new high alveolar ventilation-to-perfusion (VA/Q) lung regions. V(CO2,br) increased and recovered to baseline by 20 min of PEEP10 ventilation because QT increased to augment the CO2 delivery to the lung and alveolar P(CO2) increased (increased mixed venous P(CO2) and tissue CO2 retention) to increase V(CO2,br) while alveolar VT remained depressed. End-tidal P(CO2) (PET(CO2) progressively increased during PEEP10 and did not detect the decrease in V(CO2,br) during PEEP10 ventilation because PET(CO2) does not account for exhaled volume.
Collapse
Affiliation(s)
- J L Johnson
- Department of Anesthesiology, University of California at Irvine, UCI Medical Center, Orange 92868, USA
| | | |
Collapse
|