1
|
Takeda R, Amaike T, Nishikawa T, Watanabe K. Effect of home-based hot bathing on exercise-induced adaptations associated with short-term resistance exercise training in young men. Physiol Rep 2025; 13:e70188. [PMID: 39887948 PMCID: PMC11780495 DOI: 10.14814/phy2.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 02/01/2025] Open
Abstract
This study investigated whether home-based bathing intervention (HBBI) improve muscle strength gain and protect cardiovascular function by short-term resistance training (RT). Thirty-one healthy young men measured the maximum voluntary isometric contraction (MVC) of knee extensor, electrically evoked knee extension torque, and mean arterial pressure (MAP). Then, participants were divided into three groups with matching MVC: shower without bathing (control, n = 10), thermoneutral bathing (36°C-bathing, n = 10), and hot bathing (40°C-bathing, n = 11), and conducted 2 weeks of HBBI. Following familiarization for HBBI, participants completed 2 weeks of HBBI and acute RT (five sessions of three sets of 10 isometric knee extension at 60% MVC). Baseline neuromuscular and cardiovascular function was assessed again following completion of the 2 weeks of intervention. MVC was non-significantly increased after the RT period in 40°C-bathing with large effect size (partial η2 = 0.450). The electrically evoked knee extension torque (10/100-Hz ratio) was significantly increased after the RT period in control (p = 0.020). MAP did not alter due to bathing intervention and RT (all p > 0.05). HBBI improved muscle strength without RT-induced alteration of peripheral muscle condition. Shower without bathing reduced muscle strength gain but increased peripheral muscle condition. Short-term RT does not adversely affect the cardiovascular function, regardless of HBBI.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport ScienceChukyo UniversityToyotaJapan
| | - Tsubasa Amaike
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport ScienceChukyo UniversityToyotaJapan
| | - Taichi Nishikawa
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport ScienceChukyo UniversityToyotaJapan
- Graduate School of Health and Sport SciencesChukyo UniversityToyotaJapan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport ScienceChukyo UniversityToyotaJapan
| |
Collapse
|
2
|
Nishikawa T, Hirono T, Takeda R, Okudaira M, Ohya T, Watanabe K. One-week quercetin intervention modifies motor unit recruitment patterns before and during resistance exercise in older adults: A randomized controlled trial. Physiol Behav 2024; 282:114585. [PMID: 38762195 DOI: 10.1016/j.physbeh.2024.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
We investigated the effects of one-week quercetin ingestion on motor unit (MU) behavior and muscle contractile properties before, during, and after a single session of resistance exercise in older adults. Twenty-four older adults were divided into two groups: those receiving quercetin glycosides (QUE) or placebo (PLA), and they performed a single session of resistance exercise. MU behavior before and during resistance exercise and electrically elicited contraction before and after resistance exercise were measured (Day 1), and the same measurements were conducted again after 7 days of placebo or quercetin glycoside ingestion (Day 8). The MU recruitment threshold (RT) was decreased (p < 0.001, 25.6 ± 10.1 to 23.6 ± 9.5 %MVC) and the exerted force normalized by the MU firing rate (FR) was increased (p = 0.003, 1.13 ± 0.24 to 1.18 ± 0.22 %MVC/pps) from Days 1 to 8, respectively, in QUE but not PLA (p = 0.263, 22.6 ± 11.9 to 21.9 ± 11.6 %MVC; p = 0.713, 1.09 ± 0.20 to 1.10 ± 0.19 %MVC/pps, respectively). On Day 1, a significant correlation between MURT and%change in MUFR from the first to last contractions during the resistance exercise was observed in both groups (QUE: p = 0.009, rs = 0.308; PLA: p < 0.001, rs = 0.403). On Day 8 %change in MUFR was negatively correlated with MURT in QUE (p = 0.044, rs = -0.251), but there was no significant correlation in PLA (p = 0.844). There was no difference in electrically elicited contraction before and after the resistance exercise between QUE and PLA (p < 0.05). These results suggest that one-week quercetin ingestion in older adults lowered MURT and led to greater fatigue in MU with higher RT than with lower RT during resistance training.
Collapse
Affiliation(s)
- Taichi Nishikawa
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Masamichi Okudaira
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Faculty of Education, Iwate University, Iwate, Japan
| | - Toshiyuki Ohya
- Laboratory for Exercise Physiology and Biomechanics, Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan.
| |
Collapse
|
3
|
de Abranches Oliveira Santos Filho ID, Rodrigues MA, Ferreira LM, Nahas FX. Is There a Direct Effect Between the Plication of the Myoaponeurotic Layer and the Force of Inspiratory and Expiratory Muscles After Abdominoplasty? Ann Plast Surg 2024; 93:14-21. [PMID: 38885160 DOI: 10.1097/sap.0000000000003940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Abdominoplasty may generate an increase in the intra-abdominal pressure (IAP) and consequently an alteration in the pulmonary ventilation. The purpose of this study was to evaluate the potential alterations in the maximal static inspiratory pressure (MIP) and maximal static expiratory pressure (MEP) after abdominoplasty. METHODS Thirty-three female patients, aged between 18 and 60, with type III/B Nahas abdominal deformity that underwent abdominoplasty with plication of the anterior rectus and external oblique aponeurosis were selected. The MIP and MEP were measured using a mouthpiece. This is a simple way to indirectly gauge inspiratory and expiratory muscle strength. Measurements were performed before surgery and on the 2nd, 7th, 15th, and 180th postoperative day. In addition, IAP was measured before abdominoplasty and after the placement of compression garment. The MIP and MEP were compared using analysis of variance, followed by the Bonferroni multiple comparison test pairing the different points in time. Paired Student's t test was used for comparing IAP measurements. Pearson's correlation test was used to compare MIP and MEP variations with IAP variation. Results were considered statistically significant when P ≤ 0.05. RESULTS A decrease was observed in MEP on the 2nd day, with a return close to normal values on the 15th day. In opposition MIP had a surprisingly increase on the 15th postoperative day (129 cmH2O), normalizing 180 days after the operation. A leap in IAP values was revealed at the end of the surgical procedure. It was not possible to establish a positive correlation between the increase of IAP and the alterations of MIP and MEP. CONCLUSIONS There is a decrease in maximum expiratory pressure on the very early postoperative day (2nd postoperative day) and an increase in maximum inspiratory pressure on the 15th postoperative day in patients who underwent abdominoplasty. There was no correlation between the IAP and maximum respiratory pressure variations, both inspiratory and expiratory.
Collapse
|
4
|
Akınoğlu B, Paköz B, Yilmaz AE, Shehu SU, Kocahan T. Effect of contraction type at varying angular velocities on isokinetic muscle strength training. J Exerc Rehabil 2023; 19:228-236. [PMID: 37662526 PMCID: PMC10468290 DOI: 10.12965/jer.2346236.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 09/05/2023] Open
Abstract
The aim of this study is to determine whether concentric and eccentric isokinetic training performed at certain angular velocities in sedentary individuals is effective only in the angular velocities and contraction type where the training is performed, or at other angular velocities and contraction types that are not being trained. Twenty-eight sedentary individuals (matched according to weight, age and gender) volunteered to participate in this case study. The study was conducted on a total of 56 extremities belonging to 28 individuals (14 women, 14 men) aged between 24 and 60 years. Concentric and eccentric strength tests were performed at 30-60-90-120-150-180°/sec. The participants were randomly divided into two groups as concentric training group and eccentric training group, through stratified randomization matching. The training was done 3 days a week for a total of 6 weeks. At the end of the study, no difference was found between the pre- and posttraining measurements in the concentric training group (P>0.05). In the eccentric training group, the eccentric muscle strength of the knee flexors and extensors at angular velocity of 90°/sec, the eccentric strength of the knee extensors at angular velocity of 120°/sec, and the eccentric muscle strength of the knee flexors at angular velocity of 180°/sec were found to be different and an increase was seen after the training (P=0.032, P=0.049, P=0.041, P=0.032). These results demonstrate that eccentric training may be preferred in cases where muscle strength increase is needed in short time.
Collapse
Affiliation(s)
- Bihter Akınoğlu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara,
Turkey
| | - Büşra Paköz
- Center of Athlete Training and Health Research, Department of Health Services, Sports General Directorship, The Ministry of Youth and Sports, Ankara,
Turkey
| | - Ayfer Ezgi Yilmaz
- Department of Statistics, Faculty of Science, Hacettepe University, Beytepe, Ankara,
Turkey
| | - Salman Usman Shehu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara,
Turkey
| | - Tuğba Kocahan
- Department of Sports Medicine, Gülhane Faculty of Medicine, Health Sciences University, Ankara,
Turkey
| |
Collapse
|
5
|
Morrison S, Newell KM. Strength training as a dynamical model of motor learning. J Sports Sci 2023:1-16. [PMID: 37270792 DOI: 10.1080/02640414.2023.2220177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
This paper outlines a framework for strength training as a dynamical model of perceptual-motor learning. We show, with emphasis on fixed-point attractor dynamics, that strength training can be mapped to the general dynamical principles of motor learning that arise from the constraints on action, including the distribution of practice/training. The time scales of the respective dynamics of performance change (increment and decrement) in discrete strength training and motor learning tasks reveal superposition of exponential functions in fixed-point dynamics, but distinctive attractor and parameter dynamics in oscillatory limit cycle and more continuous tasks, together with unique timescales to process influences (including practice, learning, strength, fitness, fatigue, warm-up decrement). Increments and decrements of strength can be viewed within a dynamical model of change in motor performance that reflects the integration of practice and training processes at multiple levels of learning and skill development.
Collapse
Affiliation(s)
- Steven Morrison
- School of Rehabilitation Sciences, Old Dominion University, Norfolk, VA, USA
| | - Karl M Newell
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Liu XJ, Ge S, Cordova A, Yaghi Z, Jiang BY, Yue GH, Yao WX. Elderly may benefit more from motor imagery training in gaining muscle strength than young adults: A systematic review and meta-analysis. Front Psychol 2023; 13:1052826. [PMID: 36687842 PMCID: PMC9845905 DOI: 10.3389/fpsyg.2022.1052826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Objective The current review was aimed to determine the effectiveness of mental imagery training (MIT) on the enhancement of maximum voluntary muscle contraction (MVC) force for healthy young and old adults. Data sources Six electronic databases were searched from July 2021 to March 2022. Search terms included: "motor imagery training," "motor imagery practice," "mental practice," "mental training," "movement imagery," "cognitive training," "strength," "force," "muscle strength," "performance," "enhancement," "improvement," "development," and "healthy adults." Study selection and data extraction Randomized controlled trials of MIT in enhancing muscle strength with healthy adults were selected. The decision on whether a study met the inclusion criteria of the review was made by two reviewers independently. Any disagreements between the two reviewers were first resolved by discussion between the two reviewers. If consensus could not be reached, then it would be arbitrated by a third reviewer. Data synthesis Twenty-five studies including both internal MIT and external MIT were included in meta-analysis for determining the efficacy of MIT on enhancing muscle strength and 22 internal MIT were used for subgroup analysis for examining dose-response relationship of MIT on MVC. Results MIT demonstrated significant benefit on enhancing muscle strength when compared with no exercise, Effect Size (ES), 1.10, 95% confidence interval (CI), 0.89-1.30, favoring MIT, but was inferior to physical training (PT), ES, 0.38, 95% CI, 0.15-0.62, favoring PT. Subgroup analysis demonstrated that MIT was more effective for older adults (ES, 2.17, 95% CI, 1.57-2.76) than young adults (ES, 0.95, 95% CI, 0.74-1.17), p = 0.0002, and for small finger muscles (ES, 1.64, 95% CI, 1.06-2.22) than large upper extremity muscles (ES, 0.86, 95% CI, 0.56-1.16), p = 0.02. No significant difference was found in the comparison of small finger muscles and large lower extremity muscles, p = 0.19 although the ES of the former (ES, 1.64, 95% CI, 1.06-2.22) was greater than that of the later (ES, 1.20, 95%, 0.88-1.52). Conclusion This review demonstrates that MIT has better estimated effects on enhancing MVC force compared to no exercise, but is inferior to PT. The combination of MIT and PT is equivalent to PT alone in enhancing muscle strength. The subgroup group analysis further suggests that older adults and small finger muscles may benefit more from MIT than young adults and larger muscles.
Collapse
Affiliation(s)
- Xiao J. Liu
- College of Art, Beijing Sport University, Beijing, China
| | - Sha Ge
- College of Sports Science, Tianjin Normal University, Tianjin, China
| | - Alberto Cordova
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zayd Yaghi
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Bo Y. Jiang
- School of Public Health, Jilin Medical University, Jilin, China
| | - Guang H. Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Wan X. Yao
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Möck S, Hartmann R, Wirth K. Vertical jumping performance relates to the one-repetition maximum in the standing calf raise and in the squat. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2022. [DOI: 10.1007/s12662-022-00852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kunz HE, Michie KL, Gries KJ, Zhang X, Ryan ZC, Lanza IR. A Randomized Trial of the Effects of Dietary n3-PUFAs on Skeletal Muscle Function and Acute Exercise Response in Healthy Older Adults. Nutrients 2022; 14:nu14173537. [PMID: 36079794 PMCID: PMC9459748 DOI: 10.3390/nu14173537] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is critical for maintaining mobility, independence, and metabolic health in older adults. However, a common feature of aging is the progressive loss of skeletal muscle mass and function, which is often accompanied by mitochondrial impairments, oxidative stress, and insulin resistance. Exercise improves muscle strength, mitochondrial health, and cardiorespiratory fitness, but older adults often exhibit attenuated anabolic responses to acute exercise. Chronic inflammation associated with aging may contribute to this "anabolic resistance" and therapeutic interventions that target inflammation may improve exercise responsiveness. To this end, we conducted a randomized controlled trial to determine the effect of 6 months of dietary omega-3 polyunsaturated fatty acids (n3-PUFA) supplementation on skeletal muscle function (mass, strength), mitochondrial physiology (respiration, ATP production, ROS generation), and acute exercise responsiveness at the level of the muscle (fractional synthesis rate) and the whole-body (amino acid kinetics) in healthy older adults. When compared with a corn oil placebo (n = 33; 71.5 ± 4.8 years), older adults treated with 4 g/day n3-PUFA (n = 30; 71.4 ± 4.5 years) exhibited modest but significant increases in muscle strength (3.1 ± 14.7% increase in placebo vs. 7.5 ± 14.1% increase in n3-PUFA; p = 0.039). These improvements in muscle strength with n3-PUFA supplementation occurred in the absence of any effects on mitochondrial function and a minor attenuation of the acute response to exercise compared to placebo. Together, these data suggest modest benefits of dietary n3-PUFAs to muscle function in healthy older adults. Future studies may elucidate whether n3-PUFA supplementation improves the exercise response in elderly individuals with co-morbidities, such as chronic inflammatory disease or sarcopenia.
Collapse
Affiliation(s)
- Hawley E. Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kelly L. Michie
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin J. Gries
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Therapy, School of Health Professions, Concordia University of Wisconsin, Mequon, WI 53097, USA
| | - Xiaoyan Zhang
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Geriatrics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zachary C. Ryan
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian R. Lanza
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
9
|
Wirth K, Keiner M, Fuhrmann S, Nimmerichter A, Haff GG. Strength Training in Swimming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095369. [PMID: 35564764 PMCID: PMC9100337 DOI: 10.3390/ijerph19095369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
This narrative review deals with the topic of strength training in swimming, which has been a controversial issue for decades. It is not only about the importance for the performance at start, turn and swim speed, but also about the question of how to design a strength training program. Different approaches are discussed in the literature, with two aspects in the foreground. On the one hand is the discussion about the optimal intensity in strength training and, on the other hand, is the question of how specific strength training should be designed. In addition to a summary of the current state of research regarding the importance of strength training for swimming, the article shows which physiological adaptations should be achieved in order to be able to increase performance in the long term. Furthermore, an attempt is made to explain why some training contents seem to be rather unsuitable when it comes to increasing strength as a basis for higher performance in the start, turn and clean swimming. Practical training consequences are then derived from this. Regardless of the athlete's performance development, preventive aspects should also be considered in the discussion. The article provides a critical overview of the abovementioned key issues. The most important points when designing a strength training program for swimming are a sufficiently high-load intensity to increase maximum strength, which in turn is the basis for power, year-round strength training, parallel to swim training and working on the transfer of acquired strength skills in swim training, and not through supposedly specific strength training exercises on land or in the water.
Collapse
Affiliation(s)
- Klaus Wirth
- Faculty of Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, Austria;
- Correspondence:
| | - Michael Keiner
- Department of Sport Science, University of Health and Sports, 85737 Ismaning, Germany;
| | - Stefan Fuhrmann
- Olympic Training and Testing Centre Hamburg/Schleswig-Holstein, 22049 Hamburg, Germany;
| | - Alfred Nimmerichter
- Faculty of Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, Austria;
| | - G. Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
| |
Collapse
|
10
|
Measuring Muscle Activity in Sprinters Using T2-Weighted Magnetic Resonance Imaging. Int J Sports Physiol Perform 2022; 17:774-779. [PMID: 35235903 DOI: 10.1123/ijspp.2021-0327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to investigate the level of muscle activity during sprint running using T2-weighted magnetic resonance imaging. METHODS Fourteen male sprinters (age 21.2 [4.0] y; height 171.8 [4.2] cm, weight 65.5 [5.3] kg, 100-m personal record 11.01 [0.41] s; mean [SD]) performed 3 sets of three 60-m round-trip sprints. Before and after the round-trip sprints, 3 T magnetic resonance imaging scans were performed to obtain the T2 values of the 14 athletes' lower-extremity muscles. RESULTS After the 60-m round-trip sprints, the T2 value of the gluteus maximus, long head of biceps femoris, semitendinosus, semimembranosus, adductor brevis, adductor longus, adductor magnus, and gracilis increased significantly. The rate of change in the T2 values before and after the 60-m round-trip sprints was notably higher in the semitendinosus and gluteus maximus than in the other muscles. CONCLUSIONS These findings demonstrate the specific physiological metabolism of the lower-extremity muscles during fast sprinting. There are particularly high levels of muscle activity in the gluteus maximus and semitendinosus during sprint performance.
Collapse
|
11
|
Elgueta-Cancino E, Evans E, Martinez-Valdes E, Falla D. The Effect of Resistance Training on Motor Unit Firing Properties: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:817631. [PMID: 35295567 PMCID: PMC8918924 DOI: 10.3389/fphys.2022.817631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
While neural changes are thought to be responsible for early increases in strength following resistance training (RT), the exact changes in motor unit (MU) firing properties remain unclear. This review aims to synthesize the available evidence on the effect of RT on MU firing properties. MEDLINE (OVID interface), EMBASE (OVID interface), Web of Science (all databases), Cochrane Library, EBSCO CINAHL Plus, PubMed, and EBSCO SportDiscus were searched from inception until June 2021. Randomized controlled trials and non-randomized studies of interventions that compared RT to no intervention (control) were included. Two reviewers independently extracted data from each trial, assessed the risk of bias and rated the cumulative quality of evidence. Motor unit discharge rate (MUDR), motor unit recruitment threshold (MURT), motor unit discharge rate variability (MUDRV), MU discharge rate at recruitment vs. recruitment threshold relationship, and MU discharge rate vs. recruitment threshold relationship were assessed. Seven trials including 167 participants met the inclusion criteria. Meta-analysis (four studies) revealed that MUDR did not change significantly (P = 0.43), but with considerable heterogeneity likely to be present (I 2 = 91). Low to moderate evidence supports changes in MUDRV, MUDR at recruitment vs. recruitment threshold relationship, and the MUDR vs. recruitment threshold relationship. Overall, this systematic review revealed that there is a lack of high-quality evidence for the effect of RT on MU firing properties. Heterogeneity across studies undermines the quality of the evidence for multiple outcomes and affects the conclusions that can be drawn.
Collapse
Affiliation(s)
| | | | | | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Casolo A, Del Vecchio A, Balshaw TG, Maeo S, Lanza MB, Felici F, Folland JP, Farina D. Behavior of motor units during submaximal isometric contractions in chronically strength-trained individuals. J Appl Physiol (1985) 2021; 131:1584-1598. [PMID: 34617822 DOI: 10.1152/japplphysiol.00192.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural and morphological adaptations combine to underpin the enhanced muscle strength following prolonged exposure to strength training, although their relative importance remains unclear. We investigated the contribution of motor unit (MU) behavior and muscle size to submaximal force production in chronically strength-trained athletes (ST) versus untrained controls (UT). Sixteen ST (age: 22.9 ± 3.5 yr; training experience: 5.9 ± 3.5 yr) and 14 UT (age: 20.4 ± 2.3 yr) performed maximal voluntary isometric force (MViF) and ramp contractions (at 15%, 35%, 50%, and 70% MViF) with elbow flexors, whilst high-density surface electromyography (HDsEMG) was recorded from the biceps brachii (BB). Recruitment thresholds (RTs) and discharge rates (DRs) of MUs identified from the submaximal contractions were assessed. The neural drive-to-muscle gain was estimated from the relation between changes in force (ΔFORCE, i.e. muscle output) relative to changes in MU DR (ΔDR, i.e. neural input). BB maximum anatomical cross-sectional area (ACSAMAX) was also assessed by MRI. MViF (+64.8% vs. UT, P < 0.001) and BB ACSAMAX (+71.9%, P < 0.001) were higher in ST. Absolute MU RT was higher in ST (+62.6%, P < 0.001), but occurred at similar normalized forces. MU DR did not differ between groups at the same normalized forces. The absolute slope of the ΔFORCE - ΔDR relationship was higher in ST (+66.9%, P = 0.002), whereas it did not differ for normalized values. We observed similar MU behavior between ST athletes and UT controls. The greater absolute force-generating capacity of ST for the same neural input demonstrates that morphological, rather than neural, factors are the predominant mechanism for their enhanced force generation during submaximal efforts.NEW & NOTEWORTHY In this study, we observed that recruitment strategies and discharge characteristics of large populations of motor units identified from biceps brachii of strength-trained athletes were similar to those observed in untrained individuals during submaximal force tasks. We also found that for the same neural input, strength-trained athletes are able to produce greater absolute muscle forces (i.e., neural drive-to-muscle gain). This demonstrates that morphological factors are the predominant mechanism for the enhanced force generation during submaximal efforts.
Collapse
Affiliation(s)
- Andrea Casolo
- Department of Bioengineering, Imperial College London, London, United Kingdom.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas G Balshaw
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Sumiaki Maeo
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,College of Sport and Health Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Marcel Bahia Lanza
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, Maryland
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Kim Y, Hwang S, Sharp SJ, Luo S, Au Yeung SL, Teerlink CC. Genetic Risk, Muscle Strength, and Incident Stroke: Findings From the UK Biobank Study. Mayo Clin Proc 2021; 96:1746-1757. [PMID: 34218855 DOI: 10.1016/j.mayocp.2021.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To examine the associations of muscle strength and genetic risk for stroke with stroke incidence. PARTICIPANTS AND METHODS We included 284,767 white British participants of UK Biobank without genetic relatedness and stroke or myocardial infarction at baseline between March 13, 2006, and October 1, 2010. Genetic risk was assessed with polygenic risk scores, calculated by summing the risk-increasing alleles, weighted by the effect estimates. Muscle strength was assessed through grip strength tests by hand dynamometers. Incidence of overall (n= 4008), ischemic (n= 3031), and hemorrhagic (n=1073) stroke was adjudicated during 11.5-year follow-up. RESULTS Compared with the bottom muscle strength tertile, hazard ratios (95% CI) of stroke were 0.81 (0.75 to 0.87) and 0.76 (0.71 to 0.82) for the middle and top muscle strength tertiles, respectively, after adjustment for confounders and genetic risk; higher genetic risk was independently associated with higher stroke incidence. Stroke hazards for the top muscle strength tertile were consistently lower across genetic risk strata, with no evidence of interaction. Compared with individuals with high muscle strength and low genetic risk, stroke hazards were higher for individuals who had medium or high genetic risk combined with low or medium muscle strength but not for those who had medium genetic risk but high muscle strength. Associations were similar for ischemic and hemorrhagic stroke (although CIs were inconclusive for some of the associations). CONCLUSION Higher muscle strength was associated with lower stroke incidence in all individuals, including those with high genetic susceptibility. The increased genetic risk of overall and ischemic stroke was partly attenuated through increased muscle strength.
Collapse
Affiliation(s)
- Youngwon Kim
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.
| | - Semi Hwang
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
| | - Stephen J Sharp
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Shan Luo
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
| | - Shiu Lun Au Yeung
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
| | - Craig C Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| |
Collapse
|
14
|
Shih Y, Fisher BE, Kutch JJ, Powers CM. Corticomotor excitability of gluteus maximus and hip extensor strength: The influence of sex. Hum Mov Sci 2021; 78:102830. [PMID: 34130254 DOI: 10.1016/j.humov.2021.102830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To compare hip extensor strength and corticomotor excitability (CME) of gluteus maximus (GM) between males and females. A secondary purpose was to determine if CME of GM is predictive of hip extensor strength. METHOD Thirty-two healthy individuals participated (15 males and 17 females). CME of GM was assessed using the input-output curve (IOC) procedure acquired from transcranial magnetic stimulation (average slope). Hip extensor strength was measured by a dynamometer during a maximal voluntary isometric contraction. Independent t-tests were used to compare CME of GM and peak hip extensor torque between males and females. Linear regression analysis was used to determine whether peak hip extensor torque was predicted by CME of GM. RESULT Compared to males, females demonstrate lower peak hip extensor torque (4.42 ± 1.11 vs. 6.15 ± 1.72 Nm/kg/m2, p < 0.01) and lower CME of GM (1.36 ± 1.07 vs. 2.67 ± 1.30, p < 0.01). CME of GM was a significant predictor of peak hip extensor torque for males and females combined (r2 = 0.36, p < 0.001). CONCLUSION Our findings support the premise that corticomotor excitability plays a role in the ability of a muscle to generate torque.
Collapse
Affiliation(s)
- Yo Shih
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States of America; Department of Physical Therapy, University of Nevada, Las Vegas, NV, United States of America
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Jason J Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Christopher M Powers
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States of America.
| |
Collapse
|
15
|
James E, Nichols S, Goodall S, Hicks KM, O'Doherty AF. The influence of resistance training on neuromuscular function in middle-aged and older adults: A systematic review and meta-analysis of randomised controlled trials. Exp Gerontol 2021; 149:111320. [PMID: 33774145 DOI: 10.1016/j.exger.2021.111320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Deterioration of neuromuscular function is a major mechanism of age-related strength loss. Resistance training (RT) improves muscle strength and mass. However, the effects of RT on neuromuscular adaptations in middle-aged and older adults are unclear. METHODS Randomised controlled RT interventions (≥2 weeks) involving adults aged ≥50 years were identified. Primary outcome measures were voluntary activation (VA), electromyographic (EMG) activity during maximal voluntary contraction (MVC), and antagonist coactivation. Data were pooled using a weighted random-effect model. Sub-analyses were conducted by muscle or muscle group and health status of participants. Sensitivity analysis was based on study quality. P < 0.05 indicated statistical significance. RESULTS Twenty-seven studies were included. An effect was found for VA (standardised mean difference [SMD] 0.54, 0.01 to 1.07, P = 0.04), This result remained significant following sensitivity analysis involving only studies that were low risk of bias. Subgroup analyses showed an effect for plantar flexor VA (SMD 1.13, 0.20 to 2.06, P = 0.02) and VA in healthy participants (SMD 1.04, 0.32 to 1.76, P = 0.004). There was no effect for EMG activity or antagonist coactivation of any muscle group (P > 0.05). DISCUSSION Resistance training did not alter EMG activity or antagonist coactivation in older adults. Sensitivity analysis resulted in the effect for VA remaining significant, indicating that this finding was not dependent on study quality. Studies predominantly involved healthy older adults (78%), limiting the generalisability of these findings to clinical cohorts. Future research should determine the effects of RT on neuromuscular function in people with sarcopenia and age-related syndromes.
Collapse
Affiliation(s)
- Emily James
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom.
| | - Simon Nichols
- Sport and Physical Activity Research Group, Sheffield Hallam University, Sheffield, United Kingdom; Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| | - Kirsty M Hicks
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| | - Alasdair F O'Doherty
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| |
Collapse
|
16
|
Hortobágyi T, Granacher U, Fernandez-Del-Olmo M, Howatson G, Manca A, Deriu F, Taube W, Gruber M, Márquez G, Lundbye-Jensen J, Colomer-Poveda D. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci Biobehav Rev 2020; 122:79-91. [PMID: 33383071 DOI: 10.1016/j.neubiorev.2020.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/13/2023]
Abstract
Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical CenterGroningen, Groningen, Netherlands.
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Miguel Fernandez-Del-Olmo
- Area of Sport Sciences, Faculty of Sports Sciences and Physical Education, Center for Sport Studies, King Juan Carlos University, Madrid, Spain
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK; Water Research Group, North West University, Potchefstroom, South Africa
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports Department of Neuroscience, University of Copenhagenk, Faculty of Health Science, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
17
|
Nishikawa Y, Watanabe K, Takahashi T, Maeda N, Maruyama H, Kimura H. The effect of electrical muscle stimulation on quadriceps muscle strength and activation patterns in healthy young adults. Eur J Sport Sci 2020; 21:1414-1422. [PMID: 33059519 DOI: 10.1080/17461391.2020.1838617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe aim of the present study was to clarify the effect of electrical muscle stimulation (EMS) on the spatial distribution pattern of electromyographic activity in healthy young adults using multi-channel surface electromyography (SEMG). A total of 32 men (age = 21-26 years) were randomly assigned to the intervention group (n = 18) and control group (n = 14). Participants in the intervention group performed EMS to stimulate the bilateral lower limb muscle for four weeks (20 min/3 days/week). The control group received no EMS intervention. To understand the effects of EMS, the following measurements were made at baseline and four weeks: knee extension torque, muscle mass, and spatial distribution of neuromuscular activation during a target torques [10%, 30%, 50%, and 70% of the maximal voluntary contraction (MVC)] using multi-channel SEMG. The knee extension torque was significantly increased in intervention group compared with control group (p < 0.0001). However, the muscle mass did not show a significant difference between pre and post intervention in each group. The muscle activation patterns of 50% and 70% MVC task showed significant enhancement between baseline and four weeks in the intervention group. Furthermore, a moderate correlation between Δ knee extension torque and Δ spatial distribution pattern of electromyographic activity of 50% and 70% MVC in the intervention group was observed. These results suggested EMS intervention induced different distribution of muscle activity at high-intensity muscle contraction compared with low-intensity muscle contraction.
Collapse
Affiliation(s)
- Yuichi Nishikawa
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan.,Faculty of Frontier Engineering, Institute of Science & Engineering, Kanazawa University, Kanazawa-shi, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies, Chukyo University, Nagoya-shi, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noriaki Maeda
- Division of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroaki Kimura
- Department of Rehabilitation Medicine, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
18
|
Akagi R, Sato S, Hirata N, Imaizumi N, Tanimoto H, Ando R, Ema R, Hirata K. Eight-Week Low-Intensity Squat Training at Slow Speed Simultaneously Improves Knee and Hip Flexion and Extension Strength. Front Physiol 2020; 11:893. [PMID: 32848848 PMCID: PMC7396687 DOI: 10.3389/fphys.2020.00893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022] Open
Abstract
Considering that the squat exercise requires flexion and extension of the knee and hip joints, a resistance training program based on squat exercises should efficiently increase the flexion and extension strength of both the knee and hip. To our knowledge, however, no study has simultaneously investigated the effects of squat training on both flexion and extension strength in both the knee and hip. Low-intensity squat exercises at slow speeds can be expected to effectively and safely improve knee and hip flexion and extension strength in a wide range of individuals. This study aimed to clarify whether knee and hip flexion and extension strength improved after an 8-week low-intensity squat training program at slow speed. Twenty-four untrained young men were randomly assigned to a training or control group. Participants in the training group performed 40% one-repetition maximum parallel squats at slow speed (4 s for concentric/eccentric actions), 3 days per week for 8 weeks. Before and after the intervention, isometric peak torque of the knee and hip flexors and extensors during maximal voluntary contraction (MVC) was determined. For the knee flexors and extensors, muscle volume was also measured. There were significant training-induced increases in peak torque (P < 0.05). The training effects on knee and hip extension torque (effect size = 0.36-0.38) were higher than those on knee and hip flexion torque (effect size = 0.09-0.13). The squat training used here increased both knee and hip flexion and extension strength, but the training effects on the flexion strength were less than those on the extension strength. Regarding the knee extensors, a significant training-related increase in muscle volume was found (P < 0.05) without neuromuscular adaptations. In addition, there were significant correlations between the training-induced increases in muscle volume and peak torque of KE. These results suggest that muscle hypertrophy may be responsible for increased muscle strength of the knee extensors after an 8-week low-intensity squat training program at slow speed.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Shinya Sato
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Naoya Hirata
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Naoto Imaizumi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Hiroki Tanimoto
- Graduate School of Health Management, Keio University, Fujisawa, Japan
| | - Ryosuke Ando
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Ryoichi Ema
- School of Management, Shizuoka Sangyo University, Iwata, Japan
| | - Kosuke Hirata
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Research Fellow of Japanese Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
19
|
Cortical, Corticospinal, and Reticulospinal Contributions to Strength Training. J Neurosci 2020; 40:5820-5832. [PMID: 32601242 PMCID: PMC7380966 DOI: 10.1523/jneurosci.1923-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 11/23/2022] Open
Abstract
Following a program of resistance training, there are neural and muscular contributions to the gain in strength. Here, we measured changes in important central motor pathways during strength training in 2 female macaque monkeys. Animals were trained to pull a handle with one arm; weights could be added to increase load. On each day, motor-evoked potentials in upper limb muscles were first measured after stimulation of the primary motor cortex (M1), corticospinal tract (CST), and reticulospinal tract (RST). Monkeys then completed 50 trials with weights progressively increased over 8-9 weeks (final weight ∼6 kg, close to the animal's body weight). Muscle responses to M1 and RST stimulation increased during strength training; there were no increases in CST responses. Changes persisted during a 2 week washout period without weights. After a further 3 months of strength training, an experiment under anesthesia mapped potential responses to CST and RST stimulation in the cervical enlargement of the spinal cord. We distinguished the early axonal volley and later spinal synaptic field potentials, and used the slope of the relationship between these at different stimulus intensities as a measure of spinal input-output gain. Spinal gain was increased on the trained compared with the untrained side of the cord within the intermediate zone and motor nuclei for RST, but not CST, stimulation. We conclude that neural adaptations to strength training involve adaptations in the RST, as well as intracortical circuits within M1. By contrast, there appears to be little contribution from the CST. SIGNIFICANCE STATEMENT We provide the first report of a strength training intervention in nonhuman primates. Our results indicate that strength training is associated with neural adaptations in intracortical and reticulospinal circuits, whereas corticospinal and motoneuronal adaptations are not dominant factors.
Collapse
|
20
|
Ando R, Ohya T, Kusanagi K, Koizumi J, Ohnuma H, Katayama K, Suzuki Y. Effect of inspiratory resistive training on diaphragm shear modulus and accessory inspiratory muscle activation. Appl Physiol Nutr Metab 2020; 45:851-856. [PMID: 32049562 DOI: 10.1139/apnm-2019-0906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to elucidate changes in diaphragm and accessory inspiratory muscle (sternocleidomastoid (SCM) muscle and intercostal muscle (IC)) function after a 6-week training program. Nineteen male elite collegiate swimmers were assigned to either a control group (n = 9) or training group (n = 10). The subjects in the training group performed 30 maximum inspirations at a load resistance of 50% of maximum inspiratory mouth pressure (PImax) using an inspiratory muscle training device. These were conducted twice per day and 6 days per week. At baseline and after 6 weeks, PImax, shear modulus of the diaphragm, and electromyograms (EMG) of the SCM and IC during a maximal inspiratory maneuver were evaluated. Relative change in PImax was greater in the training group than in controls. The shear modulus during a PImax maneuver had increased significantly in both groups after 6 weeks. EMG amplitudes of the SCM increased in the training group after 6 weeks, but not in the control group. EMG amplitudes of the IC did not change after 6 weeks in either group. These results suggest that 6-week inspiratory resistive training significantly improves the activation of the SCM, which could be one of the major mechanisms behind increases in inspiratory muscle strength after resistive training. Novelty Six-week inspiratory resistive training increased diaphragm stiffness during maximal inspiration maneuver. Six-week inspiratory resistive training increased electromyogram amplitudes of the sternocleidomastoid during maximal inspiration maneuver.
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sports Research, Japan Institute of Sports Sciences, 3-15-1, Nishigaoka, Kita-ku, Tokyo, 115-0056, Japan
| | - Toshiyuki Ohya
- School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| | - Kenta Kusanagi
- School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| | - Jun Koizumi
- School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| | - Hayato Ohnuma
- Department of Sports Research, Japan Institute of Sports Sciences, 3-15-1, Nishigaoka, Kita-ku, Tokyo, 115-0056, Japan.,Faculty of Education, Kansai University of Social Welfare, Hyogo, Japan
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Yasuhiro Suzuki
- Department of Sports Research, Japan Institute of Sports Sciences, 3-15-1, Nishigaoka, Kita-ku, Tokyo, 115-0056, Japan
| |
Collapse
|
21
|
VERY SHORT-TERM HIGH-INTENSITY INTERVAL TRAINING IN HIGH SCHOOL SOCCER PLAYERS. JOURNAL OF MEN'S HEALTH 2020. [DOI: 10.15586/jomh.v16i2.211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
22
|
Colomer-Poveda D, Romero-Arenas S, Lundbye-Jensen J, Hortobágyi T, Márquez G. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men. J Appl Physiol (1985) 2019; 127:1128-1139. [PMID: 31436513 DOI: 10.1152/japplphysiol.01106.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the effects of acute resistance training (RT) intensity on motor-evoked potentials (MEPs) generated by transcranial magnetic brain stimulation and on cervicomedullary motor-evoked potentials (CMEPs) produced by electrical stimulation of the corticospinal tract. In four experimental sessions, 14 healthy young men performed 12 sets of eight isometric contractions of the elbow flexors at 0 (Control session), 25, 50, and 75% of the maximal voluntary contraction (MVC). Before and after each session, MEPs, CMEPs, and the associated twitch forces were recorded at rest. MEPs increased by 39% (P < 0.05 versus 25% in the control condition, Effect size (ES) = 1.04 and 1.76, respectively) after the 50% session and by 70% (P < 0.05 vs. all other conditions, ES = 0.91-2.49) after the 75% session. In contrast, CMEPs increased similarly after the 25%, 50%, and 75% sessions with an overall increase of 27% (P < 0.05 vs. control condition, ES = 1.34). The amplitude of maximal compound muscle action potentials (Mmax) was unchanged during the experiment. The MEP- and CMEP-associated twitch forces also increased after RT, but training intensity affected only the increases in MEP twitch forces. The data tentatively suggest that the intensity of muscle contraction used in acute bouts of RT affects cortical excitability.NEW & NOTEWORTHY Resistance training (RT) can acutely increase the efficacy of the corticospinal-motoneuronal synapse, motoneuron excitability and motor cortical excitability. We show that motor-evoked potential generated by transcranial magnetic stimulation but not cervicomedullary electrical stimulation increased in proportion to the intensity of training used during a single session of RT. The data suggest that the intensity of muscle contraction used in acute bouts of RT affects cortical excitability.
Collapse
Affiliation(s)
- David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Salvador Romero-Arenas
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
23
|
A preliminary investigation of mechanisms by which short-term resistance training increases strength of partially paralysed muscles in people with spinal cord injury. Spinal Cord 2019; 57:770-777. [PMID: 31092897 DOI: 10.1038/s41393-019-0284-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Pretest-posttest design. OBJECTIVES To investigate mechanisms by which short-term resistance training (6 weeks) increases strength of partially paralysed muscles in people with spinal cord injury (SCI). SETTING Community-based setting, Sydney, Australia. PARTICIPANTS Ten community-dwelling people with partial paralysis of elbow flexor, elbow extensor, knee flexor or knee extensor muscles following SCI (range 5 months to 14 years since injury). METHODS Muscle architecture and strength were assessed before and after participants underwent a six week strength-training program targeting one partially paralysed muscle group. The outcome of primary interest was physiological cross sectional area (PCSA) of the trained muscle group measured using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Other outcomes were changes in mean muscle fascicle length, muscle volume, pennation angle, isometric strength and muscle strength graded on a 13-point scale. RESULTS The mean increase in maximal isometric muscle strength was 14% (95% CI, -3 to 30%) and 1.5 points (95% CI, 0.5 to 2.5) on the 13-point manual muscle test. There was no evidence of a change in muscle architecture. CONCLUSION This study is the first to examine the mechanisms by which voluntary strength training increases strength of partially paralysed muscles in people with SCI. The data suggest that strength gains produced by six weeks of strength training are not caused by changes in muscle architecture. This suggests short-term strength gains are due to increased neural drive or an increase in specific muscle tension.
Collapse
|
24
|
Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 2019; 597:1873-1887. [PMID: 30727028 DOI: 10.1113/jp277250] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Previous studies have indicated that several weeks of strength training is sufficient to elicit significant adaptations in the neural drive sent to the muscles. There are few data, however, on the changes elicited by strength training in the recruitment and rate coding of motor units during voluntary contractions. We show for the first time that the discharge characteristics of motor units in the tibialis anterior muscle tracked across the intervention are changed by 4 weeks of strength training with isometric voluntary contractions. The specific adaptations included significant increases in motor unit discharge rate, decreases in the recruitment-threshold force of motor units and a similar input-output gain of the motor neurons. The findings suggest that the adaptations in motor unit function may be attributable to changes in synaptic input to the motor neuron pool or to adaptations in intrinsic motor neuron properties. ABSTRACT The strength of a muscle typically begins to increase after only a few sessions of strength training. This increase is usually attributed to changes in the neural drive to muscle as a result of adaptations at the cortical or spinal level. We investigated the change in the discharge characteristics of large populations of longitudinally tracked motor units in tibialis anterior before and after 4 weeks of strength training the ankle-dorsiflexor muscles with isometric contractions. The adaptations exhibited by 14 individuals were compared with 14 control subjects. High-density electromyogram grids with 128 electrodes recorded the myoelectric activity during isometric ramp contractions to the target forces of 35%, 50% and 70% of maximal voluntary force. The motor unit recruitment and derecruitment thresholds, discharge rate, interspike intervals and estimates of synaptic inputs to motor neurons were assessed. The normalized recruitment-threshold forces of the motor units were decreased after strength training (P < 0.05). Moreover, discharge rate increased by 3.3 ± 2.5 pps (average across subjects and motor units) during the plateau phase of the submaximal isometric contractions (P < 0.001). Discharge rates at recruitment and derecruitment were not modified by training (P < 0.05). The association between force and motor unit discharge rate during the ramp-phase of the contractions was also not altered by training (P < 0.05). These results demonstrate for the first time that the increase in muscle force after 4 weeks of strength training is the result of an increase in motor neuron output from the spinal cord to the muscle.
Collapse
Affiliation(s)
- Alessandro Del Vecchio
- Department of Bioengineering, Imperial College London, London, UK.,Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Andrea Casolo
- Department of Bioengineering, Imperial College London, London, UK.,Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Scorcelletti
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Ilenia Bazzucchi
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Roger Enoka
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
25
|
Zinke F, Warnke T, Gäbler M, Granacher U. Effects of Isokinetic Training on Trunk Muscle Fitness and Body Composition in World-Class Canoe Sprinters. Front Physiol 2019; 10:21. [PMID: 30745878 PMCID: PMC6360172 DOI: 10.3389/fphys.2019.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
In canoe sprint, the trunk muscles play an important role in stabilizing the body in an unstable environment (boat) and in generating forces that are transmitted through the shoulders and arms to the paddle for propulsion of the boat. Isokinetic training is well suited for sports in which propulsion is generated through water resistance due to similarities in the resistive mode. Thus, the purpose of this study was to determine the effects of isokinetic training in addition to regular sport-specific training on trunk muscular fitness and body composition in world-class canoeists and to evaluate associations between trunk muscular fitness and canoe-specific performance. Nine world-class canoeists (age: 25.6 ± 3.3 years; three females; four world champions; three Olympic gold medalists) participated in an 8-week progressive isokinetic training with a 6-week block "muscle hypertrophy" and a 2-week block "muscle power." Pre- and post-tests included the assessment of peak isokinetic torque at different velocities in concentric (30 and 140°s-1) and eccentric (30 and 90°s-1) mode, trunk muscle endurance, and body composition (e.g., body fat, segmental lean mass). Additionally, peak paddle force was assessed in the flume at a water current of 3.4 m/s. Significant pre-to-post increases were found for peak torque of the trunk rotators at 30°s-1 (p = 0.047; d = 0.4) and 140°s-1 (p = 0.014; d = 0.7) in concentric mode. No significant pre-to-post changes were detected for eccentric trunk rotator torque, trunk muscle endurance, and body composition (p > 0.148). Significant medium-to-large correlations were observed between concentric trunk rotator torque but not trunk muscle endurance and peak paddle force, irrespective of the isokinetic movement velocity (all r ≥ 0.886; p ≤ 0.008). Isokinetic trunk rotator training is effective in improving concentric trunk rotator strength in world-class canoe sprinters. It is recommended to progressively increase angular velocity from 30°s-1 to 140°s-1 over the course of the training period.
Collapse
Affiliation(s)
- Fridolin Zinke
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Torsten Warnke
- Institute for Applied Training Science, Leipzig, Germany
| | - Martijn Gäbler
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
26
|
Paravlic AH, Slimani M, Tod D, Marusic U, Milanovic Z, Pisot R. Effects and Dose-Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis. Sports Med 2018. [PMID: 29541965 DOI: 10.1007/s40279-018-0874-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Motor imagery (MI), a mental simulation of a movement without overt muscle contraction, has been largely used to improve general motor tasks. However, the effects of MI practice on maximal voluntary strength (MVS) remain equivocal. OBJECTIVES The aims of this meta-analysis were to (1) estimate whether MI practice intervention can meaningfully improve MVS in healthy adults; (2) compare the effects of MI practice on MVS with its combination with physical practice (MI-C), and with physical practice (PP) training alone; and (3) investigate the dose-response relationships of MI practice. DATA SOURCES AND STUDY ELIGIBILITY Seven electronic databases were searched up to April 2017. Initially 717 studies were identified; however, after evaluation of the study characteristics, data from 13 articles involving 370 participants were extracted. The meta-analysis was completed on MVS as the primary parameter. In addition, parameters associated with training volume, training intensity, and time spent training were used to investigate dose-response relationships. RESULTS MI practice moderately improved MVS. When compared to conventional PP, effects were of small benefit in favour of PP. MI-C when compared to PP showed unclear effects. MI practice produced moderate effects in both upper and lower extremities on MVS. The cortical representation area of the involved muscles did not modify the effects. Meta-regression analysis revealed that (a) a training period of 4 weeks, (b) a frequency of three times per week, (c) two to three sets per single session, (d) 25 repetitions per single set, and (e) single session duration of 15 min were associated with enhanced improvements in muscle strength following MI practice. Similar dose-response relationships were observed following MI and PP. CONCLUSIONS The present meta-analysis demonstrates that compared to a no-exercise control group of healthy adults, MI practice increases MVS, but less than PP. These findings suggest that MI practice could be considered as a substitute or additional training tool to preserve muscle function when athletes are not exposed to maximal training intensities.
Collapse
Affiliation(s)
- Armin H Paravlic
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Garibaldijeva 1, 6000, Koper, Slovenia.
| | - Maamer Slimani
- Research Laboratory "Sports Performance Optimization", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - David Tod
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Uros Marusic
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Garibaldijeva 1, 6000, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Zoran Milanovic
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Garibaldijeva 1, 6000, Koper, Slovenia.,Faculty of Sport and Physical Education, University of Niš, Čarnojevićeva 10a, Niš, 18000, Serbia
| | - Rado Pisot
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Garibaldijeva 1, 6000, Koper, Slovenia
| |
Collapse
|
27
|
Tsuchiya Y, Ueda H, Ochi E. Muscular recruitment is associated with muscular function and swelling following eccentric contractions of human elbow flexors. J Sports Med Phys Fitness 2018; 59:1097-1101. [PMID: 30411600 DOI: 10.23736/s0022-4707.18.09102-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study investigated the relationship between muscle fiber recruitment and the magnitude of muscle damage by isotonic eccentric contractions (ECCs). METHODS Ten healthy men (age: 27.2±6.0 y, height: 174. 0±5.3 cm, body mass 70.1±2.1 kg) were recruited in this study. Subjects performed 30 ECCs of the elbow flexors using a dumbbell adjusted to 40% and 80% one repetition maximum of each individual. The dependent variables maximal voluntary isometric contraction (MVC) torque, Range of Motion (ROM), delayed onset muscle soreness (DOMS), cross-sectional area (CSA) and transverse relaxation time (T2) of magnetic resonance imaging (MRI) were measured immediately before, immediately after and 1, 3, and 5 days after each exercise. RESULTS The decreased MVC and limited ROM were significantly greater for 80% than that 40% (P<0.05) at immediately after ECCs. However, no significant difference between 40% and 80% was found for DOMS. CSA at 5 days after ECCs was significantly higher 80% (P<0.05) than 40% (P<0.05). No significant changes in post T2 (acute T2) was found for 40%, but an increased acute T2 was observed in 80% (P<0.05). We found a significant correlation between the change in T2 at immediately after and MVC at immediately after (r=0.77, P<0.05). In addition, a significant correlation between the change in T2 at immediately after and change in CSA at 3 days after (r=-0.83, P<0.05) was found. CONCLUSIONS We conclude that the muscle strength loss and swelling following ECCs are related to the muscle fiber recruitment.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Faculty of Modern Life, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Uruidominami, Ichihara, Chiba, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Kajino, Koganei, Tokyo, Japan -
| |
Collapse
|
28
|
Byrd MT, Dinyer TK, Bergstrom HC. Sex Comparisons for Very Short-Term Dynamic Constant External Resistance Training. J Funct Morphol Kinesiol 2018; 3:jfmk3040050. [PMID: 33466979 PMCID: PMC7739250 DOI: 10.3390/jfmk3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022] Open
Abstract
This study compared sex responses for strength and barbell velocity from very short-term resistance training (VST, consisting of 2-3 training sessions) for an upper body dynamic constant external resistance (DCER) exercise (bench press [BP]). Ten females (mean ± standard deviation (SD) age: 21.3 ± 3 years, height: 166.2 ± 6 cm, body mass: 71.4 ± 10.7 kg) and 10 males (mean ± SD age: 24.6 ± 4 years, height: 179.5 ± 8 cm, body mass: 88.6 ± 11 kg) completed a pre-test visit to determine the BP 1 repetition maximum (1RM) as well as the mean (BPMV) and peak (BPPV) barbell velocities from the BP 1RM. The VST involved three training visits where the participants performed 5 sets of 6 repetitions, at 65% of the 1RM. The post-test followed the same procedures as the pre-test visit. There were significant increases in 1RM strength for both the males (5.1%) and females (5.4%) between pre-test and post-test. There were no significance differences between sex for mean (BPMV) and peak (BPPV); however, overall there was a 32.7% increase in BPMV and a 29.8% increase in BPPV. These findings indicated an increase in strength and barbell velocity for both males and females as a result of VST upper body DCER exercise in untrained subjects.
Collapse
|
29
|
Vannebo KT, Iversen VM, Fimland MS, Mork PJ. Test-retest reliability of a handheld dynamometer for measurement of isometric cervical muscle strength. J Back Musculoskelet Rehabil 2018. [PMID: 29526841 DOI: 10.3233/bmr-170829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND There is a lack of test-retest reliability studies of measurements of cervical muscle strength, taking into account gender and possible learning effects. OBJECTIVE To investigate test-retest reliability of measurement of maximal isometric cervical muscle strength by handheld dynamometry. METHODS Thirty women (age 20-58 years) and 28 men (age 20-60 years) participated in the study. Maximal isometric strength (neck flexion, neck extension, and right/left lateral flexion) was measured on three separate days at least five days apart by one evaluator. RESULTS Intra-rater consistency tended to improve from day 1-2 measurements to day 2-3 measurements in both women and men. In women, the intra-class correlation coefficients (ICC) for day 2 to day 3 measurements were 0.91 (95% confidence interval [CI], 0.82-0.95) for neck flexion, 0.88 (95% CI, 0.76-0.94) for neck extension, 0.84 (95% CI, 0.68-0.92) for right lateral flexion, and 0.89 (95% CI, 0.78-0.95) for left lateral flexion. The corresponding ICCs among men were 0.86 (95% CI, 0.72-0.93) for neck flexion, 0.93 (95% CI, 0.85-0.97) for neck extension, 0.82 (95% CI, 0.65-0.91) for right lateral flexion and 0.73 (95% CI, 0.50-0.87) for left lateral flexion. CONCLUSION This study describes a reliable and easy-to-administer test for assessing maximal isometric cervical muscle strength.
Collapse
Affiliation(s)
- Katrine Tranaas Vannebo
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vegard Moe Iversen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marius Steiro Fimland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Unicare Helsefort Rehabilitation Centre, Rissa, Norway
| | - Paul Jarle Mork
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
30
|
Barss TS, Klarner T, Pearcey GEP, Sun Y, Zehr EP. Time course of interlimb strength transfer after unilateral handgrip training. J Appl Physiol (1985) 2018; 125:1594-1608. [PMID: 30188797 DOI: 10.1152/japplphysiol.00390.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
"Cross-education" is the increase in strength or functional performance of an untrained limb after unilateral training. A major limitation for clinical translation from unilateral injury includes knowledge on the minimum time for the emergence of crossed effects. Therefore, the primary purpose was to characterize the time course of bilateral strength changes during both "traditional" ( n = 11) and "daily" ( n = 8) unilateral handgrip training in neurologically intact participants. Traditional training included five sets of five maximal voluntary handgrip contractions 3 times/wk for 6 wk whereas daily training included the same number of sessions and contractions but over 18 consecutive days. Three pre- and one posttest session evaluated strength, muscle activation, and reflex excitability bilaterally. Time course information was assessed by recording handgrip force for every contraction in the trained limb and from a single contraction on every third training session in the untrained limb. Six weeks of traditional training increased handgrip strength in the trained limb after the 9th session whereas the untrained limb was stronger after the 12th session. This was accompanied by increased peak muscle activation and bilateral alterations in Hoffmann reflex excitability. Daily training revealed a similar number of sessions (15) were required to induce significant strength gains in the untrained limb (7.8% compared with 12.5%) in approximately half the duration of traditional training. Therefore, minimizing rest days may improve the efficiency of unilateral training when the trained limb is not the focus. Establishing a "dose" for the time course of adaptation to strength training is paramount for effective translation to rehabilitative interventions. NEW & NOTEWORTHY Unilateral handgrip training using a "traditional" protocol (3 times/wk; 6 wk) increased strength bilaterally after 9 (trained arm) and 12 (untrained arm) sessions. "Daily" training (18 consecutive days) increased strength in the untrained limb in a similar number of training sessions, which was accomplished in approximately half the time. Within clinical populations when the focus is on the untrained limb, reducing rest days may optimize the recovery of strength.
Collapse
Affiliation(s)
- Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,School of Kinesiology, Lakehead University , Thunder Bay, Ontario , Canada
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria , Victoria, British Columbia , Canada
| |
Collapse
|
31
|
Kim Y, Jee H. Effects of Once-a-week Interval Training Based on Body Mass Index and Exercise Frequency. THE ASIAN JOURNAL OF KINESIOLOGY 2018. [DOI: 10.15758/ajk.2018.20.2.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Hoffman RM, Corr BB, Stuberg WA, Arpin DJ, Kurz MJ. Changes in lower extremity strength may be related to the walking speed improvements in children with cerebral palsy after gait training. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 73:14-20. [PMID: 29245044 DOI: 10.1016/j.ridd.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cerebral palsy (CP) has a high probability of resulting in lower extremity strength and walking deficits. Numerous studies have shown that gait training has the potential to improve the walking abilities of these children; however, the factors governing these improvements are unknown. AIMS This study aimed to evaluate the relationship between change in lower extremity strength, walking speed and endurance of children with CP following gait training. METHODS AND PROCEDURES Eleven children with CP (GMFCS levels=II-III) completed a gait training protocol three days a week for six weeks. Outcome measures included a 10m fast-as-possible walk test, 6min walking endurance test and lower extremity strength. OUTCOMES AND RESULTS The group results indicated there were improvements in walking speed, walking endurance and lower extremity strength. In addition, there was a positive correlation between percent change in lower extremity strength and walking speed and a negative correlation between the percent change in lower extremity strength and the child's age. CONCLUSIONS Our results imply that changes in lower extremity strength might be related to the degree of the walking speed changes seen after gait training. Younger children may be more likely to show improvements in lower extremity strength after gait training.
Collapse
Affiliation(s)
- Rashelle M Hoffman
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, USA
| | - Bradley B Corr
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, USA
| | - Wayne A Stuberg
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, USA
| | - David J Arpin
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, USA
| | - Max J Kurz
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, USA.
| |
Collapse
|
33
|
NUZZO JAMESL, BARRY BENJAMINK, JONES MATTHEWD, GANDEVIA SIMONC, TAYLOR JANETL. Effects of Four Weeks of Strength Training on the Corticomotoneuronal Pathway. Med Sci Sports Exerc 2017; 49:2286-2296. [DOI: 10.1249/mss.0000000000001367] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Wirth K, Hartmann H, Sander A, Mickel C, Szilvas E, Keiner M. The Impact of Back Squat and Leg-Press Exercises on Maximal Strength and Speed-Strength Parameters. J Strength Cond Res 2016; 30:1205-12. [PMID: 26439782 DOI: 10.1519/jsc.0000000000001228] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strength training-induced increases in speed strength seem indisputable. For trainers and athletes, the most efficient exercise selection in the phase of preparation is of interest. Therefore, this study determined how the selection of training exercise influences the development of speed strength and maximal strength during an 8-week training intervention. Seventy-eight students participated in this study (39 in the training group and 39 as controls). Both groups were divided into 2 subgroups. The first training group (squat training group [SQ]) completed an 8-week strength training protocol using the parallel squat. The second training group (leg-press training group [LP]) used the same training protocol using the leg press (45° leg press). The control group was divided in 2 subgroups as controls for the SQ or the LP. Two-factorial analyses of variance were performed using a repeated measures model for all group comparisons and comparisons between pretest and posttest results. The SQ exhibited a statistically significant (p ≤ 0.05) increase in jump performance in squat jump (SJ, 12.4%) and countermovement jump (CMJ, 12.0%). Whereas, the changes in the LP did not reach statistical significance and amounted to improvements in SJ of 3.5% and CMJ 0.5%. The differences between groups were statistically significant (p ≤ 0.05). There are also indications that the squat exercise is more effective to increase drop jump performance. Therefore, the squat exercise increased the performance in SJ, CMJ, and reactive strength index more effectively compared with the leg-press in a short-term intervention. Consequently, if the strength training aims at improving jump performance, the squat should be preferred because of the better transfer effects.
Collapse
Affiliation(s)
- Klaus Wirth
- 1Institute of Sport Science, Johann Wolfgang Goethe-University Frankfurt, Germany; 2University of Applied Sciences Wiener Neustadt, Austria; 3German Luge and Bobsled Federation, Germany; and 4Swimming Federation of the State Lower Saxony, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Lai S, Panarese A, Lawrence R, Boninger ML, Micera S, Ambrosio F. A Murine Model of Robotic Training to Evaluate Skeletal Muscle Recovery after Injury. Med Sci Sports Exerc 2016; 49:840-847. [PMID: 27875498 DOI: 10.1249/mss.0000000000001160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE In vivo studies have suggested that motor exercise can improve muscle regeneration after injury. Nevertheless, preclinical investigations still lack reliable tools to monitor motor performance over time and to deliver optimal training protocols to maximize force recovery. Here, we evaluated the utility of a murine robotic platform (i) to detect early impairment and longitudinal recovery after acute skeletal muscle injury and (ii) to administer varying intensity training protocols to enhance forelimb motor performance. METHODS A custom-designed robotic platform was used to train mice to perform a forelimb retraction task. After an acute injury to bilateral biceps brachii muscles, animals performed a daily training protocol in the platform at high (HL) or low (LL) loading levels over the course of 3 wk. Control animals were not trained (NT). Motor performance was assessed by quantifying force, time, submovement count, and number of movement attempts to accomplish the task. Myofiber number and cross-sectional area at the injury site were quantified histologically. RESULTS Two days after injury, significant differences in the time, submovement count, number of movement attempts, and exerted force were observed in all mice, as compared with baseline values. Interestingly, the recovery time of muscle force production differed significantly between intervention groups, with HL group showing a significantly accelerated recovery. Three weeks after injury, all groups showed motor performance comparable with baseline values. Accordingly, there were no differences in the number of myofibers or average cross-sectional area among groups after 3 wk. CONCLUSION Our findings demonstrate the utility of our custom-designed robotic device for the quantitative assessment of skeletal muscle function in preclinical murine studies. Moreover, we demonstrate that this device may be used to apply varying levels of resistance longitudinally as a means manipulate physiological muscle responses.
Collapse
Affiliation(s)
- Stefano Lai
- 1Scuola Superiore Sant'Anna, Translational Neural Engineering Area, The BioRobotics Institute, Pisa, ITALY; 2Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA; 3McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA; 4Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; 5Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA; and 6Ecole Polytechnique Federale de Lausanne (EPFL), Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, SWITZERLAND
| | | | | | | | | | | |
Collapse
|
36
|
Ullrich B, Pelzer T, Oliveira S, Pfeiffer M. Neuromuscular Responses to Short-Term Resistance Training With Traditional and Daily Undulating Periodization in Adolescent Elite Judoka. J Strength Cond Res 2016; 30:2083-99. [DOI: 10.1519/jsc.0000000000001305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Effects of Short-Term Dynamic Constant External Resistance Training and Subsequent Detraining on Strength of the Trained and Untrained Limbs: A Randomized Trial. Sports (Basel) 2016; 4:sports4010007. [PMID: 29910255 PMCID: PMC5968943 DOI: 10.3390/sports4010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
Short-term resistance training has been shown to increase isokinetic muscle strength and performance after only two to nine days of training. The purpose of this study was to examine the effects of three days of unilateral dynamic constant external resistance (DCER) training and detraining on the strength of the trained and untrained legs. Nineteen men were randomly assigned to a DCER training group or a non-training control group. Subjects visited the laboratory eight times, the first visit was a familiarization session, the second visit was a pre-training assessment, the subsequent three visits were for training sessions (if assigned to the training group), and the last three visits were post-training assessments 1, 2, and 3 (i.e., 48 h, 1 week, and 2 weeks after the final training session). Strength increased in both trained and untrained limbs from pre- to post-training assessment 1 for the training group and remained elevated at post-training assessments 2 and 3 (p ≤ 0.05). No changes were observed in the control (p > 0.05). Possible strength gains from short-term resistance training have important implications in clinical rehabilitation settings, sports injury prevention, as well as other allied health fields such as physical therapy, occupational therapy, and athletic training.
Collapse
|
38
|
Wakahara T, Ema R, Miyamoto N, Kawakami Y. Inter- and intramuscular differences in training-induced hypertrophy of the quadriceps femoris: association with muscle activation during the first training session. Clin Physiol Funct Imaging 2015; 37:405-412. [PMID: 26576937 DOI: 10.1111/cpf.12318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to examine whether inter- and intramuscular differences in hypertrophy induced by resistance training correspond to differences in muscle activation during the first training session. Eleven young men completed 12 weeks of training intervention for knee extension. Before and after the intervention, T1-weighted magnetic resonance (MR) images were recorded to determine the volume and anatomical cross-sectional area (CSA) along the length of the individual muscles of the quadriceps femoris. The T2-weighted MR images were also acquired before and immediately after the first training session. The T2 was calculated for each pixel within the quadriceps femoris, from which the muscle activation was evaluated as %activated volume and area. The results showed that the %activated volume after the first training session was significantly higher in the vastus intermedius than the vastus medialis. However, the relative change in muscle volume after the training intervention was significantly greater in the rectus femoris than the vasti muscles (vastus lateralis, intermedius and medialis). Within the rectus femoris, both the %activated area and relative increase in CSA were significantly greater in the distal region than the proximal region. In contrast, the %activated area and relative increase in CSA of the vasti were nearly uniform along each muscle. These results suggest that the muscle activation during the first training session is associated with the intramuscular difference in hypertrophy induced by training intervention, but not with the intermuscular difference.
Collapse
Affiliation(s)
- Taku Wakahara
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Ryoichi Ema
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan.,Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Naokazu Miyamoto
- National Institute of Fitness and Sports in Kanoya, Kanoya, Kagoshima, Japan
| | - Yasuo Kawakami
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| |
Collapse
|
39
|
Watanabe K, Kouzaki M, Moritani T. Spatial EMG potential distribution of biceps brachii muscle during resistance training and detraining. Eur J Appl Physiol 2015; 115:2661-70. [PMID: 26255291 DOI: 10.1007/s00421-015-3237-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated the effect of resistance training and detraining on the spatial distribution pattern of surface electromyography (SEMG) of the biceps brachii. METHODS Ten male subjects completed 6 weeks of resistance training of one arm and 8 weeks of detraining. During training and detraining periods, spatial distribution patterns of SEMG were measured and quantified with 64 two-dimensional electrodes. RESULTS MVC, muscle thickness, and SEMG amplitude of the trained arm were significantly greater than those of the untrained arm after the 6 weeks of resistance training (p < 0.05), but these differences were no longer observed after 2 months of detraining. On the other hand, no significant differences in the spatial distribution pattern of SEMG were observed between the arms. CONCLUSION Spatial distribution pattern of SEMG was not changed during resistance training and detraining periods. This suggests that detectable adaptations in the motor unit recruitment pattern do not occur during regular resistance training.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies, Chukyo University, Yagotohonmachi, Showa-ku, Nagoya, 466-8666, Japan.
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Toshio Moritani
- Laboratory of Applied Physiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Wirth K, Keiner M, Szilvas E, Hartmann H, Sander A. Effects of Eccentric Strength Training on Different Maximal Strength and Speed-Strength Parameters of the Lower Extremity. J Strength Cond Res 2015; 29:1837-45. [DOI: 10.1519/jsc.0000000000000528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Bourne MN, Opar DA, Williams MD, Al Najjar A, Shield AJ. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury. Scand J Med Sci Sports 2015; 26:666-74. [DOI: 10.1111/sms.12494] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 12/19/2022]
Affiliation(s)
- M. N. Bourne
- School of Exercise and Nutrition Sciences; Queensland University of Technology; Brisbane Queensland Australia
- Centre of Excellence for Applied Sport Science Research; Queensland Academy of Sport; Brisbane Queensland Australia
| | - D. A. Opar
- School of Exercise and Nutrition Sciences; Queensland University of Technology; Brisbane Queensland Australia
- School of Health, Sport and Professional Practice; University of South Wales; Australian Catholic University; Melbourne Victoria Australia
| | - M. D. Williams
- School of Exercise Science; Australian Catholic University; University of South Wales; Wales UK
| | - A. Al Najjar
- Centre for Advanced Imaging; University of Queensland; Brisbane Queensland Australia
| | - A. J. Shield
- School of Exercise and Nutrition Sciences; Queensland University of Technology; Brisbane Queensland Australia
| |
Collapse
|
42
|
Palmer K, Hebron C, Williams JM. A randomised trial into the effect of an isolated hip abductor strengthening programme and a functional motor control programme on knee kinematics and hip muscle strength. BMC Musculoskelet Disord 2015; 16:105. [PMID: 25935843 PMCID: PMC4424529 DOI: 10.1186/s12891-015-0563-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/24/2015] [Indexed: 11/28/2022] Open
Abstract
Background Dynamic knee valgus and internal femoral rotation are proposed to be contributory risk factors for patellofemoral pain and anterior cruciate ligament injuries. Multimodal interventions including hip abductor strengthening or functional motor control programmes have a positive impact of pain, however their effect on knee kinematics and muscle strength is less clear. The aim of this study was to examine the effect of isolated hip abductor strengthening and a functional motor control exercise on knee kinematics and hip abductor strength. Methods This prospective, randomised, repeated measures design included 29 asymptomatic volunteers presenting with increase knee valgus and femoral internal rotation. Participants completed either isolated hip abductor strengthening or a functional motor control exercise for 5 weeks. Knee kinematics were measured using inertial sensors during 2 functional activities and hip abductor strength measured using a load cell during isometric hip abduction. Results There were no significant differences in dynamic knee valgus and internal rotation following the isolated hip abductor or functional motor control intervention, and no significant differences between the groups for knee angles. Despite this, the actual magnitude of reduction in valgus was 10° and 5° for the functional motor control group and strengthening group respectively. The actual magnitude of reduction in internal rotation was 9° and 18° for the functional motor control group and strengthening group respectively. Therefore there was a tendency towards clinically significant improvements in knee kinematics in both exercise groups. A statistically significant improvement in hip abductor strength was evident for the functional motor control group (27% increase; p = 0.008) and strengthening group (35% increase; p = 0.009) with no significant difference between the groups being identified (p = 0.475). Conclusions Isolated hip strengthening and functional motor control exercises resulted in non-statistically significant changes in knee kinematics, however there was a clear trend towards clinically meaningful reductions in valgus and internal rotation. Both groups demonstrated similar significant gains in hip abductor strength suggesting either approach could be used to strengthen the hip abductors.
Collapse
Affiliation(s)
- Kathryn Palmer
- Faculty of Health Sciences, School of Health Professions, University of Brighton, 49 Darley Road, BN20 7UR, Eastbourne, East Sussex, UK.
| | - Clair Hebron
- Faculty of Health Sciences, School of Health Professions, University of Brighton, 49 Darley Road, BN20 7UR, Eastbourne, East Sussex, UK.
| | - Jonathan M Williams
- Faculty of Health and Social Sciences, Bournemouth University, Royal London House, Christchurch Road, BH1 3LT, Bournemouth, Dorset, UK.
| |
Collapse
|
43
|
Miyamoto N, Kawakami Y. Effect of Pressure Intensity of Compression Short-Tight on Fatigue of Thigh Muscles. Med Sci Sports Exerc 2014; 46:2168-74. [DOI: 10.1249/mss.0000000000000330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Effect of a short time concentric versus eccentric training program on electromyography activity and peak torque of quadriceps. J Hum Kinet 2014; 41:5-13. [PMID: 25114726 PMCID: PMC4120442 DOI: 10.2478/hukin-2014-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to examine the effect of an 8-week concentric (CON) versus eccentric (ECC) isokinetic training program on the electromyography (EMG) signal amplitude of vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF). Also, the isometric (ISO) and dynamic maximum strength of the knee extensors were assessed. Eighteen physically healthy male subjects (age 22 ± 1 years, body height 177 ± 4 cm, body mass 73 ± 7 kg) performed four weeks of unilateral CON isokinetic training for the quadriceps of the dominant leg on a REV9000 dynamometer. At the end of the fourth week, the sample was divided into two groups, with one group performing additional four weeks of unilateral ECC training and the other continuing with CON training. The training sessions consisted of three sets of ten maximal repetitions at a velocity of 60ºs-1, three days per week for eight weeks. The results showed that CON and ECC groups improved the peak torque in all types of contractions. Also, both groups presented increases in the avgEMG for VL, VM and RF. The present investigation showed that CON training elicited increases of the ISO peak torque and VM avgEMG in the CON contraction. Additionally, significant gains were reported after the ECC training on the VM avgEMG in all contractions and RM avgEMG in CON contraction.
Collapse
|
45
|
Wakahara T, Fukutani A, Kawakami Y, Yanai T. Nonuniform muscle hypertrophy: its relation to muscle activation in training session. Med Sci Sports Exerc 2014; 45:2158-65. [PMID: 23657165 DOI: 10.1249/mss.0b013e3182995349] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Muscle hypertrophy in response to resistance training has been reported to occur nonuniformly along the length of the muscle. The purpose of the present study was to examine whether the regional difference in muscle hypertrophy induced by a training intervention corresponds to the regional difference in muscle activation in the training session. METHODS Twelve young men participated in a training intervention program for the elbow extensors with a multijoint resistance exercise for 12 wk (3 d · wk(-1)). Before and after the intervention, cross-sectional areas of the triceps brachii along its length were measured with magnetic resonance images. A series of transverse relaxation time (T2)-weighted magnetic resonance images was recorded before and immediately after the first session of training intervention. The T2 was calculated for each pixel within the triceps brachii. In the images recorded after the session, the number of pixels with a T2 greater than the threshold (mean + 1 SD of T2 before the session) was expressed as the ratio to the whole number of pixels within the muscle and used as an index of muscle activation (percent activated area). RESULTS The percent activated area of the triceps brachii in the first session was significantly higher in the middle regions than that in the most proximal region. Similarly, the relative change in cross-sectional area induced by the training intervention was also significantly greater in the middle regions than the most proximal region. CONCLUSION The results suggest that nonuniform muscle hypertrophy after training intervention is due to the region-specific muscle activation during the training session.
Collapse
Affiliation(s)
- Taku Wakahara
- 1Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, JAPAN; 2Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, JAPAN; 3Graduate School of Sport Sciences, Waseda University, Saitama, JAPAN; 4Faculty of Sport and Health Science, Ritsumeikan University, Shiga, JAPAN; and 5Japan Society for the Promotion of Science, Tokyo, JAPAN
| | | | | | | |
Collapse
|
46
|
Akima H, Saito A. Activation of quadriceps femoris including vastus intermedius during fatiguing dynamic knee extensions. Eur J Appl Physiol 2013; 113:2829-40. [DOI: 10.1007/s00421-013-2721-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
|
47
|
Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y. Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training. Eur J Appl Physiol 2013; 113:2691-703. [PMID: 23949789 DOI: 10.1007/s00421-013-2700-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/23/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Ryoichi Ema
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | | | | | | | | |
Collapse
|
48
|
MIYAMOTO NAOKAZU, WAKAHARA TAKU, EMA RYOICHI, KAWAKAMI YASUO. Further Potentiation of Dynamic Muscle Strength after Resistance Training. Med Sci Sports Exerc 2013; 45:1323-30. [DOI: 10.1249/mss.0b013e3182874c0e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Costa PB, Herda TJ, Walter AA, Valdez AM, Cramer JT. Effects of short-term resistance training and subsequent detraining on the electromechanical delay. Muscle Nerve 2013; 48:135-6. [PMID: 23733326 DOI: 10.1002/mus.23756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The purpose of this study was to examine and compare the effects of 3 days of dynamic constant external resistance (DCER) and isokinetic (ISOK) training and subsequent detraining on the electromechanical delay (EMD). METHODS Thirty-one men [age 22.2 ± 4.2 years, body mass 77.9 ± 12.9 kg, height 173.9 ± 5.4 cm (mean ± SD)] were randomly assigned to a DCER training group, ISOK training group, or control (CONT) group. RESULTS No significant changes were found for EMD from pre- to posttraining assessments 1, 2, and 3 [4.5 ± 0.2 ms, 4.7 ± 0.2 ms, 4.5 ± 0.1 ms, 4.5 ± 0.2 ms, respectively (mean ± SE)] (P > 0.05). CONCLUSIONS It can be hypothesized that increases in strength observed after a short-term resistance training program may not be attributed to stiffness changes in the series-elastic component.
Collapse
Affiliation(s)
- Pablo B Costa
- Human Performance Laboratory, Department of Kinesiology, California State University-San Bernardino, 5500 University Parkway, HP-120, San Bernardino, California 92407, USA.
| | | | | | | | | |
Collapse
|
50
|
Neuromagnetic Activity of the Somatosensory Cortices Associated With Body Weight–Supported Treadmill Training in Children With Cerebral Palsy. J Neurol Phys Ther 2012; 36:166-72. [DOI: 10.1097/npt.0b013e318251776a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|