1
|
Looft JM, Herkert N, Frey-Law L. Modification of a three-compartment muscle fatigue model to predict peak torque decline during intermittent tasks. J Biomech 2018; 77:16-25. [PMID: 29960732 PMCID: PMC6092960 DOI: 10.1016/j.jbiomech.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/18/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
Abstract
This study aimed to test whether adding a rest recovery parameter, r, to the analytical three-compartment controller (3CC) fatigue model (Xia and Frey Law, 2008) will improve fatigue estimates during intermittent contractions. The 3CC muscle fatigue model uses differential equations to predict the flow of muscle between three muscle states: Resting (MR), Active (MA), and Fatigued (MF). This model uses a feedback controller to match the active state to target loads and two joint-specific parameters: F, fatigue rate controlling flow from active to fatigued compartments) and R, the recovery rate controlling flow from the fatigued to the resting compartments. This model does well to predict intensity-endurance time curves for sustained isometric tasks. However, previous studies find when rest intervals are present that the model over predicts fatigue. Intermittent rest periods would allow for the occurrence of subsequent reactive vasodilation and post-contraction hyperemia. We hypothesize a modified 3CC-r fatigue model will improve predictions of force decay during intermittent contractions with the addition of a rest recovery parameter, r, to augment recovery during rest intervals, representing muscle re-perfusion. A meta-analysis compiling intermittent fatigue data from 63 publications reporting decline in peak torque (% torque decline) were used for comparison. The original model over-predicted fatigue development from 19 to 29% torque decline; the addition of a rest multiplier significantly improved fatigue estimates to 6-10% torque decline. We conclude the addition of a rest multiplier to the three-compartment controller fatigue model provides a physiologically consistent modification for tasks involving rest intervals, resulting in improved estimates of muscle fatigue.
Collapse
Affiliation(s)
- John M Looft
- Department of Physical Therapy, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA
| | - Nicole Herkert
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Frey-Law
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Ikemoto Y, Demura S, Yamaji S. Relations between the Inflection Point on the Force-Time Curve and Force-Time Parameters during Static Explosive Grip. Percept Mot Skills 2016; 98:507-18. [PMID: 15141915 DOI: 10.2466/pms.98.2.507-518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Individual differences in muscle contractile speed during static explosive muscle contraction are reflected in the developmental phase of the force-time curve. The purposes of this study were to clarify the properties and reliability of the inflection point of force-time, statistically dividing speed during static explosive grip into two phases and to assess the relations between that inflection point and others. Static explosive grip data were measured two times with a 5-min. rest (sampling frequency; 100 Hz). 32 healthy, young men (age: 15.5 ± 0.8 yr., height: 173.9 ± 7.3 cm, body mass: 71.5 ± 11.2 kg) participated. 8 static explosive grip parameters were selected: time of reaching, integrated area, and quotient values of the integrated areas up to 0.25, 0.5, and 1.0 sec. divided by maximal grip force. The inflection point was calculated statistically from two regression lines fitted to a developmental phase and the almost steady-state phase of reaching maximal grip force by applying a two-phase regression model. The reliabilities of maximal grip force, time of reaching 90% of maximal grip force, and the integrated area until 0.5 sec. and 1.0 sec. after the onset of grip were good ( ICC = .77 to .93). The time of reaching an inflection force value appeared at 0.3 sec. after the onset of grip, corresponding to 80% of maximal grip force, and the reliabilities of the parameters regarding inflection point were good ( ICC = .77 to .95). The time determined by boundary data between the former and the latter regression data set and the regression coefficient during the developmental phase correlated significantly with the time of reaching 90% of maximal grip force, the integrated area, and the quotient values of the integrated areas up to 0.25, 0.5, and 1.0 sec. divided by maximal grip force ( rs = −.78 to −.96 and −.75 to 0.88, respectively, p < .05). However, these parameters did not correlate with maximal grip force. A force during the developmental phase and maximal grip force can depend on different physiological factors. The time determined by boundary data between the former and the latter regression data set and the regression coefficient during the developmental phase are useful parameters for evaluating static explosive grip.
Collapse
|
3
|
Scientific Opinion on the substantiation of health claims related to creatine and increase in physical performance during short‐term, high intensity, repeated exercise bouts (ID 739, 1520, 1521, 1522, 1523, 1525, 1526, 1531, 1532, 1533, 1534, 1922, 1923, 1924), increase in endurance capacity (ID 1527, 1535), and increase in endurance performance (ID 1521, 1963) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
4
|
Medeiros RJD, Santos AAD, Ferreira ADCD, Ferreira JJDA, Carvalho LC, Sousa MDSCD. Efeitos da suplementação de creatina na força máxima e na amplitude do eletromiograma de mulheres fisicamente ativas. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000500007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A suplementação de creatina apresenta ação ergogênica na força muscular. Entretanto, não há consenso deste efeito na força isométrica máxima e na amplitude do eletromiograma (EMG). Assim, o objetivo deste estudo foi analisar os efeitos da suplementação de creatina na força isométrica máxima e na amplitude do EMG em mulheres fisicamente ativas. Vinte e sete mulheres (idade 23,04 ± 1,82 anos, massa corporal 58,37 ± 6,10kg, estatura 1,63 ± 0,05m e índice de massa corporal 21,93 ± 2,02kg/m²) foram designadas aleatoriamente para os grupos creatina (GCr) (n = 13) e placebo (GPL) (n = 14), os quais ingeriram diariamente, durante seis dias, 20g de creatina mono-hidratada e 20g de maltodextrina, respectivamente. Antes e depois da suplementação, a força foi medida em um dinamômetro isométrico durante contração isométrica voluntária máxima (CIVM) de extensão unilateral do joelho (três séries de 6s intervaladas por 180s), com captação simultânea dos valores root mean square (RMS) do EMG obtido no músculo vasto lateral. A ANOVA de dois critérios de classificação (dois momentos x dois grupos) e o teste de Wilcoxon foram utilizados na análise estatística dos dados paramétricos e não paramétricos (p < 0,05). Após a suplementação, o GCr aumentou significativamente a força, com incrementos de 7,85% (p = 0,002), 7,31% (p = 0,001) e 5,52% (p = 0,001) para a primeira, segunda e terceira séries, respectivamente. Para este mesmo grupo, os valores RMS aumentaram significativamente na terceira série (p = 0,026). O GPL não apresentou alterações significativas. Os resultados sugerem que a suplementação de creatina aumenta a força isométrica máxima e que a amplitude do EMG pode ser utilizada como indicador dessas alterações de desempenho.
Collapse
Affiliation(s)
- Rômulo José Dantas Medeiros
- Grupo de Pesquisa em Cineantropometria, Atividade Física e Saúde, Desenvolvimento e Desempenho Humano; UFPB UPE
| | | | | | | | | | - Maria do Socorro Cirilo de Sousa
- Universidade Federal da Paraíba; Grupo de Pesquisa em Cineantropometria, Atividade Física e Saúde, Desenvolvimento e Desempenho Humano; UFPB UPE
| |
Collapse
|
5
|
Gualano B, Acquesta FM, Ugrinowitsch C, Tricoli V, Serrão JC, Lancha Junior AH. Efeitos da suplementação de creatina sobre força e hipertrofia muscular: atualizações. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000300013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A suplementação de creatina vem sendo utilizada amplamente na tentativa de aumentar força e massa magra em sujeitos saudáveis e atletas. Além disso, diversos estudos têm sido conduzidos no intuito de desvendar os mecanismos responsáveis pelas eventuais adaptações a esse suplemento. Diante disso, essa revisão teve como objetivos: 1) discutir os principais estudos que investigaram os efeitos da suplementação de creatina na força e hipertrofia; e 2) reunir as evidências acerca dos possíveis mecanismos responsáveis pelo aumento de força e massa magra como consequência desse suplemento, enfatizando os mais recentes achados e as perspectivas sobre o tema. De fato, existem fortes evidências demonstrando que a suplementação de creatina é capaz de promover aumentos de força e hipertrofia. Os efeitos desse suplemento sobre a retenção hídrica, o balanço proteico, a expressão de genes/proteínas associados à hipertrofia e ativação de células satélites, podem explicar as adaptações musculoesqueléticas observadas. Diante desses achados, os potenciais efeitos terapêuticos desse suplemento emergem como um futuro e promissor campo de estudo.
Collapse
Affiliation(s)
- Bruno Gualano
- Escola de Educação Física e Esporte; Faculdade de Medicina
| | | | | | | | | | | |
Collapse
|
6
|
Jäger R, Metzger J, Lautmann K, Shushakov V, Purpura M, Geiss KR, Maassen N. The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise. J Int Soc Sports Nutr 2008; 5:4. [PMID: 18269769 PMCID: PMC2276184 DOI: 10.1186/1550-2783-5-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 02/13/2008] [Indexed: 11/28/2022] Open
Abstract
Background A double-blind, placebo-controlled, randomized study was performed to evaluate the effect of oral creatine pyruvate (Cr-Pyr) and creatine citrate (Cr-Cit) supplementation on exercise performance in healthy young athletes. Methods Performance during intermittent handgrip exercise of maximal intensity was evaluated before (pretest) and after (posttest) 28 days of Cr-Pyr (5 g/d, n = 16), Cr-Cit (5 g/d, n = 16) or placebo (pla, 5 g/d, n = 17) intake. Subjects performed ten 15-sec exercise intervals, each followed by 45 sec rest periods. Results Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) significantly increased mean power over all intervals. Cr-Cit increased force during the first and second interval (p < 0.01) compared to placebo. The effect of Cr-Cit on force decreased over time and the improvement was not significant at the sixth and ninth interval, whereas Cr-Pyr significantly increased force during all intervals (p < 0.001). Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) resulted in an increase in contraction velocity, whereas only Cr-Pyr intake significantly (p < 0.01) increased relaxation velocity. Oxygen consumption measured during rest periods significantly increased with Cr-Pyr (p < 0.05), whereas Cr-Cit and placebo intake did not result in significant improvements. Conclusion It is concluded that four weeks of Cr-Pyr and Cr-Cit intake significantly improves performance during intermittent handgrip exercise of maximal intensity and that Cr-Pyr might benefit endurance, due to enhanced activity of the aerobic metabolism.
Collapse
Affiliation(s)
- Ralf Jäger
- Increnovo LLC, 2138 E Lafayette Pl, Milwaukee, WI 53202, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Baker-Fulco CJ, Fulco CS, Kellogg MD, Glickman E, Young AJ. Voluntary Muscle Function after Creatine Supplementation in Acute Hypobaric Hypoxia. Med Sci Sports Exerc 2006; 38:1418-24. [PMID: 16888454 DOI: 10.1249/01.mss.0000228948.70399.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine whether creatine (Cr) supplementation improves muscle performance during exposure to acute hypobaric hypoxia. METHODS Seven healthy men (28 +/- 6 yr, mean +/- SD) performed submaximal intermittent static knee contractions interspersed with maximal voluntary contractions (MVCs) every minute to exhaustion (approximately 50% of rested MVC force) in normoxia and hypobaric hypoxia (separated by 3 d) after supplementation with Cr (20 g.d(-1) for 7 d then 5 g.d(-1) for 4-7 d) or placebo (Pla) in a double-blind, randomized crossover study. A 5-wk period without supplementation separated treatments. Each test day, subjects performed two bouts (separated by 2 min) at their preset submaximal force, 32 +/- 4% rested MVC). RESULTS Rested MVC force (860 +/- 66 N) and MVC force at exhaustion (396 +/- 27 N; 47 +/- 3% rested MVC) did not differ among treatments or environments (P > 0.05). For bout 1, endurance time was shorter in hypobaria (26 +/- 3 min) than normoxia (34 +/- 2 min) (P < 0.01), but did not differ between Cr (27 +/- 3 min) and Pla (33 +/- 3 min) (P > 0.05). MVC force returned to similar levels (P >0.05) in bout 2 after recovery in all four sessions (to approximately 615 N). For bout 2, endurance time also was shorter in hypobaria (7 +/- 1 min) than normoxia (9 +/- 1 min) (P < 0.03) but did not differ between Cr and Pla (P > 0.05). CONCLUSION This study, which used an exercise model designed to impose the same target contraction force under all experimental conditions, found no effect of Cr on maximal force, muscle endurance, or recovery in normoxia or hypobaric hypoxia.
Collapse
Affiliation(s)
- Carol J Baker-Fulco
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760-5007, USA.
| | | | | | | | | |
Collapse
|
8
|
Runnels ED, Bemben DA, Anderson MA, Bemben MG. Influence of age on isometric, isotonic, and isokinetic force production characteristics in men. J Geriatr Phys Ther 2006; 28:74-84. [PMID: 16386169 DOI: 10.1519/00139143-200512000-00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE Most previous studies have focused on the effects of age on muscle performance of a single type of contraction, usually isometric, and usually on only a single muscle group. Instead,we investigated the influence of age on isometric, isotonic, and isokinetic muscle performance in men aged 20-83 years and determined relationships between regional lean body mass and muscle performance. METHODS Seventy-five volunteers were placed into designated 10-year age groups: 20-29 (n=13), 30-39 (n=14), 40-49 (n=15), 50-59 (n=10), 60-69 (n=14), and 70+ years (n=9). Muscle performance was characterized by a number of parameters, including strength, time, and rate for maximal voluntary contractions using all 3 contraction types and 4 muscle groups (elbow extensors, elbow flexors, knee extensors, and knee flexors). Measures of lean body mass were obtained by dual energy x-ray absorptiometry. RESULTS There were significant age group differences in maximal force (P < or = 0.05) for each type of muscle contraction, and in maximal rates of isometric force production (P < or = 0.05), with declines beginning around 60 years of age. Differences in muscle performance between age groups remained when body composition differences were controlled statistically. CONCLUSION Chronological age affected performance of both upper and lower extremity muscles, independent of muscle mass, and regardless of contraction type; however, isometric performance was the least affected.
Collapse
Affiliation(s)
- Eric D Runnels
- Neuromuscular Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman Campus,Norman, OK 73019, USA
| | | | | | | |
Collapse
|
9
|
Jayaraman A, Gregory CM, Bowden M, Stevens JE, Shah P, Behrman AL, Vandenborne K. Lower extremity skeletal muscle function in persons with incomplete spinal cord injury. Spinal Cord 2005; 44:680-7. [PMID: 16344848 DOI: 10.1038/sj.sc.3101892] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
STUDY DESIGN A cross-sectional study design. OBJECTIVES To characterize and specifically quantify impairments in muscle function after chronic incomplete spinal cord injury (SCI). SETTING University of Florida, Gainesville, FL, USA. METHODS Voluntary and electrically elicited contractile measurements were performed and voluntary activation deficits were quantitatively determined in the knee extensor and ankle plantar flexor muscle groups in 10 individuals with chronic incomplete SCI (C5-T8, ASIA C or D) and age-, gender-, height- and body weight matched healthy controls. RESULTS Persons with incomplete-SCI were able to produce only 36 and 24% of the knee extensor torque and 38 and 26% of the plantar flexor torque generated by noninjured controls in the self-reported less-involved and more-involved limbs, respectively (P<0.05). In addition, both indices of explosive or instantaneous muscle strength, torque200 (absolute torque reached at 200 ms) and the average rate of torque development (ARTD) were dramatically reduced in the ankle plantar flexor and knee extensor muscle groups in persons with incomplete-SCI. However, the deficit in instantaneous muscle strength was most pronounced in the ankle plantar flexor muscles, with an 11.7-fold difference between the torque200 measured in the self-reported more involved limb and a 5-fold difference in the less-involved limb compared to control muscles. Voluntary activation deficits ranged between 42 and 66% in both muscle groups. Interestingly, electrically elicited contractile properties did not differ between the groups. CONCLUSION The resultant impact of incomplete-SCI is that affected muscles not only become weak, but slow to develop voluntary torque. We speculate that the large deficit in torque200 and ARTD in the ankle plantar flexors muscles of persons with incomplete-SCI may limit locomotor function. The results presented in this study provide a quantitative and sensitive assessment of muscle function upon which future research examining rehabilitation programs aimed at restoring muscle function and promoting functional recovery after incomplete-SCI may be based.
Collapse
Affiliation(s)
- A Jayaraman
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Carter JM, Bemben DA, Knehans AW, Bemben MG, Witten MS. Does Nutritional Supplementation Influence Adaptability of Muscle to Resistance Training in Men Aged 48 to 72 Years. J Geriatr Phys Ther 2005; 28:40-7. [PMID: 16236227 DOI: 10.1519/00139143-200508000-00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE Isotonic strength training can result in neuromuscular improvements evidenced in other forms of muscular effort, ie, isokinetic or isometric, especially in young subjects; however, it is unclear if older muscle maintains this same adaptive ability. Additionally, it is not known if the benefits of resistance training can be augmented by creatine and protein supplementation in older men. Therefore, the purpose of this study was to assess changes in isokinetic parameters at varying speeds in men aged 48 to 72 years (mean=57+/-2.1) following 16 weeks of isotonic resistance training and creatine and/or protein supplementation. METHODS Forty-two male subjects were randomly assigned to 1 of 4 training groups: (1) resistance training placebo (n=10), (2) resistance trained creatine supplemented (n=10), (3) resistance trained protein supplemented (n=11), and (4) resistance trained creatine and protein supplemented (n=11). The program consisted of progressive overload resistance training (3 d/wk) and supplement consumption following the workout. RESULTS There were significant time effects (P>.05) for peak torque (PT), time to PT, and average power for both the knee extensors and flexors at all velocities. However, no significant group or group by time interactions were noted, indicating that the supplementation protocols had no added benefits. CONCLUSIONS Men aged 48 to 72 years maintained their ability to improve isokinetic muscle function following isotonic training, however, supplementation did not enhance muscle adaptability.
Collapse
Affiliation(s)
- Jack M Carter
- Department of Health and Exercise Science, University of Oklahoma, Norman Campus, Norman, OK 73019, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
This article reviews the evidence-based ergogenic potential and adverse effects of 14 of the most common products in use by recreational and elite athletes today. Both legal and prohibited products are discussed. This is an aggressively marketed and controversial area of sports medicine worldwide. It is therefore prudent for the clinician to be well versed in the more popular supplements and drugs reputed to be ergogenic in order to distinguish fact from fiction.Antioxidants, proteins and amino acids are essential components of diet, but additional oral supplementation does not increase endurance or strength. Caffeine is ergogenic in certain aerobic activities. Creatine is ergogenic in repetitive anaerobic cycling sprints but not running or swimming. Ephedrine and pseudoephedrine may be ergogenic but have detrimental cardiovascular effects. Erythropoietin is ergogenic but increases the risk of thromboembolic events. beta-Hydroxy-beta-methylbutyrate has ergogenic potential in untrained individuals, but studies are needed on trained individuals. Human growth hormone and insulin growth factor-I decrease body fat and may increase lean muscle mass when given subcutaneously. Pyruvate is not ergogenic. The androgenic precursors androstenedione and dehydroepiandrosterone have not been shown to increase any parameters of strength and have potentially significant adverse effects. Anabolic steroids increase protein synthesis and muscle mass but with many adverse effects, some irreversible. Supplement claims on labels of product content and efficacy can be inaccurate and misleading.
Collapse
Affiliation(s)
- Mark Juhn
- Department of Family Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
12
|
Abstract
Nutritional supplements and other ergogenic aids have gained widespread use among professional, amateur, recreational, and student athletes for their potential to enhance athletic performance and provide a competitive edge. Creatine monohydrate is one of the more commonly used and potentially beneficial supplements that currently is viewed to be safe. Supplementation with oral creatine augments skeletal muscle creatine concentrations in most individuals, which has been shown to promote gains in lean body mass when used in conjunction with resistance training, to enhance power and strength, and to improve performance in intense exercise, especially during repeated bouts. Young athletes, however, must be cautious about taking creatine because its effects on growth and development are unknown and long-term safety has not been established. Variability in research study designs and small sample sizes have left many questions unanswered regarding the safety and efficacy of chronic supplementation. This is an active area of clinical investigation and the results of ongoing and future research should guide the appropriate use of creatine to enhance athletic performance among athletes of all ages.
Collapse
Affiliation(s)
- Susan B Racette
- Washington University School of Medicine, Program in Physical Therapy, Department of Medicine, St. Louis, MO 63108-2212, USA.
| |
Collapse
|