1
|
Czura CJ, Bikson M, Charvet L, Chen JDZ, Franke M, Fudim M, Grigsby E, Hamner S, Huston JM, Khodaparast N, Krames E, Simon BJ, Staats P, Vonck K. Neuromodulation Strategies to Reduce Inflammation and Improve Lung Complications in COVID-19 Patients. Front Neurol 2022; 13:897124. [PMID: 35911909 PMCID: PMC9329660 DOI: 10.3389/fneur.2022.897124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
Since the outbreak of the COVID-19 pandemic, races across academia and industry have been initiated to identify and develop disease modifying or preventative therapeutic strategies has been initiated. The primary focus has been on pharmacological treatment of the immune and respiratory system and the development of a vaccine. The hyperinflammatory state ("cytokine storm") observed in many cases of COVID-19 indicates a prognostically negative disease progression that may lead to respiratory distress, multiple organ failure, shock, and death. Many critically ill patients continue to be at risk for significant, long-lasting morbidity or mortality. The human immune and respiratory systems are heavily regulated by the central nervous system, and intervention in the signaling of these neural pathways may permit targeted therapeutic control of excessive inflammation and pulmonary bronchoconstriction. Several technologies, both invasive and non-invasive, are available and approved for clinical use, but have not been extensively studied in treatment of the cytokine storm in COVID-19 patients. This manuscript provides an overview of the role of the nervous system in inflammation and respiration, the current understanding of neuromodulatory techniques from preclinical and clinical studies and provides a rationale for testing non-invasive neuromodulation to modulate acute systemic inflammation and respiratory dysfunction caused by SARS-CoV-2 and potentially other pathogens. The authors of this manuscript have co-founded the International Consortium on Neuromodulation for COVID-19 to advocate for and support studies of these technologies in the current coronavirus pandemic.
Collapse
Affiliation(s)
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | | | - Marat Fudim
- Division of Cardiology, Duke Clinical Research Institute, Duke University, Durham, NC, United States
| | | | - Sam Hamner
- Cala Health, Burlingame, CA, United States
| | - Jared M. Huston
- Departments of Surgery and Science Education, Zucker School of Medicine at Hofstra/Northwell, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | | | - Elliot Krames
- Pacific Pain Treatment Center, Napa, CA, United States
| | | | - Peter Staats
- National Spine and Pain, ElectroCore, Inc., Jacksonville, FL, United States
| | - Kristl Vonck
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Sacral Acupuncture for Lower Urinary Tract Symptoms: A Systematic Review of Randomized Controlled Trials. JOURNAL OF ACUPUNCTURE RESEARCH 2022. [DOI: 10.13045/jar.2021.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lower urinary tract symptoms (LUTS) associated with storage, voiding, and post-micturition reduce quality of life and cause mental health problems. In traditional medicine, Baliao points have been empirically used to treat urinary system diseases. In this review, randomized controlled trials (RCTs) using sacral acupuncture on Baliao points with sham treatment, other remedies, or other acupoints were retrieved from 8 electronic databases up to June 2021. Sixteen RCTs met the inclusion criteria. The quality of the included studies was assessed using a risk-of-bias (ROB) tool. Most of the evaluation indicators used in the included RCTs showed that sacral acupuncture had a significant therapeutic effect compared with the sham control intervention groups, and other remedies. However, all studies using acupoints (other than the Baliao points) as a control intervention had a “high” ROB and only reported secondary processed information, making it difficult to evaluate the efficacy of sacral acupuncture treatment for LUTS. No serious adverse effects were reported for sacral acupuncture, and only a low number of minor side effects were observed. These results suggest that sacral acupuncture could be considered as an alternative to existing treatments, with the added benefit of low cost. Large-scale, long-term RCTs are required in the future.
Collapse
|
3
|
Neurologic Mechanisms Underlying Voiding Dysfunction due to Prostatitis in a Rat Model of Nonbacterial Prostatic Inflammation. Int Neurourol J 2018; 22:90-98. [PMID: 29991230 PMCID: PMC6059909 DOI: 10.5213/inj.1836124.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The neurological molecular mechanisms underlying the voiding dysfunction associated with nonbacterial chronic prostatitis/chronic pelvic pain syndrome remain poorly understood. In this study, we assessed whether prostate inflammation activated bladder afferent neurons, leading to bladder dysfunction, and sought to elucidate the underlying mechanisms. METHODS Thirty male Sprague-Dawley rats were divided into 3 groups: sham-saline, formalin-injected, and capsaicin-pretreated and formalin-injected. Chemical prostatitis was induced by 0.1 mL of 10% buffered formalin injected into the ventral prostate. Capsaicin was injected subcutaneously to desensitize capsaicin-sensitive nerves. In each group, conscious cystometry was performed, and c-fos expression within the spinal cord was determined immunocytochemically. Double immunofluorescent staining with c-fos and choline acetyltransferase (ChAT) was performed. On the third day after pseudorabies virus (PRV) infection, c-fos and PRV double-staining was performed. RESULTS Intraprostatic formalin significantly increased the maximal voiding pressure and decreased the intercontraction interval, compared with controls. Pretreatment with capsaicin significantly reversed these effects. More c-fos-positive cells were observed in the sacral parasympathetic nucleus (SPN) and dorsal gray commissure (DCM) in the prostatitis group than in the sham group. c-fos-positive cells decreased in the capsaicin-pretreated group. Preganglionic neurons labeled by c-fos and ChAT were observed in the SPN in rats with prostatitis. Interneurons labeled by c-fos and PRV were identified in the DCM after PRV infection. Conclusions Our results suggest that prostate inflammation activates afferent nerve fibers projecting to the lumbosacral spinal cord, producing reflex activation of spinal neurons innervating the bladder and bladder hyperreflexia. This is mediated by capsaicin-sensitive prostate afferent neurons.
Collapse
|