1
|
Umlauf BJ, Frampton G, Cooper A, Greene HF. A novel strategy to increase the therapeutic potency of GBM chemotherapy via altering parenchymal/cerebral spinal fluid clearance rate. J Control Release 2023; 364:195-205. [PMID: 37865172 DOI: 10.1016/j.jconrel.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Patients with glioblastoma (GBM) face a poor prognosis with a median survival of less than two years. Escalating the dose of chemotherapy is often impossible due to patient comorbidities; thus, we focused on modulating brain clearance as a mechanism to enhance drug accumulation. Given the recently identified interconnectivity between brain parenchymal fluid and cerebral spinal fluid (CSF), we reasoned enhancing drug concentration in the CSF also increases drug concentration in the parenchyma where a GBM resides. To improve drug accumulation in the CSF, we impair the motility of ependymal cell cilia. We identified FDA-approved therapeutics that interact with cilia as a "side effect." Therapeutics that inhibit airway cilia also inhibit ependymal cilia. Multiple cilia-inhibiting drugs, when administered in combination with GBM chemotherapy temozolomide (TMZ), significantly improved the overall survival of mice bearing orthotopic GBM. Combining TMZ with lidocaine results in 100% of animals surviving tumor-free to the study endpoint. This treatment results in a ~ 40-fold increase in brain TMZ levels and is well-tolerated. Mice bearing MGMT methylated, human PDX orthotopic GBM also responded with 100% of animals surviving tumor-free to the study endpoint. Finally, even mice bearing TMZ-resistant, orthotopic GBM responded to the combination treatment with 40% of animals surviving tumor-free to the study endpoint, implying this strategy can sensitize TMZ-resistant GBM. These studies offer a new concept for treating malignant brain tumors by improving the accumulation of TMZ in the CNS. In the future, this regimen may also improve the treatment of additional encephalopathies treated by brain-penetrating therapeutics. SIGNIFICANCE: We exploit the interconnectivity of parenchymal and cerebral spinal fluid to enhance the amount of temozolomide that accumulates in the central nervous system to improve the survival of mice bearing brain tumors.
Collapse
Affiliation(s)
- Benjamin J Umlauf
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA; Mulva Clinic for the Neurosciences, The University of Texas at Austin, 1601 Trinity St. Bldg A., Austin, USA.
| | - Gabriel Frampton
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Alexis Cooper
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Hannah-Faith Greene
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| |
Collapse
|
2
|
Tratnjek L, Simić L, Vukelić K, Knežević Z, Kreft ME. Novel nasal formulation of xylometazoline with hyaluronic acid: In vitro ciliary beat frequency study. Eur J Pharm Biopharm 2023; 192:136-146. [PMID: 37804998 DOI: 10.1016/j.ejpb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Acute viral rhinosinusitis (viral ARS), or commonly referred to as the "common cold", is caused by respiratory viruses that cause disruption of the airway epithelial barrier and mucociliary dysfunction. Treatment of ARS is mainly symptomatic, with xylometazoline, a direct-acting α-adrenoceptor agonist, commonly used as a nasal decongestant. Unfortunately, this treatment does not resolve the epithelial dysfunction observed in ARS, and its use might negatively impact the nasal mucosa causing issues such as dryness, stinging, burning, rebound congestion, as well as atrophy. In light of this, a novel nasal spray formulation containing both xylometazoline and hyaluronic acid (HA) was developed to provide a more effective and safer treatment for viral ARS. HA is a natural polysaccharide known to hydrate and moisturise the upper respiratory tract, maintain the integrity of the nasal mucosa, and promote mucociliary clearance and wound healing. To investigate the potential of this combination, this study was conducted using the nasal MucilAirTMin vitro model and high-speed phase-contrast microscopy to examine the effect of xylometazoline and HA on ciliary function by measuring ciliary beat frequency and their cytotoxicity by morphological, histological and ultrastructural analysis. This research is the first to assess the effects of a specific dose and molecular weight of HA as an active pharmaceutical ingredient in nasal spray formulations. The combination of a fast-acting decongestant and an additional active agent targeting nasal epithelial dysfunction has the potential to provide an improved, reliable and safe treatment for viral ARS, and may serve as the basis for future clinical studies.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Laura Simić
- Jadran-galenski Laboratorij d.d., Svilno 20, 51 000 Rijeka, Croatia
| | - Karina Vukelić
- Jadran-galenski Laboratorij d.d., Svilno 20, 51 000 Rijeka, Croatia
| | - Zdravka Knežević
- Jadran-galenski Laboratorij d.d., Svilno 20, 51 000 Rijeka, Croatia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Ayoub MMRR, Lethem MI, Lansley AB. The effect of ingredients commonly used in nasal and inhaled solutions on the secretion of mucus in vitro. Int J Pharm 2021; 608:121054. [PMID: 34461170 DOI: 10.1016/j.ijpharm.2021.121054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Hypersecretion of mucus is associated with impaired mucociliary clearance that can influence the retention of active pharmaceutical ingredients in the airway but is also linked with recurrent airway disease. Therefore, the effect on mucin secretion of a range of ingredients used in solutions delivered to the nose and lung was studied. Mucin secretion from explants of ovine epithelium was quantified using an enzyme-linked lectin assay (ELLA) or sandwich ELLA depending on the compatibility of the ingredients with the assay. Benzalkonium chloride (0.015% w/w), Methocel™ E50 premium LV (1.0% w/w), propylene glycol (1.5% w/w), potassium sorbate + propylene glycol (0.3% w/w + 1.5% w/w) and polysorbate 80 (0.025% w/w), used at common working concentrations, all increased the secretion of mucin from the explants (P < 0.05). Ethylenediamine tetraacetic acid-disodium salt (EDTA) (0.015% w/w), Avicel® RC591 (1.5% w/w), fluticasone furoate (0.0004% w/w, concentration in solution) and dimethyl sulfoxide (DMSO) (0.2% w/w) did not affect mucin secretion. Compounds increasing mucin secretion could alter the rate of mucociliary clearance and the mucus could provide a barrier to drug absorption. This could predispose patients to disease and affect the activity of delivered drugs, decreasing or increasing their clinical efficacy.
Collapse
Affiliation(s)
- Marwa M R R Ayoub
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Michael I Lethem
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Alison B Lansley
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
4
|
In Vitro Ciliotoxicity and Cytotoxicity Testing of Repeated Chronic Exposure to Topical Nasal Formulations for Safety Studies. Pharmaceutics 2021; 13:pharmaceutics13111750. [PMID: 34834166 PMCID: PMC8618987 DOI: 10.3390/pharmaceutics13111750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Certain active drugs and excipients of nasal formulations may impair ciliary function and mucociliary clearance. The ciliary beat frequency (CBF) is a key parameter for determining mucociliary clearance rate, and in vitro assessments of CBF have proven to be accurate and reproducible. Since topical nasal formulations are applied with repeated doses, it is essential to elucidate their chronic, as opposed to acute, effect on mucociliary clearance and nasal mucosa. The aim of this study was to assess for the first time the ciliotoxicity and cytotoxicity of nasal sprays intended for chronic treatment (with repeated doses) using a previously designed set-up for CBF measurements. For 2 weeks, the 3D nasal MucilAir™ in vitro models were treated daily with undiluted or clinically relevant doses of mometasone nasal spray, placebo nasal spray, culture medium, or they were untreated. We demonstrated a dose-dependent and time-dependent (cumulative) effect of the nasal sprays on ciliary activity and cytotoxicity using CBF measurements and ultrastructural analysis, respectively. Our results indicate that repeated administration of clinically relevant doses of mometasone nasal spray is safe for in vivo use, which is in good agreement with a previous clinical study. Overall, our study suggests that such in vitro assays have great potential for topical nasal drug screening.
Collapse
|
5
|
Schilling AL, Carcella AR, Moore J, Zahid M, Lo C, Wang EW, Lee SE, Little SR. Compatibility of a Thermoresponsive and Controlled Release System for Promoting Sinonasal Cilia Regeneration. Macromol Biosci 2021; 21:e2100277. [PMID: 34390164 DOI: 10.1002/mabi.202100277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Indexed: 11/11/2022]
Abstract
The current clinical goal for managing chronic rhinosinusitis (CRS), a heterogenous disease of the paranasal sinuses, is to control inflammation, yet adjunct therapies that promote mucosal regeneration can improve the long-term health of the upper airways. The small natural openings to the sinuses, however, limit the efficacy of traditional drug delivery methods (i.e., nasal sprays and irrigation). Accordingly, a conformable thermoresponsive and controlled release system ("TEMPS", Thermogel, Extended-release Microsphere-based delivery to the Paranasal Sinuses) is developed. The poly(lactic-co-glycolic acid) microsphere component enables the encapsulation of numerous therapeutics, such as retinoic acid (RA), an analog of vitamin A (VA). Studies in CRS patients and preclinical models have shown that aqueous RA or VA gels promoted the differentiation of ciliated cells and improved mucosal healing following repeat applications. In the present study, TEMPS is designed for the controlled release of RA such that a single dose of RA-TEMPS delivers bioactive drug for at least 30 days. Furthermore, as TEMPS will be in direct contact with sinonasal tissue, its compatibility with ciliated human nasal epithelium is explored. After ex vivo incubation in thermogel for 24 h, cilia motility is maintained, providing evidence that TEMPS can be compatible for application along the sinonasal epithelium.
Collapse
Affiliation(s)
- Andrea L Schilling
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Adam R Carcella
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - John Moore
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 8112, Rangos Research Center, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 8112, Rangos Research Center, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Eric W Wang
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Stella E Lee
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA.,Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.,Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.,Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
6
|
Sampaio P, da Silva MF, Vale I, Roxo-Rosa M, Pinto A, Constant C, Pereira L, Quintão CM, Lopes SS. CiliarMove: new software for evaluating ciliary beat frequency helps find novel mutations by a Portuguese multidisciplinary team on primary ciliary dyskinesia. ERJ Open Res 2021; 7:00792-2020. [PMID: 34104642 PMCID: PMC8174773 DOI: 10.1183/23120541.00792-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
Evaluation of ciliary beat frequency (CBF) performed by high-speed videomicroscopy analysis (HVMA) is one of the techniques required for the correct diagnosis of primary ciliary dyskinesia (PCD). Currently, due to lack of open-source software, this technique is widely performed by visually counting the ciliary beatings per a given time-window. Our aim was to generate open-source, fast and intuitive software for evaluating CBF, validated in Portuguese PCD patients and healthy volunteers. Nasal brushings collected from 17 adult healthy volunteers and 34 PCD-referred subjects were recorded using HVMA. Evaluation of CBF was compared by two different methodologies: the new semi-automated computer software CiliarMove and the manual observation method using slow-motion movies. Clinical history, nasal nitric oxide and transmission electron microscopy were performed for diagnosis of PCD in the patient group. Genetic analysis was performed in a subset (n=8) of suspected PCD patients. The correlation coefficient between the two methods was R2=0.9895. The interval of CBF values obtained from the healthy control group (n=17) was 6.18-9.17 Hz at 25°C. In the PCD-excluded group (n=16), CBF ranged from 6.84 to 10.93 Hz and in the PCD group (n=18), CBF ranged from 0 to 14.30 Hz. We offer an automated open-source programme named CiliarMove, validated by the manual observation method in a healthy volunteer control group, a PCD-excluded group and a PCD-confirmed group. In our hands, comparisons between CBF intervals alone could discern between healthy and PCD groups in 78% of the cases.
Collapse
Affiliation(s)
- Pedro Sampaio
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mónica Ferro da Silva
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês Vale
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, Caparica, Portugal
| | - Mónica Roxo-Rosa
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Andreia Pinto
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Carolina Constant
- Unidade de Pneumologia Pediátrica, Departamento de Pediatria, Hospital de Santa Maria CHLN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Luisa Pereira
- Unidade de Pneumologia Pediátrica, Departamento de Pediatria, Hospital de Santa Maria CHLN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Carla M Quintão
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, Caparica, Portugal
- NOVA Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Lisboa, Portugal
| | - Susana S Lopes
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Talikka M, Belcastro V, Boué S, Marescotti D, Hoeng J, Peitsch MC. Applying Systems Toxicology Methods to Drug Safety. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11522-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
8
|
Ciliary beat frequency of in vitro human nasal epithelium measured with the simple high-speed microscopy is applicable for safety studies of nasal drug formulations. Toxicol In Vitro 2020; 66:104865. [DOI: 10.1016/j.tiv.2020.104865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/04/2023]
|
9
|
In vitro safety evaluation of a povidone‐iodine solution applied to human nasal epithelial cells. Int Forum Allergy Rhinol 2020; 10:1141-1148. [DOI: 10.1002/alr.22575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 01/03/2023]
|
10
|
Joskova M, Mokry J, Franova S. Respiratory Cilia as a Therapeutic Target of Phosphodiesterase Inhibitors. Front Pharmacol 2020; 11:609. [PMID: 32435198 PMCID: PMC7218135 DOI: 10.3389/fphar.2020.00609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Mucociliary clearance is an essential airway defense mechanism dependent predominantly on the proper ciliary function and mucus rheology. The crucial role of cilia is evident in `a variety of respiratory diseases, as the ciliary dysfunction is associated with a progressive decline in lung function over time. The activity of cilia is under supervision of multiple physiological regulators, including second messengers. Their role is to enable a movement in coordinated metachronal waves at certain beat frequency. Ciliary function can be modulated by various stimuli, including agents from the group of beta2 agonists, cholinergic drugs, and adenosine triphosphate (ATP). They trigger cilia to move faster in response to elevated cytoplasmic Ca2+ originated from intracellular sources or replenished from extracellular space. Well-known cilia-stimulatory effect of Ca2+ ions can be abolished or even reversed by modulating the phosphodiesterase (PDE)-mediated breakdown of cyclic adenosine monophosphate (cAMP) since the overall change in ciliary beating has been dependent on the balance between Ca2+ ions and cAMP. Moreover, in chronic respiratory diseases, high ATP levels may contribute to cAMP hydrolysis and thus to a decrease in the ciliary beat frequency (CBF). The role of PDE inhibitors in airway cilia-driven transport may help in prevention of progressive loss of pulmonary function often observed despite current therapy. Furthermore, administration of selective PDE inhibitors by inhalation lowers the risk of their systemic effects. Based on this review we may conclude that selective (PDE1, PDE4) or dual PDE inhibitors (PDE3/4) increase the intracellular level of cyclic nucleotides in airway epithelial cells and thus may be an important target in the development of new inhaled mucokinetic agents. Further research is required to provide evidence of their effectiveness and feasibility regarding their cilia-modulating properties.
Collapse
Affiliation(s)
- Marta Joskova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
11
|
Jelkmann M, Leichner C, Zaichik S, Laffleur F, Bernkop-Schnürch A. A gellan gum derivative as in-situ gelling cationic polymer for nasal drug delivery. Int J Biol Macromol 2020; 158:1037-1046. [PMID: 32380110 DOI: 10.1016/j.ijbiomac.2020.04.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
The aim of the present study was the development of a novel gellan gum derivative exhibiting mucoadhesive properties for nasal application. Accomplishing this, amino groups have been introduced to the polymeric backbone. The resulting synthesis products were characterized in terms of the amount of attached amino groups, regarding hydration, zeta potential and gel characteristics. Mucoadhesiveness was assessed studying rheological synergism, by rotating cylinder and regarding tensile studies. Next to erythrocyte-/cytotoxicity evaluation, the impact on ciliary beat frequency of nasal epithelial cells was investigated. Results revealed coupling rates up to 1259.50 ± 75.98 μmol/g polymer as well as accelerated hydration of the derivatives. Comparing aminated with unmodified gellan, enhanced mucoadhesion was verified by a 32-fold increase in viscosity of polymer/mucus mixtures and by a 14-fold extended mucosal adhesion time. Tensile studies demonstrated a 9-fold higher total work of adhesion and a 3.75-fold elevated maximum detachment force. Cellular membrane was not seriously impaired. CBF studies proved a reversible inhibition due to the application of the novel derivative. According to the outlined findings, aminated gellan gum can be considered as a promising excipient for nasal dosage forms improving drug bioavailability by superior adhesive features.
Collapse
Affiliation(s)
- Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christina Leichner
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Sergey Zaichik
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
12
|
In vitro evaluation of a self-emulsifying drug delivery system (SEDDS) for nasal administration of dimenhydrinate. Drug Deliv Transl Res 2020; 9:945-955. [PMID: 30877627 PMCID: PMC6731199 DOI: 10.1007/s13346-019-00634-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The objective of the study was the development and in vitro characterization of a self-emulsifying drug delivery system (SEDDS) for the nasal application of dimenhydrinate. Final composition of SEDDS was established based on drug solubility and stability studies. Dimenhydrinate was loaded into the SEDDS pre-concentrates to 7.5% (m/v). The droplet size of the final SEDDS formulations was in a range between 60 and 220 nm. Permeability, as well as tissue toxicity, of the formulations was investigated using bovine nasal mucosa. Enhancement in permeation up to 2.8-fold compared to pure dimenhydrinate was confirmed. Furthermore, toxicity studies did not reveal any serious tissue damages related to the SEDDS. Additionally, irritation potential of SEDDS was evaluated in ciliary beat frequency measurements. Incorporation of dimenhydrinate into SEDDS might therefore be considered as a promising approach within the field of nasal delivery of antiemetics by utilizing permeation enhancement strategy.
Collapse
|
13
|
Alshweiat A, Ambrus R, Csoka II. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem 2019; 26:6459-6492. [PMID: 31453778 DOI: 10.2174/0929867326666190827151741] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
There is always a need for alternative and efficient methods of drug delivery. The nasal cavity can be considered as a non-invasive and efficient route of administration. It has been used for local, systemic, brain targeting, and vaccination delivery. Although many intranasal products are currently available on the market, the majority is used for local delivery with fewer products available for the other targets. As nanotechnology utilization in drug delivery has rapidly spread out, the nasal delivery has become attractive as a promising approach. Nanoparticulate systems facilitate drug transportation across the mucosal barrier, protect the drug from nasal enzyme degradation, enhance the delivery of vaccines to the lymphoid tissue of the nasal cavity with an adjuvant activity, and offer a way for peptide delivery into the brain and the systemic circulation, in addition to their potential for brain tumor treatment. This review article aims at discussing the potential benefit of the intranasal nanoparticulate systems, including nanosuspensions, lipid and surfactant, and polymer-based nanoparticles as regards productive intranasal delivery. The aim of this review is to focus on the topicalities of nanotechnology applications for intranasal delivery of local, systemic, brain, and vaccination purposes during the last decade, referring to the factors affecting delivery, regulatory aspects, and patient expectations. This review further identifies the benefits of applying the Quality by Design approaches (QbD) in product development. According to the reported studies on nanotechnology-based intranasal delivery, potential attention has been focused on brain targeting and vaccine delivery with promising outcomes. Despite the significant research effort in this field, nanoparticle-based products for intranasal delivery are not available. Thus, further efforts are required to promote the introduction of intranasal nanoparticulate products that can meet the requirements of regulatory affairs with high patient acceptance.
Collapse
Affiliation(s)
- Areen Alshweiat
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary.,Faculty of Pharmaceutical Science, The Hashemite University, Zarqa, Jordan
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - IIdikó Csoka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Mucosal Vaccination via the Respiratory Tract. Pharmaceutics 2019; 11:pharmaceutics11080375. [PMID: 31374959 PMCID: PMC6723941 DOI: 10.3390/pharmaceutics11080375] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Vaccine delivery via mucosal surfaces is an interesting alternative to parenteral vaccine administration, as it avoids the use of a needle and syringe. Mucosal vaccine administration also targets the mucosal immune system, which is the largest lymphoid tissue in the human body. The mucosal immune response involves systemic, antigen-specific humoral and cellular immune response in addition to a local response which is characterised by a predominantly cytotoxic T cell response in combination with secreted IgA. This antibody facilitates pathogen recognition and deletion prior to entrance into the body. Hence, administration via the respiratory mucosa can be favoured for all pathogens which use the respiratory tract as entry to the body, such as influenza and for all diseases directly affecting the respiratory tract such as pneumonia. Additionally, the different mucosal tissues of the human body are interconnected via the so-called “common mucosal immune system”, which allows induction of an antigen-specific immune response in distant mucosal sites. Finally, mucosal administration is also interesting in the area of therapeutic vaccination, in which a predominant cellular immune response is required, as this can efficiently be induced by this route of delivery. The review gives an introduction to respiratory vaccination, formulation approaches and application strategies.
Collapse
|
15
|
Abstract
BACKGROUND The spectrum of rhinological diseases is wide, as is that of their drug-based treatment. Only 1272 compounds coded R01 (nasal preparations) are listed in the ATC group (Anatomical Therapeutic Chemical Classification). Conservative therapy of rhinological diseases additionally includes systemic (often oral) application of corticosteroids, antibiotics and immunomodulators. OBJECTIVE The aim of this paper is to outline possible complications of medication (subdivided into classes of ingredients) commonly used to treat rhinological diseases in hospitals. Useful therapeutic and preventive measures will be presented. MATERIALS AND METHODS Based on the expert information in the current pharmacological drug index (ATC) for the R01 group as well as literature research in the PubMed, Cochrane Library and MEDLINE databases, medication used for the treatment of rhinological diseases was analysed in terms of side effects and their frequency. RESULTS Common side effects of intranasally applied medication are local irritations, burning, dryness and epistaxis. Orally or intravenously applied rhinological medication can affect the organs and lead to side effects such as cardiac dysrhythmia or alterations of the blood count. It is recommended that the therapeutic be selected on an individual basis and that the patient be thoroughly informed about possible side effects. CONCLUSION Particularly when treating children or pregnant or breastfeeding women, the indications of all nasal preparations should be checked carefully. The huge variety of rhinologicals enables an optimal individual selection on the basis of consideration of known side effects.
Collapse
|
16
|
Cherian LM, Cooksley C, Richter K, Ramezanpour M, Paramasivan S, Wormald PJ, Vreugde S, Psaltis AJ. Effect of commercial nasal steroid preparation on bacterial growth. Int Forum Allergy Rhinol 2019; 9:766-775. [PMID: 30748102 DOI: 10.1002/alr.22312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Topical budesonide (Pulmicort; AstraZeneca AB, Sodertalje, Sweden) is commonly used in the management of chronic rhinosinusitis (CRS). Although its use is due to its perceived anti-inflammatory effect, studies have suggested that it may also have antibacterial properties. To make the hydrophobic steroid molecule suitable for topical administration, pharmaceutical excipients are used in commercial steroid formulations. Herein we investigated the antibacterial action of commercial budesonide and its excipients. METHODS Planktonic and biofilm forms of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) were treated with Pulmicort or its excipients at clinically relevant concentrations. Bacterial growth was determined by optical density, resazurin assays, colony-forming unit counts, and Giemsa staining. Minimum inhibitory concentration (MIC) studies assessed excipients' potentiation of antibiotics. Experiments were conducted in triplicate and results analyzed using one-way analysis of variance. RESULTS There was significant reduction in planktonic and biofilm growth of S aureus and MRSA on exposure to budesonide (p < 0.0001) and its excipients (p < 0.0001). Excipient ethylene diamine-tetraactic acid (EDTA) demonstrated an antibacterial property even at the low concentrations used in topical preparations (p < 0.0001). With amoxicillin, excipients exhibited a potential additive/synergistic effect on MIC, whereas erythromycin and aminoglycosides showed an antagonistic action. CONCLUSION The commercial product Pulmicort has a direct antibacterial effect on the planktonic and biofilm forms of S aureus and MRSA. This effect is at least in part mediated through the excipient EDTA in the product. Excipients also influenced the antimicrobial activity of antibiotics depending on the bacterial strain and antibiotic tested.
Collapse
Affiliation(s)
- Lisa Mary Cherian
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, SA, Australia
| | - Clare Cooksley
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, SA, Australia
| | - Katharina Richter
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, SA, Australia
| | - Mahnaz Ramezanpour
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, SA, Australia
| | - Sathish Paramasivan
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, SA, Australia
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, SA, Australia
| | - Sarah Vreugde
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, SA, Australia
| | - Alkis James Psaltis
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, SA, Australia
| |
Collapse
|
17
|
Menon-Miyake MA, de Oliveira RC, Lorenzi-Filho G, Saldiva PHN, Butugan O. Luffa Operculata Affects Mucociliary Function of the Isolated Frog Palate. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240501900406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Luffa operculata is a medicinal plant used in homeopathic and alternative medicine. In the United States, it is sold in a purified spray form, whereas a homemade L. operculata dry fruit infusion (DFI) is commonly used in Latin America. The L. operculata DFI is applied intranasally, inducing profuse mucous secretion and relieving nasal symptoms. Nevertheless, this medication may cause irritation of the nasal mucosa, as well as epistaxis or anosmia. Given the growing popularity of alternative medicine, a decision was made to evaluate the effects of this substance on mucous membranes. Methods The effects of L. operculata DFI on mucociliary transport velocity, ciliary beat frequency, and transepithelial potential difference (PD) were evaluated in an isolated frog palate preparation. We tested 46 palates immediately before immersion and again at 5 and 20 minutes after immersion. Four groups (n = 10) were tested in frog Ringer: control; L. operculata DFI, 60 mg/L; 600 mg/L; and 1200 mg/L. An additional group was tested using L. operculata DFI prepared with water (600 mg/L of H2O, n = 6). Epithelial samples were harvested for ultrastructural study. Results In treated palates, mucociliary transport velocity and ciliary beat frequency decreased significantly (p < 0.001 and p < 0.008, respectively). There was a dose-dependent decrease in PD modulus (p < .007). Our PD findings indicated ion-fluid transport abnormalities, which were confirmed by transmission electron microscopy that showed enlargement of interepithelial spaces. Conclusion In this ex vivo model, the L. operculata DFI infusion promoted significant changes in the mucociliary function of the epithelium, suggesting that it is potentially noxious to human nasal mucosa.
Collapse
Affiliation(s)
| | - Regiani Carvalho de Oliveira
- Laboratory of Experimental Air Pollution, Department of Pathology, University of São Paulo, São Paulo, SP, Brazil
| | - Geraldo Lorenzi-Filho
- Laboratory of Experimental Air Pollution, Department of Pathology, University of São Paulo, São Paulo, SP, Brazil
- Department of Cardiology and Pneumology, University of São Paulo, São Paulo, SP, Brazil
| | | | - Ossamu Butugan
- Department of Otorhinolaryngology, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Abstract
The available toxicity data of benzalkonium chloride (BKC) clearly shows that it is toxic; however, the weight of evidence favors the view that at doses encountered in nasally and orally inhaled pharmaceutical preparations it is well tolerated. The adverse toxicological data predominantly come from in vitro and animal studies in which doses and exposure periods employed were excessive in relation to the clinical doses and their posology and, therefore, not directly applicable to the clinic. The conflict between the in vitro and animal data and the clinical experience can be reconciled by understanding some of the physicochemical properties of BKC, the nasal and respiratory tract microenvironments, the doses used, and the posology.
Collapse
Affiliation(s)
- Neil F Johnson
- Pharma Toxicology Safety Solutions LLC , Highland Park, Illinois
| |
Collapse
|
19
|
Li Y, Fan X, Li W, Yang P, Zhang H, Tang D, Yin X, Sun J, Zheng A. Metoclopramide nasal spray in vitro evaluation and in vivo pharmacokinetic studies in dogs. Pharm Dev Technol 2017; 23:275-281. [PMID: 28379057 DOI: 10.1080/10837450.2017.1316734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metoclopramide (MCP) can effectively alleviate motion sickness-caused nausea and vomiting. Nasal administration offers the greatest patient compliance. It is suitable for self-administration and offers rapid and complete absorption, no first-pass effects and high bioavailability. In the present study, a MCP nasal spray was prepared and evaluated in vitro and in vivo. Nasal cilia toxicity of Bufo toads was used to screen the preservative types and concentrations. Rabbit nasal mucosa was used to evaluate the mucosa permeability of different MCP nasal sprays with different penetration enhancers and preservative. A three-period crossover trial was then carried out in beagle dogs with three different MCP dosage forms: nasal sprays, oral tablets and intramuscular (IM) solution. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to measure dog plasma MCP, and pharmacokinetic parameters were calculated. The results of ciliatoxicity and permeation study showed that 0.03% methyl paraben lacking penetration enhancers was optimal. Compared to control IM, the bioavailability of oral tablets of MCP was 24.9%, while that of nasal spray was 62.3%. Meanwhile time-to-maximal plasma concentration (Tmax) of nasal spray was significantly shorter than that of oral tablets. In conclusion, MCP nasal spray prepared here is safe with minimal ciliatoxicity, rapid onset and high relative bioavailability.
Collapse
Affiliation(s)
- Ying Li
- a State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China.,b Department of Pharmaceutics , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China
| | - Xianpeng Fan
- a State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China.,e Wujin Hospital Affiliated to Jiangsu University , Changzhou , P. R. China
| | - Wanqing Li
- d Department of Preclinical Medicine, School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Peng Yang
- a State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China.,c Department of Pharmacy, Xuzhou Medical University , Xuzhou , P. R. China
| | - Hui Zhang
- a State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China.,b Department of Pharmaceutics , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China
| | - Daoquan Tang
- c Department of Pharmacy, Xuzhou Medical University , Xuzhou , P. R. China
| | - Xiaoxin Yin
- c Department of Pharmacy, Xuzhou Medical University , Xuzhou , P. R. China
| | - Jianxu Sun
- a State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China.,b Department of Pharmaceutics , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China
| | - Aiping Zheng
- a State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China.,b Department of Pharmaceutics , Beijing Institute of Pharmacology and Toxicology , Beijing , P. R. China
| |
Collapse
|
20
|
Menzel C, Jelkmann M, Laffleur F, Bernkop-Schnürch A. Nasal drug delivery: Design of a novel mucoadhesive and in situ gelling polymer. Int J Pharm 2016; 517:196-202. [PMID: 27890621 DOI: 10.1016/j.ijpharm.2016.11.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to establish a novel polymeric excipient for liquid nasal dosage forms exhibiting viscosity increasing properties, improved mucoadhesion and stability towards oxidation in solution. In order to achieve this goal, 2-mercaptonicotinic acid was first coupled to l-cysteine by disulfide exchange reaction and after purification directly attached to the polymeric backbone of xanthan gum by carbodiimide mediated amide bond formation. The resulting conjugate was characterized with respect to the amount of coupled ligand, the in situ gelling behavior, mucoadhesive properties and stability towards oxidation. Furthermore, the influence of preactivated polymers on ciliary beat frequency (CBF) of porcine nasal epithelial cells was investigated. Results showed, that 252.52±20.54μmol of the ligand was attached per gram polymer. No free thiol groups could be detected on the polymeric backbone indicating entire preactivation. Rheological investigations of polymer mucus mixtures revealed a 1.7-fold and 2.5-fold enhanced mucoadhesion of entirely preactivated xanthan (Xan-Cys-MNA) compared to thiolated xanthan (Xan-Cys) and unmodified xanthan (Xan). Tensile force evaluation reported a 2.87 and 5.11-fold higher total work of adhesion (TWA) as well as a 1.63 and 2.41-fold higher maximum detachement force of Xan-Cys-MNA compared to Xan-Cys and Xan. In the presence of H2O2 as an oxidizing agent Xan-Cys-MNA showed unlike Xan-Cys no increase in viscosity, indicating high stability towards oxidation. Addition of CaCl2 to Xan-Cys-MNA solutions caused a decrease in viscosity at nevertheless higher total viscosity. Results from CBF studies proved nasal safety for the novel conjugate. According to these results, entirely preactivated thiolated xanthan gum seems to be a promising excipient for nasal dosage forms in order to improve drug bioavailability.
Collapse
Affiliation(s)
- Claudia Menzel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Yaghi A, Dolovich MB. Airway Epithelial Cell Cilia and Obstructive Lung Disease. Cells 2016; 5:cells5040040. [PMID: 27845721 PMCID: PMC5187524 DOI: 10.3390/cells5040040] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022] Open
Abstract
Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations.
Collapse
Affiliation(s)
- Asma Yaghi
- Firestone Research Aerosol Laboratory, Fontbonne Bldg. Room F132, Hamilton, ON L8N 4A6, Canada.
- St. Joseph's Healthcare, Firestone Institute for Respiratory Health, 50 Charlton Ave East, FIRH Room T2135, Hamilton, ON L8N 4A6, Canada.
| | - Myrna B Dolovich
- Firestone Research Aerosol Laboratory, Fontbonne Bldg. Room F132, Hamilton, ON L8N 4A6, Canada.
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
- St. Joseph's Healthcare, Firestone Institute for Respiratory Health, 50 Charlton Ave East, FIRH Room T2135, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
22
|
Jiao J, Meng N, Zhang L. The effect of topical corticosteroids, topical antihistamines, and preservatives on human ciliary beat frequency. ORL J Otorhinolaryngol Relat Spec 2014; 76:127-36. [PMID: 24969737 DOI: 10.1159/000363575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/12/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of the corticosteroids, the antihistamines, and the preservatives benzalkonium chloride (BKC) and potassium sorbate (PS) in intranasal medications on human nasal epithelial ciliary beat frequency (CBF). METHODS Primary ciliated epithelial cell cultures from the human nasal mucosa of chronic sinusitis patients were established. Changes in CBF of epithelial cell cultures treated/untreated with intranasal medications or preservatives were assessed using high-speed digital imaging methods. RESULTS Budesonide caused a rapid but reversible ciliostasis and showed no ciliotoxic effect at 10% dilution. Fluticasone propionate induced an irreversible ciliostatic activity and showed a reversible decrease in CBF at 10% dilution. Azelastine hydrochloride and levocabastine hydrochloride both induced a dose-dependent and irreversible decrease in CBF, although the ciliotoxic effect was not evident at 5% dilution. BKC resulted in an irreversible ciliostasis at 0.005 or 0.01% concentrations, whereas PS did not show any change in CBF at 0.12 or 0.24% concentrations. CONCLUSIONS Crystalline BKC and BKC-containing intranasal medications, including fluticasone propionate, azelastine hydrochloride and levocabastine hydrochloride, but not PS or PS-containing intranasal budesonide spray, led to irreversible ciliostasis in human nasal epithelial cell cultures when applied at clinically relevant concentrations.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, and Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | | | | |
Collapse
|
23
|
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv 2014; 23:681-93. [PMID: 24901207 DOI: 10.3109/10717544.2014.920431] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. OBJECTIVE The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. METHODS Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. RESULTS AND CONCLUSION The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.
Collapse
Affiliation(s)
- Amrish Kumar
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Aditya Nath Pandey
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Sunil Kumar Jain
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| |
Collapse
|
24
|
Inoue D, Furubayashi T, Ogawara KI, Kimura T, Higaki K, Shingaki T, Kimura S, Tanaka A, Katsumi H, Sakane T, Yamamoto A, Higashi Y. In vitro evaluation of the ciliary beat frequency of the rat nasal epithelium using a high-speed digital imaging system. Biol Pharm Bull 2014; 36:966-73. [PMID: 23727918 DOI: 10.1248/bpb.b12-01076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mucociliary clearance (MC) is an important factor in determining nasal drug absorption and the ciliary beat of ciliated epithelial cells of the nasal mucosa is the driving force of MC. However, the relationship between MC and ciliary beat frequency (CBF) is still ambiguous. The purpose of this study was to establish an evaluation method of CBF as an index of mucociliary function and examine the relationship between MC and CBF. A sequence of images of ciliary beating of an excised rat nasal septum was captured using a high-speed digital video camera. CBF (beats per second, Hz) was determined from periodic changes in the contrast value of a specific location in a sequence of images. CBF under control conditions was 8.49±0.38 Hz, which is similar to values reported for cultured human nasal epithelial cells and rat tracheal cells. β-Adrenergic and cholinergic antagonists decreased CBF, while β-adrenergic agonists and acetylcholine increased CBF. These results were similar with those observed for MC in our previous study. It was found that CBFs were significantly and linearly correlated with MC, indicating that MC is directly regulated by CBF and that this evaluation system allows the quantitative determination of nasal mucociliary function.
Collapse
Affiliation(s)
- Daisuke Inoue
- Department of Pharmaceutics, School of Pharmacy, Shujitsu University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Millotti G, Vetter A, Leithner K, Sarti F, Shahnaz Bano G, Augustijns P, Bernkop-Schnürch A. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide. Drug Dev Ind Pharm 2013; 40:1677-82. [PMID: 24131355 DOI: 10.3109/03639045.2013.842578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.
Collapse
Affiliation(s)
- Gioconda Millotti
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, CCB-Center for Chemistry and Biochemistry , Innsbruck, Austria , Europe and
| | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Parag Kolhe
- Pharmaceutical R&D-BioTx Pharmaceutical, Chesterfield, Missouri USA
| | - Mrinal Shah
- LifeCell Corporation, Bridgewater, New Jersey USA
| | - Nitin Rathore
- Drug Product Engineering, Amgen, Thousand Oaks, California USA
| |
Collapse
|
27
|
Yaghi A, Zaman A, Cox G, Dolovich MB. Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir Med 2012; 106:1139-47. [DOI: 10.1016/j.rmed.2012.04.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/15/2023]
|
28
|
Wang C, Deng Q, Han D, Zhang L. Effects of Benzalkonium Chloride and Potassium Sorbate on Airway Ciliary Activity. ACTA ACUST UNITED AC 2012; 74:149-53. [PMID: 22508392 DOI: 10.1159/000337830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022]
Affiliation(s)
- Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
29
|
Vetter A, Augustijns P, Bernkop-Schnürch A. Solubilizing agents in nasal formulations and their effect on ciliary beat frequency. Toxicol In Vitro 2011; 26:150-6. [PMID: 22056262 DOI: 10.1016/j.tiv.2011.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/10/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
The purpose of this study was to determine the concentration-dependent effect of selected solubilizers, used in common nasal drug formulations, on ciliary beat frequency (CBF) in human nasal epithelial cell cultures. CBF was measured by a high-speed digital imaging method. Excised ciliated human nasal epithelial cells were incubated for 60min with the solubilizers and determination of the half maximal inhibitory concentration (IC(50)), followed by a reversibility test. LDH test was performed on human nasal epithelial cells with the solubilizing agents. These were applied to nasal epithelial cells in IC(50) values. The following rank order in IC(50) values was obtained for the solubilizers: glycerol>propylene glycol>polyethylene glycol 300>N,N-dimethylacetamide>polyethylene glycol 400>ethanol>ethylendiamindihydrochloride>polyvinylpyrrolidon 25>polyvinylpyrrolidon 90. The highest reversibility of approximately 75% was shown by propylene glycol and polyethylene glycol 300 at a concentration of 30% (v/v). Results from the LDH test showed that N,N-dimethylacetamide displayed the highest cytotoxicity with 5.2% at a concentration of 14.5% (v/v). According to these results, several solubilizers can alter the CBF frequency and thus, have an impact on the nasal mucosa. Therefore, CBF studies with solubilizers used at a concentration relevant for nasal formulations are essential in the design of efficient and most notably safe nasal medicinal products.
Collapse
Affiliation(s)
- A Vetter
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 52, Josef Möller Haus, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
30
|
Palmberger TF, Augustijns P, Vetter A, Bernkop-Schnürch A. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells. Drug Dev Ind Pharm 2011; 37:1455-62. [PMID: 21635138 DOI: 10.3109/03639045.2011.584537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the nasal safety of gel formulations of thiolated polymers (thiomers) by assessing their effect on ciliary beat frequency (CBF) in human nasal epithelial cells. METHODS Poly(acrylic acid) 450 kDa-cysteine (PAA-cys) and alginate-cysteine (alg-cys) were synthesized by covalent attachment of L-cysteine to the polymeric backbone. The cationic polymer chitosan-thiobutylamidine (chito-TBA) was synthesized by attaching iminothiolane to chitosan. CBF using was measured by a photometric system. CBF was measured before incubating the cells with test gels, during incubation and after washing out the polymeric test gels to evaluate reversibility of cilio-inhibition. The influence of viscosity on CBF was determined by using hydroxyethylcellulose (HEC)-gels of various concentrations. RESULTS Ciliary beating was observed to be affected by viscosity, but cilia were still beating in the presence of a HEC-gel displaying an apparent viscosity of 25 Pa.s. In case of thiolated polymers and their unmodified control, a concentration-dependent decrease in CBF could be observed. PAA-cys, alg-cys, chito-TBA and their corresponding unmodified controls exhibited a moderate cilio-inhibitory effect, followed by a partial recovery of CBF when used at a concentration of 1%. Alg-cys 2% and chito-TBA 2% (m/v) gels exhibited severe cilio-inhibition, which was partially reversible. L-cysteine and reduced glutathione led to mild cilio-inhibition at concentrations of 3% (m/v). CONCLUSIONS Taking into account that dilution after application and cilio-modifying effects is usually more pronounced under in vitro conditions, thiomers can be considered as suitable excipients for nasal drug delivery systems.
Collapse
Affiliation(s)
- Thomas F Palmberger
- Department of Pharmaceutical Technology, Institute of Pharmacy, Innsbruck, Austria
| | | | | | | |
Collapse
|
31
|
Fabrizio B, Giulia BA, Fabio S, Paola R, Gaia C. In vitro permeation of desmopressin across rabbit nasal mucosa from liquid nasal sprays: The enhancing effect of potassium sorbate. Eur J Pharm Sci 2009; 37:36-42. [DOI: 10.1016/j.ejps.2008.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/20/2008] [Accepted: 12/22/2008] [Indexed: 12/01/2022]
|
32
|
Van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FWHM. Hydroxocobalamin Uptake into the Cerebrospinal Fluid after Nasal and Intravenous Delivery in Rats and Humans. J Drug Target 2008; 11:325-31. [PMID: 14668053 DOI: 10.1080/10611860310001640075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The possibility of direct transport of hydroxocobalamin from the nasal cavity into the cerebrospinal fluid (CSF) after nasal administration in rats was investigated and the results were compared with a human study. Hydroxocobalamin was given to rats (n=8) both intranasally (214 microg/rat) and intravenously (49.5 microg/rat) into the jugular vein using a Vascular Access Port (VAP). Prior to and after drug administration, blood and CSF samples were taken and analysed by radioimmunoassay. The AUCCSF/AUCplasma ratio after nasal delivery does not differ from the ratio after intravenous infusion, indicating that hydroxocobalamin enters the CSF via the blood circulation across the blood-brain barrier (BBB). This same transport route is confirmed by the cumulative AUC-time profiles in CSF and plasma, demonstrating a 30 min delay between plasma absorption and CSF uptake of hydroxocobalamin in rats and in a comparative human study. The present results in rats show that there is no additional uptake of hydroxocobalamin in the CSF after nasal delivery compared to intravenous administration, which is in accordance with the results found in humans. This indicates a predictive value of the used rat model for the human situation when studying the nose to CSF transport of drugs.
Collapse
Affiliation(s)
- Mascha P Van den Berg
- Division of Pharmaceutical Technology and Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Henning A, Schneider M, Bur M, Blank F, Gehr P, Lehr CM. Embryonic chicken trachea as a new in vitro model for the investigation of mucociliary particle clearance in the airways. AAPS PharmSciTech 2008; 9:521-7. [PMID: 18431652 DOI: 10.1208/s12249-008-9072-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 02/05/2008] [Indexed: 11/30/2022] Open
Abstract
Mucociliary clearance (MC) is an important defense mechanism of the respiratory system to eliminate inhaled and possibly noxious particles from the lung. Although the principal mechanics of MC seem to be relatively clear there are still open questions regarding the long-term clearance of particles. Therefore, we have developed a new set-up based on embryonic chicken trachea (ECT) to investigate mucociliary particle clearance in more detail. ECT was placed in an incubation chamber after carbon particles were applied and tracked using optical microscopy. The aim of the study was to validate this model by investigating the impact of temperature, humidity and drugs on particle transport rates. Particles were transported reproducibly along the trachea and clearance velocity (2.39 +/- 0.25) mm/min was found to be in accordance to data reported in literature. Variation in temperature resulted in significantly reduced MC: (0.40 +/- 0.12) mm/min (20 degrees C); (0.42 +/- 0.10) mm/min (45 degrees C). Decreasing humidity (99-60%) had no significant effect on MC, whereas reduction to 20% humidity showed a significant influence on particle clearance. The use of different cilio- and muco-active drugs (propranolol, terbutalin, N-acetylcysteine) resulted in altered MC according to the pharmacological effect of the substances: a concentration dependent decrease of MC was found for Propranolol. From our results we conclude that this model can be employed to investigate MC of particles in more detail. Hence, the model may help to understand and identify decisive physico-chemical parameters for MC and to answer open questions regarding the long-term clearance phenomenon.
Collapse
|
34
|
Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 2006; 111:107-16. [PMID: 16380189 DOI: 10.1016/j.jconrel.2005.11.014] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
In this study, the potential of N-trimethyl chitosan (TMC) nanoparticles as a carrier system for the nasal delivery of proteins was investigated. TMC nanoparticles were prepared by ionic crosslinking of TMC solution (with or without ovalbumin) with tripolyphosphate, at ambient temperature while stirring. The size, zeta-potential and morphology of the nanoparticles were investigated as a function of the preparation conditions. Protein loading, protein integrity and protein release were studied. The toxicity of the TMC nanoparticles was tested by ciliary beat frequency measurements of chicken embryo trachea and in vitro cytotoxicity assays. The in vivo uptake of FITC-albumin-loaded TMC nanoparticles by nasal epithelia tissue in rats was studied by confocal laser scanning microscopy. The nanoparticles had an average size of about 350 nm and a positive zeta-potential. They showed a loading efficiency up to 95% and a loading capacity up to 50% (w/w). The integrity of the entrapped ovalbumin was preserved. Release studies showed that more than 70% of the protein remained associated with the TMC nanoparticles for at least 3 h on incubation in PBS (pH 7.4) at 37 degrees C. Cytotoxicity tests with Calu-3 cells showed no toxic effects of the nanoparticles, whereas a partially reversible cilio-inhibiting effect on the ciliary beat frequency of chicken trachea was observed. In vivo uptake studies indicated the transport of FITC-albumin-associated TMC nanoparticles across the nasal mucosa. In conclusion, TMC nanoparticles are a potential new delivery system for transport of proteins through the nasal mucosa.
Collapse
Affiliation(s)
- Maryam Amidi
- Department of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Greimel A, Dorly Del Curto M, D'Antonio M, Palmberger T, Sprinzl G, Bernkop-Schnurch A. In vitro evaluation of thiomer microparticles for nasal drug delivery. J Drug Deliv Sci Technol 2006. [DOI: 10.1016/s1773-2247(06)50015-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Dimova S, Brewster ME, Noppe M, Jorissen M, Augustijns P. The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In Vitro 2005; 19:107-22. [PMID: 15582362 DOI: 10.1016/j.tiv.2004.07.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
The nasal route is widely used for the administration of drugs for both topical and systemic action. At an early stage in drug discovery and during the development process, it is essential to gain a thorough insight of the nasal absorption potential, metabolism and toxicity of the active compound and the components of the drug formulation. Human nasal epithelial cell cultures may provide a reliable screening tool for pharmaco-toxicological assessment of potential nasal drug formulations. The aim of this review is to give an overview of the information relevant for the development of a human nasal epithelial cell culture model useful during drug discovery and development. A primary goal in the development of in vitro cell culture systems is to maintain differentiated morphology and biochemical features, resembling the original tissue as closely as possible. The potential and limitations of the existing in vitro human nasal models are summarized. The following topics related to cell culture methodology are discussed: (i) primary cultures versus cell lines; (ii) cell-support substrate; (iii) medium and medium supplements; and (iv) the air-liquid interface model versus liquid-liquid. Several considerations with respect to the use of in vitro systems for pharmaceutical applications (transport, metabolism, assessment of ciliary toxicity) are also discussed.
Collapse
Affiliation(s)
- S Dimova
- Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
37
|
van den Berg MP, Verhoef JC, Romeijn SG, Merkus FWHM. Uptake of estradiol or progesterone into the CSF following intranasal and intravenous delivery in rats. Eur J Pharm Biopharm 2004; 58:131-5. [PMID: 15207546 DOI: 10.1016/j.ejpb.2004.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
The uptake of estradiol and progesterone into the cerebrospinal fluid (CSF) after intranasal and intravenous administration in rats was investigated. Each animal received estradiol intranasally (40 microg/rat) and by intravenous infusion (10 microg/rat) into the jugular vein using a vascular access port. Hereafter, the same set of rats was treated with progesterone intranasally (200 microg/rat) and by intravenous infusion (104 microg/rat). Following nasal delivery, both steroid hormones reach Cmax values in plasma and CSF at 15 min after administration. Intravenous infusion of estradiol and progesterone shows comparable plasma and CSF concentration-time profiles compared to the nasal route. For both hormones the AUCCSF/AUCplasma ratios (mean +/- SD) after intranasal delivery (estradiol 2.3 +/- 1.1%; progesterone 1.9 +/- 0.7%) do not differ significantly from the ratios shown after intravenous infusion (estradiol 2.0 +/- 0.6%; progesterone 2.2 +/- 0.8%). These results indicate that after nasal delivery estradiol and progesterone are rapidly absorbed into the systemic circulation, from where the non-protein bound hormones probably enter the CSF by crossing the blood-brain barrier. No extra direct nose-CSF transport could be demonstrated.
Collapse
Affiliation(s)
- Mascha P van den Berg
- Department of Pharmaceutical Technology and Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
38
|
Abstract
This paper describes the basic concepts for the transmucosal delivery of drugs, and in particular the use of the nasal route for delivery of challenging drugs such as polar low-molecular-weight drugs and peptides and proteins. Strategies for the exploitation of absorption enhancers for the improvement of nasal delivery are discussed, including consideration of mechanisms of action and the correlation between toxic effect and absorption enhancement. Selected enhancer systems, such as cyclodextrins, phospholipids, bioadhesive powder systems and chitosan, are discussed in detail. Examples of the use of these enhancers in preclinical and clinical studies are given. Methods for assessing irritancy and damage to the nasal membrane from the use of absorption enhancers are also described. Finally, the mucosal use of absorption enhancers (chitosan) for the improved nasal delivery of vaccines is reported with reference to recent phase I/II clinical studies.
Collapse
Affiliation(s)
- Stanley S Davis
- Institute of Pharmaceutical Sciences, University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
39
|
Viertler EYC, Testa JRG, Morgado PF, Ferreira RG. Irrigação intranasal: avaliação dos efeitos do uso de soluções hidroeletrolíticas na mucosa de ratos. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s0034-72992003000400009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A irrrigação intranasal tem grande importância como terapia adjuvante de doenças nasossinusais. Entretanto, faltam estudos que avaliem as alterações histológicas que as diferentes soluções utilizadas podem causar na mucosa do nariz. OBJETIVO: Analisar os aspectos histológicos da mucosa nasal de ratos após irrigação local com diferentes soluções hidroeletrolíticas. FORMA DE ESTUDO: Experimental. MATERIAL E MÉTODO: 120 ratos Wistar foram divididos igualmente em 4 grupos. O grupo número 1 recebeu solução salina a 0,9%. Os grupos 2 e 3 receberam soluções contendo Cloreto de Sódio associado a Cloreto de Potássio e Glicose, em diferentes concentrações. O grupo 4 foi o grupo controle. Duas vezes ao dia, 0,1ml (2 gotas) das soluções foram aplicados na narina esquerda dos ratos, através de uma seringa. Metade dos animais de cada grupo foi sacrificado após a primeira semana e a metade restante após a quarta semana de tratamento. Os fragmentos de mucosa obtidos foram processados e estudados em microscopia óptica, utilizando a hematoxilina e eosina. RESULTADOS: Pôde-se observar que a infiltração de células inflamatórias foi estatisticamente mais intensa no grupo 2, em 1 e 4 semanas de administração das soluções (p<0,05), quando comparada ao grupo controle. A formação de glândulas intraepiteliais foi estatisticamente mais evidente no grupo 1, quando comparada aos grupos 3 e 4 (p<0,05). CONCLUSÃO: A solução salina hipertônica testada causou a menor reação tecidual na mucosa nasal de ratos quando comparada ao grupo controle. Não foram encontradas vantagens na utilização da solução salina a 0,9% em comparação com o uso das demais soluções em estudo.
Collapse
|
40
|
Abstract
The nasal route is one of the most permeable and highly vascularized site for drug administration ensuring rapid absorption and onset of therapeutic action. It has been potentially explored as an alternative route for drugs with poor bioavailability and for the delivery of biosensitive and high molecular weight (MW) compounds such as proteins, peptides, steroids, vaccines, and so on. This review discusses the major factors affecting the permeability of drugs or biomolecules through the nasal mucosa, including biological, formulation and device-related factors. This information could potentially help to achieve desired plasma concentrations of drugs without compromising or altering the normal physiology of the nasal cavity.
Collapse
Affiliation(s)
- Priyanka Arora
- Dept. of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | | | | |
Collapse
|