1
|
Kubelt C, Hellmold D, Peschke E, Hauck M, Will O, Schütt F, Lucius R, Adelung R, Scherließ R, Hövener JB, Jansen O, Synowitz M, Held-Feindt J. Establishment of a Rodent Glioblastoma Partial Resection Model for Chemotherapy by Local Drug Carriers-Sharing Experience. Biomedicines 2023; 11:1518. [PMID: 37371613 DOI: 10.3390/biomedicines11061518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Local drug delivery systems (LDDS) represent a promising therapy strategy concerning the most common and malignant primary brain tumor glioblastoma (GBM). Nevertheless, to date, only a few systems have been clinically applied, and their success is very limited. Still, numerous new LDDS approaches are currently being developed. Here, (partial resection) GBM animal models play a key role, as such models are needed to evaluate the therapy prior to any human application. However, such models are complex to establish, and only a few reports detail the process. Here, we report our results of establishing a partial resection glioma model in rats suitable for evaluating LDDS. C6-bearing Wistar rats and U87MG-spheroids- and patient-derived glioma stem-like cells-bearing athymic rats underwent tumor resection followed by the implantation of an exemplary LDDS. Inoculation, tumor growth, residual tumor tissue, and GBM recurrence were reliably imaged using high-resolution Magnetic Resonance Imaging. The release from an exemplary LDDS was verified in vitro and in vivo using Fluorescence Molecular Tomography. The presented GBM partial resection model appears to be well suited to determine the efficiency of LDDS. By sharing our expertise, we intend to provide a powerful tool for the future testing of these very promising systems, paving their way into clinical application.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
| | - Margarethe Hauck
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Regina Scherließ
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Olav Jansen
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
3
|
Bampoe J, Bernstein M. Advances in radiotherapy of brain tumors: radiobiology versus reality. J Clin Neurosci 2012; 5:5-14. [PMID: 18644279 DOI: 10.1016/s0967-5868(98)90193-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1996] [Accepted: 04/17/1997] [Indexed: 10/26/2022]
Abstract
Radiotherapy still remains the most effective adjunctive therapy for malignant gliomas following surgery and provides useful local control for some benign tumors. Research efforts have been directed towards several aspects of the radiation therapy of tumors. The results of clinical trials undertaken in the last decade offer some basis for optimism in the management of patients with malignant brain tumors, although cure is still not a realistic objective. This review focuses on the rationale and radiobiological basis for recent developments in the radiotherapy of adult brain tumors. The salient issues are discussed from a neurosurgeon's perspective.
Collapse
Affiliation(s)
- J Bampoe
- Division of Neurosurgery, The Toronto Hospital, Toronto Western Division, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Verhoeff JJC, Stalpers LJA, Coumou AW, Koedooder K, Lavini C, Van Noorden CJF, Haveman J, Vandertop WP, van Furth WR. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice. Radiat Oncol 2007; 2:38. [PMID: 17897452 PMCID: PMC2174502 DOI: 10.1186/1748-717x-2-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 09/26/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models- high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic) brain tumors. METHODS Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 x 105 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BEDtumor = 30.6 Gy). RESULTS In the sham group, 9/10 animals (90%) showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18%) died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. CONCLUSION The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy- without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy.
Collapse
Affiliation(s)
- Joost JC Verhoeff
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lukas JA Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Annet W Coumou
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Kees Koedooder
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Cristina Lavini
- Department of Radiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis JF Van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jaap Haveman
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - William P Vandertop
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Wouter R van Furth
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Bampoe J, Nag S, Leung P, Laperriere N, Bernstein M. Brain necrosis after permanent low-activity iodine-125 implants: case report and review of toxicity from focal radiation. Brain Tumor Pathol 2001; 17:139-45. [PMID: 11310921 DOI: 10.1007/bf02484285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Focal irradiation has emerged as a useful modality in the management of malignant brain tumors. Its main limitation is radiation necrosis. We report on the radiation dose distribution in the cerebellum of a patient who developed imaging and autopsy diagnosis of radiation necrosis after permanent iodine-125 implants for a solitary osseous plasmacytoma of her left occipital condyle. A 55-year-old woman initially presented with neck and occipital pain and a lytic lesion of her left occipital condyle. A cytological diagnosis of solitary osseous plasmacytoma was made by transpharyngeal needle biopsy. After an initial course of external beam radiation, the patient required further treatment with systemic chemotherapy 21 months later for clinical and radiographic progression of her disease. She ultimately required subtotal surgical resection of an anaplastic plasmacytoma with intracranial extension. Permanent low-activity iodine-125 seeds were implanted in the tumor cavity. Satisfactory local control was achieved. However, clinical and imaging signs of radiation damage appeared 28 months after iodine-125 seed implantation. Progressive systemic myeloma led to her death 11 years after presentation and 9 years after seed implantation. Radiation dose distribution is described, with a discussion of toxicity from focal radiation dose escalation.
Collapse
Affiliation(s)
- J Bampoe
- Division of Neurosurgery, Toronto Western Hospital, Ontario, Canada
| | | | | | | | | |
Collapse
|
6
|
Bampoe J, Glen J, Hubbard SL, Salhia B, Shannon P, Rutka J, Bernstein M. Adenoviral vector-mediated gene transfer: timing of wild-type p53 gene expression in vivo and effect of tumor transduction on survival in a rat glioma brachytherapy model. J Neurooncol 2000; 49:27-39. [PMID: 11131984 DOI: 10.1023/a:1006476608036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study sought to investigate modification of the radiation response in a rat 9L brain tumor model in vivo by the wild-type p53 gene (wtp53). Determination of the timing and dose of radiation therapy required the assessment of the duration of the effect of wtp53 expression on 9L tumors after in vivo transfection. METHODS Anesthetized male F-344 rats each were stereotactically inoculated with 4 x 10(4) 9L gliosarcoma cells through a skull screw into the cerebrum in the right frontal region. Twelve-day-old tumors were inoculated through the screw with recombinant adenoviral vectors under isoflurane anaesthesia: control rats with Ad5/RSV/GL2 (carrying the luciferase gene), and study rats with Ad5CMV-p53 (carrying the wtp53 gene). Brain tumors removed at specific times after transfection were measured, homogenized, and lysed and wtp53 expression determined by Western blot analysis. Four groups of nine rats were, subsequently, implanted with iodine-125 seeds 15 days post-tumor inoculation to give a minimum tumor dose of 40 or 60 Gy. RESULTS We demonstrated transfer of wtp53 into rat 9L tumors in vivo using the Ad5CMV-p53 vector. The expression of wtp53 was demonstrated to be maximum between days 1 and 3 post-vector inoculation. Tumors expressing wtp53 were smaller than controls transfected with Ad5/RSV/GL2 but this difference was not statistically significant. Radiation made a significant difference to the survival of tumor-bearing rats. Moreover, wtp53 expression conferred a significant additional survival advantage. CONCLUSION The expression of wtp53 significantly improves the survival of irradiated tumor-bearing rats in our model.
Collapse
Affiliation(s)
- J Bampoe
- Division of Neurosurgery, The Toronto Western Hospital, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|