1
|
Marcuse LV, Langan M, Hof PR, Panov F, Saez I, Jimenez-Shahed J, Figee M, Mayberg H, Yoo JY, Ghatan S, Balchandani P, Fields MC. The thalamus: Structure, function, and neurotherapeutics. Neurotherapeutics 2025:e00550. [PMID: 39956708 DOI: 10.1016/j.neurot.2025.e00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
The complexity and expansive nature of thalamic research has led to numerous interventions for varied disease states. At the same time, this complexity along with siloed areas of study can hinder a comprehensive understanding. The goal of this paper is to give the reader a broader and more detailed perspective on the thalamus. In order to accomplish this goal, the paper begins with a summary of the function, electrophysiology, and anatomy of the normal thalamus. With this foundation, thalamic involvement in neurological diseases is discussed with a focus on epilepsy. Therapeutic interventions in the thalamus for epilepsy as well as movement disorders, psychiatric conditions and disorders of consciousness are described. Lastly limitations in the field and future models of data sharing and cooperation are explored.
Collapse
Affiliation(s)
- Lara V Marcuse
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA.
| | - Mackenzie Langan
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 787 11th Avenue New York, NY 10019, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA
| | - Igancio Saez
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 787 11th Avenue New York, NY 10019, USA; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA; Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Joohi Jimenez-Shahed
- Department of Neurology, Movement Disorders Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Martijn Figee
- Department of Neurology, Movement Disorders Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Ji Yeoun Yoo
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA
| | - Madeline C Fields
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| |
Collapse
|
2
|
Samanta D, Aungaroon G, Fine AL, Karakas C, Chiu MY, Jain P, Seinfeld S, Knowles JK, Mohamed IS, Stafstrom CE, Dixon-Salazar T, Patel AD, Bhalla S, Keator CG, Vidaurre J, Warren AEL, Shellhaas RA, Perry MS. Neuromodulation Strategies in Lennox-Gastaut Syndrome: Practical Clinical Guidance from the Pediatric Epilepsy Research Consortium. Epilepsy Res 2025; 210:107499. [PMID: 39778379 DOI: 10.1016/j.eplepsyres.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, cognitive impairment, and distinctive electroencephalographic patterns. Neuromodulation techniques, including vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS), have emerged as important treatment options for patients with LGS who do not respond adequately to antiseizure medications. This review, developed with input from the Pediatric Epilepsy Research Consortium (PERC) LGS Special Interest Group, provides practical guidance for clinicians on the use of these neuromodulation approaches in patients with LGS. We discuss patient selection criteria, expected seizure and non-seizure outcomes, potential complications, and device management considerations for each technique. The review also covers initiation and titration strategies, ongoing care requirements, and emerging data on combining multiple neuromodulation modalities. While all three approaches can reduce seizure frequency in patients with LGS, with commonly reported responder rates ranging from 50 % to 60 %, their impacts on cognition, behavior and quality of life are more variable. Careful patient selection, individualized programming, and long-term follow-up are essential to optimize outcomes with neuromodulation in this challenging patient population. Further research is needed to identify optimal candidates, determine the ideal timing during patients' clinical course to consider neuromodulation, develop standardized outcome measures, and evaluate the comparative effectiveness and cost-effectiveness of different neuromodulation techniques for LGS.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anthony L Fine
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Michelle Y Chiu
- Epilepsy Division, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Syndi Seinfeld
- Neuroscience Center, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - Juliet K Knowles
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ismail S Mohamed
- Department of Pediatrics, University of Alabama, Birmingham, AL, USA
| | - Carl E Stafstrom
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Anup D Patel
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; The Center for Clinical Excellence, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sonam Bhalla
- Division of Child Neurology, Emory University/Children's Healthcare of Atlanta, USA
| | - Cynthia Guadalupe Keator
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Jorge Vidaurre
- Department of Pediatrics, Division of Pediatric Neurology, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Renée A Shellhaas
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| |
Collapse
|
3
|
Besag FMC, Vasey MJ, Brown RJ. Promising therapeutic strategies for Lennox-Gastaut syndrome: what's new? Expert Rev Neurother 2025; 25:15-27. [PMID: 39706228 DOI: 10.1080/14737175.2024.2439512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION The seizures in Lennox-Gastaut syndrome are typically resistant to treatment. Seven antiseizure medications (ASMs) in the US (six in the UK/EU) are licensed for the treatment of seizures in LGS: lamotrigine, topiramate, rufinamide, clobazam, felbamate (not licensed in the UK/EU), cannabidiol and fenfluramine. Other options include neurostimulation, corpus callosotomy and dietary therapies, principally the ketogenic diet and its variants. New treatments and therapeutic strategies are needed to improve management of both seizures and cognitive/behavioral comorbidities in LGS. AREAS COVERED Embase and Medline were searched for articles published between 1 January 2014 and 21 August 2024 reporting efficacy data for pharmacological, neurostimulation, surgical and dietary interventions in individuals with LGS focusing on recent advances. Ongoing and prospective studies were identified from the National Library of Medicine register of clinical trials. EXPERT OPINION LGS remains a difficult-to-treat epilepsy. Although no major breakthroughs have been reported, several established and novel ASMs, some surgical strategies and other treatment approaches are of benefit or are showing promise. Progress remains incremental but any improvements in the management of this resistant epilepsy syndrome are worthwhile.
Collapse
Affiliation(s)
- Frank M C Besag
- Child and Adolescent Mental Health Services, East London NHS Foundation Trust, Bedford, UK
- School of Pharmacy, University College London, London, UK
- Department of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michael J Vasey
- Child and Adolescent Mental Health Services, East London NHS Foundation Trust, Bedford, UK
| | - Richard J Brown
- Department of Paediatrics, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
4
|
Choo SH, Park HR, Lee S, Lee JI, Joo EY, Seo DW, Hong SB, Shon YM. Hippocampal deep brain stimulation for drug-resistant epilepsy: Insights from bilateral temporal lobe and posterior epilepsy cases. Seizure 2025; 124:57-65. [PMID: 39662128 DOI: 10.1016/j.seizure.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE This study evaluates the long-term efficacy of hippocampal deep brain stimulation (Hip-DBS) in patients with drug-resistant epilepsy (DRE), specifically focusing on bilateral temporal lobe epilepsy (BTLE) and posterior epilepsy (PE). METHODS A retrospective analysis was conducted on 15 DRE patients (11 BTLE, 4 PE) who underwent bilateral Hip-DBS at Samsung Medical Center over an eight-year period. Medical records, seizure diaries, and neuropsychological assessments were reviewed. The surgical and follow-up protocols were adapted from our previous clinical research. RESULTS The median seizure reduction rate was 77.8 % for disabling seizures (DS) and 47.9 % for non-disabling seizures (NDS). Subgroup analysis revealed a 77.8 % reduction in DS for BTLE patients and 68.8 % for PE patients. The overall responder rate was 86.7 % for DS and 50 % for NDS. Neuropsychological evaluations showed stable cognitive functions post-treatment, with a non-significant trend towards improvement in non-verbal and visuo-spatial cognitive domains. CONCLUSION This study provides preliminary evidence supporting the efficacy of Hip-DBS in reducing seizure frequency in both BTLE and PE patients, with a more pronounced effect on disabling seizures. The potential cognitive preservation and possible enhancement in specific domains warrant further investigation. Despite limitations such as the retrospective design and reliance on self-reported seizure frequencies, these findings encourage further exploration of Hip-DBS as a treatment modality for DRE, particularly in cases where resective surgery is contraindicated.
Collapse
Affiliation(s)
- Seung Ho Choo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hea Ree Park
- Department of Neurology, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Korea
| | - Seunghoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae-Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Samanta D, Haneef Z, Albert GW, Naik S, Reeders PC, Jain P, Abel TJ, Al-Ramadhani R, Ibrahim GM, Warren AEL. Neuromodulation strategies in developmental and epileptic encephalopathies. Epilepsy Behav 2024; 160:110067. [PMID: 39393142 DOI: 10.1016/j.yebeh.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of childhood-onset epilepsy syndromes characterized by frequent seizures, severe cognitive and behavioral impairments, and poor long-term outcomes. These conditions are typically refractory to currently available medical therapies, prompting recent exploration of neuromodulation treatments such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), which aim to modulate epileptic networks spanning cortical and subcortical regions. These advances have occurred alongside an improved understanding of syndrome-specific and interictal epileptiform discharge/seizure-specific brain networks. By targeting key nodes within these networks, DBS and RNS hold promise for influencing seizures and associated cognitive and behavioral comorbidities. Initial experiences with centromedian (CM) thalamic DBS for Lennox-Gastaut syndrome (LGS) have shown modest efficacy across multiple seizure types. Reports also indicate the application of DBS and RNS across various genetic and structural etiologies commonly associated with DEEs, with mixed success. Although DBS and RNS are increasingly used in LGS and other DEEs, their mixed efficacy highlights a knowledge gap in understanding why some patients with LGS do not respond and which neuromodulation approach is most effective for other DEEs. To address these issues, this review first discusses recent neuroimaging studies showing similarities and differences in the epileptic brain networks underlying various DEEs, revealing the common involvement of the thalamus and the default-mode network (DMN) across multiple DEEs. We then examine thalamic DBS for LGS to illustrate how such network insights may be used to optimize neuromodulation. Although network-based neuromodulation is still in its infancy, the LGS model may serve as a framework for other DEEs, where optimal treatment necessitates consideration of the underlying epileptic networks. Lastly, the review suggests future research directions, including individualized connectivity assessment and biomarker identification through collaborative efforts, which may enhance the therapeutic potential of neuromodulation for individuals living with DEEs.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Departmen of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruba Al-Ramadhani
- Division of Child Neurology, University of Pittsburgh, Department of Pediatrics, Pittsburgh, PA, USA
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Tatum WO, Freund B, Middlebrooks EH, Lundstrom BN, Feyissa AM, Van Gompel JJ, Grewal SS. CM-Pf deep brain stimulation in polyneuromodulation for epilepsy. Epileptic Disord 2024; 26:626-637. [PMID: 39078093 DOI: 10.1002/epd2.20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE Neuromodulation is a viable option for patients with drug-resistant epilepsies. We reviewed the management of patients with two deep brain neurostimulators. In addition, patients implanted with a device targeting the centromedian-parafascicular (CM-Pf) nuclear complex supplements this report to provide an illustrative case to implantation and programming a patient with three active devices. METHODS A narrative review using PubMed and Embase identified patients with drug-resistant epilepsy implanted with more than one neurostimulator was performed. Combinations of vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS) were identified. We provide a background of a newly reported case of an adult with a triple implant eventually responding to CM-Pf DBS as the third implant following suboptimal benefit from VNS and RNS. RESULTS In review of the literature, dual-device therapy is increasing in reports of use with combinations of VNS, RNS, and DBS to treat patients with drug-resistant epilepsy. We review dual-device implants with thalamic DBS device combinations, functional neural networks, and programming patients with dual devices. CM-Pf is a new target for DBS and has shown a variable response in focal epilepsy. We report the unique case of 28-year-old male with drug-resistant focal epilepsy who experienced a 75% seizure reduction with CM-Pf DBS as his third device after suboptimal responses to VNS and RNS. After 9 months, he also experienced seizure freedom from recurrent focal to bilateral tonic-clonic seizures. No medical or surgical complications or safety issues were encountered. CONCLUSION We demonstrate safety and feasibility in an adult combining active VNS, RNS, and CM-Pf DBS. Patients with dual-device therapy who experience a suboptimal response to initial device use at optimized settings should not be considered a neuromodulation "failure." Strategies to combine devices require a working knowledge of brain networks.
Collapse
Affiliation(s)
- W O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - B Freund
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - E H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - B N Lundstrom
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - A M Feyissa
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - J J Van Gompel
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - S S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
7
|
Salama H, Salama A, Oscher L, Jallo GI, Shimony N. The role of neuromodulation in the management of drug-resistant epilepsy. Neurol Sci 2024; 45:4243-4268. [PMID: 38642321 DOI: 10.1007/s10072-024-07513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Drug-resistant epilepsy (DRE) poses significant challenges in terms of effective management and seizure control. Neuromodulation techniques have emerged as promising solutions for individuals who are unresponsive to pharmacological treatments, especially for those who are not good surgical candidates for surgical resection or laser interstitial therapy (LiTT). Currently, there are three neuromodulation techniques that are FDA-approved for the management of DRE. These include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Device selection, optimal time, and DBS and RNS target selection can also be challenging. In general, the number and localizability of the epileptic foci, alongside the comorbidities manifested by the patients, substantially influence the selection process. In the past, the general axiom was that DBS and VNS can be used for generalized and localized focal seizures, while RNS is typically reserved for patients with one or two highly localized epileptic foci, especially if they are in eloquent areas of the brain. Nowadays, with the advance in our understanding of thalamic involvement in DRE, RNS is also very effective for general non-focal epilepsy. In this review, we will discuss the underlying mechanisms of action, patient selection criteria, and the evidence supporting the use of each technique. Additionally, we explore emerging technologies and novel approaches in neuromodulation, such as closed-loop systems. Moreover, we examine the challenges and limitations associated with neuromodulation therapies, including adverse effects, complications, and the need for further long-term studies. This comprehensive review aims to provide valuable insights on present and future use of neuromodulation.
Collapse
Affiliation(s)
- HusamEddin Salama
- Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine
| | - Ahmed Salama
- Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine
| | - Logan Oscher
- Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA.
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| |
Collapse
|
8
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Nanda P, Sisterson N, Walton A, Chu CJ, Cash SS, Moura LMVR, Oster JM, Urban A, Richardson RM. Centromedian region thalamic responsive neurostimulation mitigates idiopathic generalized and multifocal epilepsy with focal to bilateral tonic-clonic seizures. Epilepsia 2024; 65:2626-2640. [PMID: 39052021 DOI: 10.1111/epi.18070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Although >30% of epilepsy patients have drug-resistant epilepsy (DRE), typically those with generalized or multifocal disease have not traditionally been considered surgical candidates. Responsive neurostimulation (RNS) of the centromedian (CM) region of the thalamus now appears to be a promising therapeutic option for this patient population. We present outcomes following CM RNS for 13 patients with idiopathic generalized epilepsy (IGE) and eight with multifocal onsets that rapidly generalize to bilateral tonic-clonic (focal to bilateral tonic-clonic [FBTC]) seizures. METHODS A retrospective review of all patients undergoing bilateral CM RNS by the senior author through July 2022 were reviewed. Electrodes were localized and volumes of tissue activation were modeled in Lead-DBS. Changes in patient seizure frequency were extracted from electronic medical records. RESULTS Twenty-one patients with DRE underwent bilateral CM RNS implantation. For 17 patients with at least 1 year of postimplantation follow-up, average seizure reduction from preoperative baseline was 82.6% (SD = 19.0%, median = 91.7%), with 18% of patients Engel class 1, 29% Engel class 2, 53% Engel class 3, and 0% Engel class 4. There was a trend for average seizure reduction to be greater for patients with nonlesional FBTC seizures than for other patients. For patients achieving at least Engel class 3 outcome, median time to worthwhile seizure reduction was 203.5 days (interquartile range = 110.5-343.75 days). Patients with IGE with myoclonic seizures had a significantly shorter time to worthwhile seizure reduction than other patients. The surgical targeting strategy evolved after the first four subjects to achieve greater anatomic accuracy. SIGNIFICANCE Patients with both primary and rapidly generalized epilepsy who underwent CM RNS experienced substantial seizure relief. Subsets of these patient populations may particularly benefit from CM RNS. The refinement of lead targeting, tuning of RNS system parameters, and patient selection are ongoing areas of investigation.
Collapse
Affiliation(s)
- Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathaniel Sisterson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashley Walton
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lidia M V R Moura
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joel M Oster
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Alexandra Urban
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Panchavati S, Daida A, Edmonds B, Miyakoshi M, Oana S, Ahn SS, Arnold C, Salamon N, Sankar R, Fallah A, Speier W, Nariai H. Uncovering spatiotemporal dynamics of the corticothalamic network at ictal onset. Epilepsia 2024; 65:1989-2003. [PMID: 38662128 PMCID: PMC11251868 DOI: 10.1111/epi.17990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Although the clinical efficacy of deep brain stimulation targeting the anterior nucleus (AN) and centromedian nucleus (CM) of the thalamus has been actively investigated for the treatment of medication-resistant epilepsy, few studies have investigated dynamic ictal changes in corticothalamic connectivity in human electroencephalographic (EEG) recording. This study aims to establish the complex spatiotemporal dynamics of the ictal corticothalamic network associated with various seizure foci. METHODS We analyzed 10 patients (aged 2.7-28.1 years) with medication-resistant focal epilepsy who underwent stereotactic EEG evaluation with thalamic sampling. We examined both undirected and directed connectivity, incorporating coherence and spectral Granger causality analysis (GCA) between the diverse seizure foci and thalamic nuclei (AN and CM) at ictal onset. RESULTS In our analysis of 36 seizures, coherence between seizure onset and thalamic nuclei increased across all frequencies, especially in slower bands (delta, theta, alpha). GCA showed increased information flow from seizure onset to the thalamus across all frequency bands, but outflows from the thalamus were mainly in slower frequencies, particularly delta. In the subgroup analysis based on various seizure foci, the delta coherence showed a more pronounced increase at CM than at AN during frontal lobe seizures. Conversely, in limbic seizures, the delta coherence increase was greater at AN compared to CM. SIGNIFICANCE It appears that the delta frequency plays a pivotal role in modulating the corticothalamic network during seizures. Our results underscore the significance of comprehending the spatiotemporal dynamics of the corticothalamic network at ictal onset, and this knowledge could guide personalized responsive neuromodulation treatment strategies.
Collapse
Affiliation(s)
- Saarang Panchavati
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Makoto Miyakoshi
- Department of Psychiatry and Behavioral Neuroscience, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Samuel S. Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Corey Arnold
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - William Speier
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
11
|
Suresh S, Chaitanya G, Kachhvah AD, Vashin V, Saranathan M, Pati S. Case report: Nocturnal low-frequency stimulation of the centromedian thalamic nucleus improves sleep quality and seizure control. Front Hum Neurosci 2024; 18:1392100. [PMID: 38903408 PMCID: PMC11188458 DOI: 10.3389/fnhum.2024.1392100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Sleep disturbances and drug-resistant seizures significantly impact people with idiopathic generalized epilepsy (IGE). Thalamic deep brain stimulation (DBS) offers potential treatment, but its effect on sleep and seizure control needs clarification. In this study, we combined wearable sleep monitoring with electroencephalogram (EEG) confirmation to investigate the impact of nocturnal centromedian nucleus (CM) DBS parameters in a patient with drug-resistant IGE. We found that high-frequency (125 Hz) CM stimulation during sleep severely disrupted sleep macro architecture and exacerbated seizures. Conversely, switching to low-frequency (10 Hz) stimulation enhanced both sleep quality and seizure control. This study underscores the critical need to personalize DBS settings, tailoring them to individual patients' sleep patterns to maximize therapeutic benefits. While larger-scale trials are needed, our findings pave the way for patient-centric approaches to thalamic neuromodulation, offering a transformative path to improve treatment outcomes and quality of life for those with refractory epilepsy.
Collapse
Affiliation(s)
- Surya Suresh
- Department of Neurology, Texas Institute of Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ganne Chaitanya
- Department of Neurology, Texas Institute of Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ajay Deep Kachhvah
- Department of Neurology, Texas Institute of Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Vladimir Vashin
- Department of Neurology, Texas Institute of Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Manojkumar Saranathan
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sandipan Pati
- Department of Neurology, Texas Institute of Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Arredondo K, Ostendorf AP, Ahrens S, Beatty CW, Pindrik J, Shaikhouni A. Post-ictal Rhythmic Thalamic Activity of the Centromedian Nucleus. J Clin Neurophysiol 2024; 41:326-333. [PMID: 36893381 DOI: 10.1097/wnp.0000000000000991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION Deep brain stimulation of the centromedian nucleus of the thalamus (CMN) to treat drug-resistant epilepsy has been of interest for decades. However, little is known about the electrophysiological activity of the CMN during seizures. We describe a novel CMN EEG finding associated with seizure: post-ictal rhythmic thalamic activity. METHODS Five patients with drug-resistant epilepsy of unknown etiology with focal onset seizures underwent stereoelectroencephalography monitoring as part of evaluation for potential resective surgery or neuromodulation. Two patients had previously undergone complete corpus callosotomy and vagus nerve stimulation. A standardized plan for implantation included targets in the bilateral CMN. RESULTS Each patient had frontal onset seizures, and two patients had additional insular, parietal, or mesial temporal onset seizures. Contacts of CMN were involved synchronously or rapidly after onset in most recorded seizures, particularly those with frontal onset. Focal onset hemiclonic and bilateral tonic-clonic seizures spread to involve cortical contacts with high-amplitude rhythmic spiking followed by abrupt offset with diffuse voltage attenuation. A post-ictal rhythmic 1.5 to 2.5 Hz delta frequency pattern, post-ictal rhythmic thalamic activity, emerged in CMN contacts amid the suppression of background activity in cortical contacts. In the two patients with corpus callosotomy, unilateral seizure spread and ipsilateral post-ictal rhythmic thalamic activity were observed. CONCLUSIONS We observed post-ictal rhythmic thalamic activity in five patients with stereoelectroencephalography monitoring of the CMN with convulsive seizures. This rhythm appears late in ictal evolution and may signal an important role of the CMN in seizure termination. Furthermore, this rhythm may help identify CMN involvement in the epileptic network.
Collapse
Affiliation(s)
- Kristen Arredondo
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX, U.S.A
| | - Adam P Ostendorf
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, U.S.A; and
| | - Stephanie Ahrens
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, U.S.A; and
| | - Christopher W Beatty
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, U.S.A; and
| | - Jonathan Pindrik
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, U.S.A
| | - Ammar Shaikhouni
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, U.S.A
| |
Collapse
|
13
|
Sandoval-Bonilla BA, Vargas MFDLC, Nuñez MA, Parpaley Y, Codeiro JG, Cosio JF, de la Torre RAP, Garcia-Muñoz L. Adequate control of seizures in a case of lead migration and neuromodulation of the posterior Sylvian junction: A case report. Surg Neurol Int 2024; 15:124. [PMID: 38742005 PMCID: PMC11090593 DOI: 10.25259/sni_911_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/27/2024] [Indexed: 05/16/2024] Open
Abstract
Background This report aims to describe the neuromodulation effect on seizure control in a patient with a left hippocampal migrated electrode to the Posterior Sylvian Junction (PSJ) during a follow-up of 17 years. Case Description We report a case of a female patient with drug-resistant epilepsy who initiated at seven years old and underwent a stereotactic frame-based insertion of a left hippocampal electrode for deep brain stimulation (DBS). Posterior migration of the electrode was identified at PSJ by postoperative magnetic resonance imaging one month after surgery. A consistent seizure reduction (Engel IC) was obtained with 2v-120 uS-145 Hz, contacts 0-3 negative, casing positive DBS parameters and maintained to this day. Patient data were collected from electronic medical records preceded by obtaining an informed consent for research and publication purposes. Stimulation parameter adjustments were confirmed with the digital records of the local device provider (Medtronic). Results PSJ is a connectivity confluence point of white matter pathways in the posterior quadrant of the hemispheres. White mater DBS could be considered for research as a potential complementary target for neuromodulation of refractory epilepsy.
Collapse
Affiliation(s)
- Bayron Alexander Sandoval-Bonilla
- Associate Professor of Neurosurgery, Department of Neurosurgery, Functional NeuroOncology and Epilepsy Surgery Multidisciplinary Board, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | | | | | - Yaroslav Parpaley
- Department of Neurosurgery, University Hospital Bochum, Bochum, Nordrhein-Westfalen, Germany
| | | | - Jesus Fonseca Cosio
- Department of Neurosurgery, Functional Neurosurgery Clinic, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | | | - Luis Garcia-Muñoz
- Department of Radiosurgery, Functional and Stereotactic Neurosurgery, General Hospital of Mexico, Mexico City, Mexico
| |
Collapse
|
14
|
Gouveia FV, Warsi NM, Suresh H, Matin R, Ibrahim GM. Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics 2024; 21:e00308. [PMID: 38177025 PMCID: PMC11103217 DOI: 10.1016/j.neurot.2023.e00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Epilepsy is a common and debilitating neurological disorder, and approximately one-third of affected individuals have ongoing seizures despite appropriate trials of two anti-seizure medications. This population with drug-resistant epilepsy (DRE) may benefit from neurostimulation approaches, such as vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). In some patient populations, these techniques are FDA-approved for treating DRE. VNS is used as adjuvant therapy for children and adults. Acting via the vagus afferent network, VNS modulates thalamocortical circuits, reducing seizures in approximately 50 % of patients. RNS uses an adaptive (closed-loop) system that records intracranial EEG patterns to activate the stimulation at the appropriate time, being particularly well-suited to treat seizures arising within eloquent cortex. For DBS, the most promising therapeutic targets are the anterior and centromedian nuclei of the thalamus, with anterior nucleus DBS being used for treating focal and secondarily generalized forms of DRE and centromedian nucleus DBS being applied for treating generalized epilepsies such as Lennox-Gastaut syndrome. Here, we discuss the indications, advantages and limitations of VNS, DBS and RNS in treating DRE and summarize the spatial distribution of neuroimaging observations related to epilepsy and stimulation using NeuroQuery and NeuroSynth.
Collapse
Affiliation(s)
| | - Nebras M Warsi
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hrishikesh Suresh
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Mensah-Brown KG, Naylor RM, Graepel S, Brinjikji W. Neuromodulation: What the neurointerventionalist needs to know. Interv Neuroradiol 2024:15910199231224554. [PMID: 38454831 PMCID: PMC11569746 DOI: 10.1177/15910199231224554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 03/09/2024] Open
Abstract
Neuromodulation is the alteration of neural activity in the central, peripheral, or autonomic nervous systems. Consequently, this term lends itself to a variety of organ systems including but not limited to the cardiac, nervous, and even gastrointestinal systems. In this review, we provide a primer on neuromodulation, examining the various technological systems employed and neurological disorders targeted with this technology. Ultimately, we undergo a historical analysis of the field's development, pivotal discoveries and inventions gearing this review to neuro-adjacent subspecialties with a specific focus on neurointerventionalists.
Collapse
Affiliation(s)
| | - Ryan M. Naylor
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
16
|
Sharma A, Parfyonov M, Tiefenbach J, Hogue O, Nero N, Jehi L, Serletis D, Bingaman W, Gupta A, Rammo R. Predictors of therapeutic response following thalamic neuromodulation for drug-resistant pediatric epilepsy: A systematic review and individual patient data meta-analysis. Epilepsia 2024; 65:542-555. [PMID: 38265348 DOI: 10.1111/epi.17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
We sought to perform a systematic review and individual participant data meta-analysis to identify predictors of treatment response following thalamic neuromodulation in pediatric patients with medically refractory epilepsy. Electronic databases (MEDLINE, Ovid, Embase, and Cochrane) were searched, with no language or data restriction, to identify studies reporting seizure outcomes in pediatric populations following deep brain stimulation (DBS) or responsive neurostimulation (RNS) implantation in thalamic nuclei. Studies featuring individual participant data of patients with primary or secondary generalized drug-resistant epilepsy were included. Response to therapy was defined as >50% reduction in seizure frequency from baseline. Of 417 citations, 21 articles reporting on 88 participants were eligible. Mean age at implantation was 13.07 ± 3.49 years. Fifty (57%) patients underwent DBS, and 38 (43%) RNS. Sixty (68%) patients were implanted in centromedian nucleus and 23 (26%) in anterior thalamic nucleus, and five (6%) had both targets implanted. Seventy-four (84%) patients were implanted bilaterally. The median time to last follow-up was 12 months (interquartile range = 6.75-26.25). Sixty-nine percent of patients achieved response to treatment. Age, target, modality, and laterality had no significant association with response in univariate logistic regression. Until thalamic neuromodulation gains widespread approval for use in pediatric patients, data on efficacy will continue to be limited to small retrospective cohorts and case series. The inherent bias of these studies can be overcome by using individual participant data. Thalamic neuromodulation appears to be a safe and effective treatment for epilepsy. Larger, prolonged prospective, multicenter studies are warranted to further evaluate the efficacy of DBS over RNS in this patient population where resection for curative intent is not a safe option.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Maksim Parfyonov
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jakov Tiefenbach
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Neil Nero
- Education Institute, Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Demitre Serletis
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ajay Gupta
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard Rammo
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Yang AI, Raghu ALB, Isbaine F, Alwaki A, Gross RE. Sensing with deep brain stimulation device in epilepsy: Aperiodic changes in thalamic local field potential during seizures. Epilepsia 2023; 64:3025-3035. [PMID: 37607249 DOI: 10.1111/epi.17758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Thalamic deep brain stimulation (DBS) is an effective therapeutic option in patients with drug-resistant epilepsy. Recent DBS devices with sensing capabilities enable chronic, outpatient local field potential (LFP) recordings. Whereas beta oscillations have been demonstrated to be a useful biomarker in movement disorders, the clinical utility of DBS sensing in epilepsy remains unclear. Our aim was to determine LFP features that distinguish ictal from inter-ictal states, which may aid in tracking seizure outcomes with DBS. METHODS Electrophysiology data were obtained from DBS devices implanted in the anterior nucleus (N = 12) or centromedian nucleus (N = 2) of the thalamus. Power spectra recorded during patient/caregiver-marked seizure events were analyzed with a method that quantitatively separates the oscillatory and non-oscillatory/aperiodic components of the LFP using non-parametric statistics, without the need for pre-specification of the frequency bands of interest. Features of the LFP parameterized using this algorithm were compared with those from inter-ictal power spectra recorded in clinic. RESULTS Oscillatory activity in multiple canonical frequency bands was identified from the power spectra in 86.48% of patient-marked seizure events. Delta oscillations were present in all patients, followed by theta (N = 10) and beta (N = 9). Although there were no differences in oscillatory LFP features between the ictal and inter-ictal states, there was a steeper decline in the 1/f slope of the aperiodic component of the LFP during seizures. SIGNIFICANCE Our work highlights the potential and shortcomings of chronic LFP recordings in thalamic DBS for epilepsy. Findings suggest that no single frequency band in isolation clearly differentiates seizures, and that features of aperiodic LFP activity may be clinically-relevant biomarkers of seizures.
Collapse
Affiliation(s)
- Andrew I Yang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ashley L B Raghu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Faical Isbaine
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Abdulrahman Alwaki
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Manjunatha RT, Vakilna YS, Chaitanya G, Alamoudi O, Ilyas A, Pati S. Advancing the frontiers of thalamic neuromodulation: A review of emerging targets and paradigms. Epilepsy Res 2023; 196:107219. [PMID: 37660585 DOI: 10.1016/j.eplepsyres.2023.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The thalamus is a key structure that plays a crucial role in initiating and propagating seizures. Recent advancements in neuroimaging and neurophysiology have identified the thalamus as a promising target for neuromodulation in drug-resistant epilepsies. This review article presents the latest innovations in thalamic targets and neuromodulation paradigms being explored in pilot or pivotal clinical trials. Multifocal temporal plus or posterior quadrant epilepsies are evaluated with pulvinar thalamus neuromodulation, while centromedian thalamus is explored in generalized epilepsies and Lennox Gastaut syndrome. Multinodal thalamocortical neuromodulation with novel stimulation paradigms such as long bursting or low-frequency stimulation is being investigated to quench the epileptic network excitability. Beyond seizure control, thalamic neuromodulation to restore consciousness is being studied. This review highlights the promising potential of thalamic neuromodulation in epilepsy treatment, offering hope to patients who have not responded to conventional medical therapies. However, it also emphasizes the need for larger randomized controlled trials and personalized stimulation paradigms to improve patient outcomes further.
Collapse
Affiliation(s)
- Ramya Talanki Manjunatha
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yash Shashank Vakilna
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Ganne Chaitanya
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Omar Alamoudi
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Adeel Ilyas
- Department of Neurosurgery, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Sandipan Pati
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
19
|
Edmonds B, Miyakoshi M, Gianmaria Remore L, Ahn S, Westley Phillips H, Daida A, Salamon N, Bari A, Sankar R, Matsumoto JH, Fallah A, Nariai H. Characteristics of ictal thalamic EEG in pediatric-onset neocortical focal epilepsy. Clin Neurophysiol 2023; 154:116-125. [PMID: 37595481 PMCID: PMC10529874 DOI: 10.1016/j.clinph.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE To characterize ictal EEG change in the centromedian (CM) and anterior nucleus (AN) of the thalamus, using stereoelectroencephalography (SEEG) recordings. METHODS Forty habitual seizures were analyzed in nine patients with pediatric-onset neocortical drug-resistant epilepsy who underwent SEEG (age 2-25 y) with thalamic coverage. Both visual and quantitative analysis was used to evaluate ictal EEG signal in the cortex and thalamus. The amplitude and cortico-thalamic latencies of broadband frequencies at ictal onset were measured. RESULTS Visual analysis demonstrated consistent detection of ictal EEG changes in both the CM nucleus and AN nucleus with latency to thalamic ictal EEG changes of less than 400 ms in 95% of seizures, with low-voltage fast activity being the most common ictal pattern. Quantitative broadband amplitude analysis showed consistent power changes across the frequency bands, corresponding to ictal EEG onset, while while ictal EEG latency was variable from -18.0 seconds to 13.2 seconds. There was no significant difference between detection of CM and AN ictal activity on visual or amplitude analysis. Four patients with subsequent thalamic responsive neurostimulation (RNS) demonstrated ictal EEG changes consistent with SEEG findings. CONCLUSIONS Ictal EEG changes were consistently seen at the CM and AN of the thalamus during neocortical seizures. SIGNIFICANCE It may be feasible to use a closed-loop system in the thalamus to detect and modulate seizure activity for neocortical epilepsy.
Collapse
Affiliation(s)
- Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, UCSD Medical Center, San Diego, CA, USA.
| | - Luigi Gianmaria Remore
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Samuel Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - H Westley Phillips
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Ausaf Bari
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Joyce H Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Venkatesh P, Wolfe C, Lega B. Neuromodulation of the anterior thalamus: Current approaches and opportunities for the future. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100109. [PMID: 38020810 PMCID: PMC10663132 DOI: 10.1016/j.crneur.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
The role of thalamocortical circuits in memory has driven a recent burst of scholarship, especially in animal models. Investigating this circuitry in humans is more challenging. And yet, the development of new recording and stimulation technologies deployed for clinical indications has created novel opportunities for data collection to elucidate the cognitive roles of thalamic structures. These technologies include stereoelectroencephalography (SEEG), deep brain stimulation (DBS), and responsive neurostimulation (RNS), all of which have been applied to memory-related thalamic regions, specifically for seizure localization and treatment. This review seeks to summarize the existing applications of neuromodulation of the anterior thalamic nuclei (ANT) and highlight several devices and their capabilities that can allow cognitive researchers to design experiments to assay its functionality. Our goal is to introduce to investigators, who may not be familiar with these clinical devices, the capabilities, and limitations of these tools for understanding the neurophysiology of the ANT as it pertains to memory and other behaviors. We also briefly cover the targeting of other thalamic regions including the centromedian (CM) nucleus, dorsomedial (DM) nucleus, and pulvinar, with associated potential avenues of experimentation.
Collapse
Affiliation(s)
- Pooja Venkatesh
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
21
|
Fields MC, Eka O, Schreckinger C, Dugan P, Asaad WF, Blum AS, Bullinger K, Willie JT, Burdette DE, Anderson C, Quraishi IH, Gerrard J, Singh A, Lee K, Yoo JY, Ghatan S, Panov F, Marcuse LV. A multicenter retrospective study of patients treated in the thalamus with responsive neurostimulation. Front Neurol 2023; 14:1202631. [PMID: 37745648 PMCID: PMC10516547 DOI: 10.3389/fneur.2023.1202631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction For drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures. This paper explores the use of RNS in the centromedian nucleus of the thalamus (CMN) and in the anterior thalamic nucleus (ANT) of patients with drug resistant epilepsy. Methods This is a retrospective multicenter study from seven different epilepsy centers in the United States. Patients that had unilateral or bilateral thalamic RNS leads implanted in the CMN or ANT for at least 6 months were included. Primary objectives were to describe the implant location and determine changes in the frequency of disabling seizures at 6 months, 1 year, 2 years, and > 2 years. Secondary objectives included documenting seizure free periods, anti-seizure medication regimen changes, stimulation side effects, and serious adverse events. In addition, the global clinical impression scale was completed. Results Twelve patients had at least one lead placed in the CMN, and 13 had at least one lead placed in the ANT. The median baseline seizure frequency was 15 per month. Overall, the median seizure reduction was 33% at 6 months, 55% at 1 year, 65% at 2 years, and 74% at >2 years. Seizure free intervals of at least 3 months occurred in nine patients. Most patients (60%, 15/25) did not have a change in anti-seizure medications post RNS placement. Two serious adverse events were recorded, one related to RNS implantation. Lastly, overall functioning seemed to improve with 88% showing improvement on the global clinical impression scale. Discussion Meaningful seizure reduction was observed in patients who suffer from drug resistant epilepsy with unilateral or bilateral RNS in either the ANT or CMN of the thalamus. Most patients remained on their pre-operative anti-seizure medication regimen. The device was well tolerated with few side effects. There were rare serious adverse events. Most patients showed an improvement in global clinical impression scores.
Collapse
Affiliation(s)
- Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Onome Eka
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Patricia Dugan
- Department of Neurology, Langone Medical Center, New York University, New York, NY, United States
| | - Wael F Asaad
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Andrew S Blum
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Katie Bullinger
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Jon T Willie
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, United States
| | - David E Burdette
- Department of Neurosciences, Corewell Health, Grand Rapids, MI, United States
| | - Christopher Anderson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Imran H Quraishi
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Jason Gerrard
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Anuradha Singh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kyusang Lee
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Yeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lara V Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
22
|
Panchavati S, Daida A, Edmonds B, Miyakoshi M, Oana S, Ahn SS, Arnold C, Salamon N, Sankar R, Fallah A, Speier W, Nariai H. Uncovering Spatiotemporal Dynamics of the Corticothalamic Network during Seizures. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.21.23294382. [PMID: 37662245 PMCID: PMC10473800 DOI: 10.1101/2023.08.21.23294382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Objective Although the clinical efficacy of deep brain stimulation targeting the anterior nucleus (AN) and centromedian nucleus (CM) of the thalamus has been actively investigated for the treatment of medication-resistant epilepsy, few studies have investigated dynamic ictal changes in corticothalamic connectivity in human EEG recording. This study aims to establish the complex spatiotemporal dynamics of the ictal corticothalamic network associated with various seizure foci. Methods We analyzed ten patients (aged 2.7-28.1) with medication-resistant focal epilepsy who underwent stereotactic EEG evaluation with thalamic coverage. We examined both undirected and directed connectivity, incorporating coherence and spectral Granger causality analysis (GCA) between the diverse seizure foci and thalamic nuclei (AN and CM). Results In our analysis of 36 seizures, coherence between seizure onset and thalamic nuclei increased across all frequencies, especially in slower bands (delta, theta, alpha). GCA showed increased information flow from seizure onset to the thalamus across all frequency bands, but outflows from the thalamus were mainly in slower frequencies, particularly delta. In the subgroup analysis based on various seizure foci, the delta coherence showed a more pronounced increase at CM than at AN during frontal lobe seizures. Conversely, in limbic seizures, the delta coherence increase was greater at AN compared to CM. Interpretation It appears that the delta frequency plays a pivotal role in modulating the corticothalamic network during seizures. Our results underscore the significance of comprehending the spatiotemporal dynamics of the corticothalamic network during seizures, and this knowledge could guide personalized neuromodulation treatment strategies.
Collapse
Affiliation(s)
- Saarang Panchavati
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Makoto Miyakoshi
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Samuel S Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Corey Arnold
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - William Speier
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
23
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
24
|
Edmonds B, Miyakoshi M, Remore LG, Ahn S, Phillips HW, Daida A, Salamon N, Bari A, Sankar R, Matsumoto JH, Fallah A, Nariai H. Characteristics of ictal thalamic EEG in pediatric-onset neocortical focal epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.22.23291714. [PMID: 37425697 PMCID: PMC10327240 DOI: 10.1101/2023.06.22.23291714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Objective To characterize ictal EEG change in the centromedian (CM) and anterior nucleus (AN) of the thalamus, using stereoelectroencephalography (SEEG) recordings. Methods Forty habitual seizures were analyzed in nine patients with pediatric-onset neocortical drug-resistant epilepsy who underwent SEEG (age 2-25 y) with thalamic coverage. Both visual and quantitative analysis was used to evaluate ictal EEG signal in the cortex and thalamus. The amplitude and cortico-thalamic latencies of broadband frequencies at ictal onset were measured. Results Visual analysis demonstrated consistent detection of ictal EEG changes in both the CM nucleus and AN nucleus with latency to thalamic ictal EEG changes of less than 400ms in 95% of seizures, with low-voltage fast activity being the most common ictal pattern. Quantitative broadband amplitude analysis showed consistent power changes across the frequency bands, corresponding to ictal EEG onset, while while ictal EEG latency was variable from -18.0 seconds to 13.2 seconds. There was no significant difference between detection of CM and AN ictal activity on visual or amplitude analysis. Four patients with subsequent thalamic responsive neurostimulation (RNS) demonstrated ictal EEG changes consistent with SEEG findings. Conclusions Ictal EEG changes were consistently seen at the CM and AN of the thalamus during neocortical seizures. Significance It may be feasible to use a closed-loop system in the thalamus to detect and modulate seizure activity for neocortical epilepsy.
Collapse
Affiliation(s)
- Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, UCSD Medical Center, San Diego, CA, USA
| | - Luigi Gianmaria Remore
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Samuel Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - H. Westley Phillips
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Ausaf Bari
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
25
|
Satzer D, Wu S, Henry J, Doll E, Issa NP, Warnke PC. Ambulatory Local Field Potential Recordings from the Thalamus in Epilepsy: A Feasibility Study. Stereotact Funct Neurosurg 2023; 101:195-206. [PMID: 37232010 PMCID: PMC11227660 DOI: 10.1159/000529961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Stimulation of the thalamus is gaining favor in the treatment of medically refractory multifocal and generalized epilepsy. Implanted brain stimulators capable of recording ambulatory local field potentials (LFPs) have recently been introduced, but there is little information to guide their use in thalamic stimulation for epilepsy. This study sought to assess the feasibility of chronically recording ambulatory interictal LFP from the thalamus in patients with epilepsy. METHODS In this pilot study, ambulatory LFP was recorded from patients who underwent sensing-enabled deep brain stimulation (DBS, 2 participants) or responsive neurostimulation (RNS, 3 participants) targeting the anterior nucleus of the thalamus (ANT, 2 electrodes), centromedian nucleus (CM, 7 electrodes), or medial pulvinar (PuM, 1 electrode) for multifocal or generalized epilepsy. Time-domain and frequency-domain LFP was investigated for epileptiform discharges, spectral peaks, circadian variation, and peri-ictal patterns. RESULTS Thalamic interictal discharges were visible on ambulatory recordings from both DBS and RNS. At-home interictal frequency-domain data could be extracted from both devices. Spectral peaks were noted at 10-15 Hz in CM, 6-11 Hz in ANT, and 19-24 Hz in PuM but varied in prominence and were not visible in all electrodes. In CM, 10-15 Hz power exhibited circadian variation and was attenuated by eye opening. CONCLUSION Chronic ambulatory recording of thalamic LFP is feasible. Common spectral peaks can be observed but vary between electrodes and across neural states. DBS and RNS devices provide a wealth of complementary data that have the potential to better inform thalamic stimulation for epilepsy.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Shasha Wu
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Julia Henry
- Department of Pediatrics, Child Neurology Section, University of Chicago, Chicago, IL, USA
| | - Emily Doll
- Department of Pediatrics, Child Neurology Section, University of Chicago, Chicago, IL, USA
| | - Naoum P. Issa
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Peter C. Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
27
|
Kalamatianos T, Mavrovounis G, Skouras P, Pandis D, Fountas K, Stranjalis G. Medial Pulvinar Stimulation in Temporal Lobe Epilepsy: A Literature Review and a Hypothesis Based on Neuroanatomical Findings. Cureus 2023; 15:e35772. [PMID: 37025746 PMCID: PMC10071339 DOI: 10.7759/cureus.35772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
While bilateral stimulation of the anterior thalamic nuclei remains the only approved deep brain stimulation (DBS) option for focal epilepsy, two additional thalamic targets have been proposed. Earlier work indicated the potential of centromedian thalamic nucleus stimulation with recent findings highlighting the medial pulvinar nucleus. The latter has been shown to exhibit electrophysiological and imaging alterations in patients with partial status epilepticus and temporal lobe epilepsy. On this basis, recent studies have begun assessing the feasibility and efficacy of pulvinar stimulation, with encouraging results on the reduction of seizure frequency and severity. Building on existing neuroanatomical knowledge, indicating that the medial pulvinar is connected to the temporal lobe via the temporopulvinar bundle of Arnold, we hypothesize that this is one of the routes through which medial pulvinar stimulation affects temporal lobe structures. We suggest that further anatomic, imaging, and electrophysiologic studies are warranted to deepen our understanding of the subject and guide future clinical applications.
Collapse
|
28
|
Haneef Z, Skrehot HC. Neurostimulation in generalized epilepsy: A systematic review and meta-analysis. Epilepsia 2023; 64:811-820. [PMID: 36727550 DOI: 10.1111/epi.17524] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVE There are three neurostimulation devices available to treat generalized epilepsy: vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). However, the choice between them is unclear due to lack of head-to-head comparisons. A systematic comparison of neurostimulation outcomes in generalized epilepsy has not been performed previously. The goal of this meta-analysis was to determine whether one of these devices is better than the others to treat generalized epilepsy. METHODS Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic review of PubMed, Embase, and Web of Science was performed for studies reporting seizure outcomes following VNS, RNS, and DBS implantation in generalized drug-resistant epilepsy between the first pivotal trial study for each modality through August 2022. Specific search criteria were used for VNS ("vagus", "vagal", or "VNS" in the title and "epilepsy" or "seizure"), DBS ("deep brain stimulation", "DBS", "anterior thalamic nucleus", "centromedian nucleus", or "thalamic stimulation" in the title and "epilepsy" or "seizure"), and RNS ("responsive neurostimulation" or "RNS" in the title and "epilepsy" or "seizure"). From 4409 articles identified, 319 underwent full-text reviews, and 20 studies were included. Data were pooled using a random-effects model using the meta package in R. RESULTS Sufficient data for meta-analysis were available from seven studies for VNS (n = 510) and nine studies for DBS (n = 87). Data from RNS (five studies, n = 18) were insufficient for meta-analysis. The mean (SD) follow-up durations were as follows: VNS, 39.1 (23.4) months; DBS, 23.1 (19.6) months; and RNS, 22.3 (10.6) months. Meta-analysis showed seizure reductions of 48.3% (95% confidence interval [CI] = 38.7%-57.9%) for VNS and 64.8% (95% CI = 54.4%-75.2%) for DBS (p = .02). SIGNIFICANCE Our meta-analysis indicates that the use of DBS may lead to greater seizure reduction than VNS in generalized epilepsy. Results from RNS use are promising, but further research is required.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA.,Neurology Care Line, VA Medical Center, Houston, Texas, USA
| | - Henry C Skrehot
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
29
|
Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy. Brain 2022; 145:3347-3362. [PMID: 35771657 PMCID: PMC9586548 DOI: 10.1093/brain/awac234] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brian Litt
- Department of Neurology and Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | - Martin M Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
30
|
Simpson HD, Schulze-Bonhage A, Cascino GD, Fisher RS, Jobst BC, Sperling MR, Lundstrom BN. Practical considerations in epilepsy neurostimulation. Epilepsia 2022; 63:2445-2460. [PMID: 35700144 PMCID: PMC9888395 DOI: 10.1111/epi.17329] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/02/2023]
Abstract
Neuromodulation is a key therapeutic tool for clinicians managing patients with drug-resistant epilepsy. Multiple devices are available with long-term follow-up and real-world experience. The aim of this review is to give a practical summary of available neuromodulation techniques to guide the selection of modalities, focusing on patient selection for devices, common approaches and techniques for initiation of programming, and outpatient management issues. Vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (DBS-ANT), and responsive neurostimulation (RNS) are all supported by randomized controlled trials that show safety and a significant impact on seizure reduction, as well as a suggestion of reduction in the risk of sudden unexplained death in epilepsy (SUDEP). Significant seizure reductions are observed after 3 months for DBS, RNS, and VNS in randomized controlled trials, and efficacy appears to improve with time out to 7 to 10 years of follow-up for all modalities, albeit in uncontrolled follow-up or retrospective studies. A significant number of patients experience seizure-free intervals of 6 months or more with all three modalities. Number and location of epileptogenic foci are important factors affecting efficacy, and together with comorbidities such as severe mood or sleep disorders, may influence the choice of modality. Programming has evolved-DBS is typically initiated at lower current/voltage than used in the pivotal trial, whereas target charge density is lower with RNS, however generalizable optimal parameters are yet to be defined. Noninvasive brain stimulation is an emerging stimulation modality, although it is currently not used widely. In summary, clinical practice has evolved from those established in pivotal trials. Guidance is now available for clinicians who wish to expand their approach, and choice of neuromodulation technique may be tailored to individual patients based on their epilepsy characteristics, risk tolerance, and preferences.
Collapse
Affiliation(s)
- Hugh D. Simpson
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Gregory D. Cascino
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Robert S. Fisher
- Department of Neurology, Stanford Neuroscience Health Center, Palo Alto, CA, USA
| | - Barbara C. Jobst
- Geisel School of Medicine at Dartmouth, Department of Neurology, Dartmouth-Hitchcock Medical Center, NH, USA
| | - Michael R. Sperling
- Division of Epilepsy, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brian N. Lundstrom
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Xue T, Chen S, Bai Y, Han C, Yang A, Zhang J. Neuromodulation in drug-resistant epilepsy: A review of current knowledge. Acta Neurol Scand 2022; 146:786-797. [PMID: 36063433 DOI: 10.1111/ane.13696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Nearly 1% of the global population suffers from epilepsy. Drug-resistant epilepsy (DRE) affects one-third of epileptic patients who are unable to treat their condition with existing drugs. For the treatment of DRE, neuromodulation offers a lot of potential. The background, mechanism, indication, application, efficacy, and safety of each technique are briefly described in this narrative review, with an emphasis on three approved neuromodulation therapies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation (RNS). Neuromodulatory approaches involving direct or induced electrical currents have been developed to lessen seizure frequency and duration in patients with DRE since the notion of electrical stimulation as a therapy for neurologic diseases originated in the early nineteenth century. Although few people have attained total seizure independence for more than 12 months using these treatments, more than half have benefitted from a 50% drop in seizure frequency over time. Although promising outcomes in adults and children with DRE have been achieved, challenges such as heterogeneity among epilepsy types and etiologies, optimization of stimulation parameters, a lack of biomarkers to predict response to neuromodulation therapies, high-level evidence to aid decision-making, and direct comparisons between neuromodulatory approaches remain. To solve these existing gaps, authorize new kinds of neuromodulation, and develop personalized closed-loop treatments, further research is needed. Finally, both invasive and non-invasive neuromodulation seems to be safe. Implantation-related adverse events for invasive stimulation primarily include infection and pain at the implant site. Intracranial hemorrhage is a frequent adverse event for DBS and RNS. Other stimulation-specific side-effects are mild with non-invasive stimulation.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shujun Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Zillgitt AJ, Haykal MA, Chehab A, Staudt MD. Centromedian thalamic neuromodulation for the treatment of idiopathic generalized epilepsy. Front Hum Neurosci 2022; 16:907716. [PMID: 35992953 PMCID: PMC9381751 DOI: 10.3389/fnhum.2022.907716] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Idiopathic generalized epilepsy (IGE) is a common type of epilepsy and despite an increase in the number of available anti-seizure medications, approximately 20–30% of people with IGE continue to experience seizures despite adequate medication trials. Unlike focal epilepsy, resective surgery is not a viable treatment option for IGE; however, neuromodulation may be an effective surgical treatment for people with IGE. Thalamic stimulation through deep brain stimulation (DBS) and responsive neurostimulation (RNS) have been explored for the treatment of generalized and focal epilepsies. Although the data regarding DBS and RNS in IGE is limited to case reports and case series, the results of the published studies have been promising. The current manuscript will review the published literature of DBS and RNS within the centromedian nucleus of the thalamus for the treatment of IGE, as well as highlight an illustrative case.
Collapse
Affiliation(s)
- Andrew J. Zillgitt
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neuroscience Center, Royal Oak, MI, United States
| | - M. Ayman Haykal
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neuroscience Center, Royal Oak, MI, United States
| | - Ahmad Chehab
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, United States
| | - Michael D. Staudt
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, United States
- Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Michigan Head and Spine Institute, Southfield, MI, United States
- *Correspondence: Michael D. Staudt,
| |
Collapse
|
33
|
Ilyas A, Tandon N, Lhatoo SD. Thalamic neuromodulation for epilepsy: A clinical perspective. Epilepsy Res 2022; 183:106942. [PMID: 35580382 DOI: 10.1016/j.eplepsyres.2022.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Thalamic neuromodulation can be an effective therapeutic option for select patients with medically refractory epilepsy. However, successful outcome depends on several factors, beginning with appropriate patient and thalamic target selection. Among thalamic targets, the anterior (ANT) and centromedian (CeM) nuclei have the greatest clinical evidence for efficacy. However, the place of thalamic neuromodulation in the treatment armamentarium for intractable seizures is at the tail end of a long list of options. It's relative efficacy, if any, in relation to other treatment modalities however, can be inferred. As we will discuss, considerable work remains to be done in optimal targeting of thalamic nuclei, appropriate to the epilepsy syndrome and seizure type of the individual patient, which may change our current understanding of the place of thalamic neuromodulation on a range of treatment modality efficacies. Currently, it appears that ANT DBS is most efficacious for limbic epilepsies whereas CM, for generalized, multifocal (especially frontotemporal) epilepsies. Based on controlled studies, the efficacy of ANT and CeM DBS is roughly in line with other neuromodulatory therapies (i.e. RNS, VNS) when assessed within the cohort of patients for which the therapy is indicated. Much improvement is needed to render thalamic DBS more efficacious, and use of optimal targeting strategies, especially direct targeting, can positively affect outcomes. Thalamic neuromodulation is still in its infancy; however, clinical advances in this therapy are being realized.
Collapse
Affiliation(s)
- Adeel Ilyas
- Department of Neurological Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, USA; Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, USA; Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA; Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Samden D Lhatoo
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA; Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| |
Collapse
|
34
|
Surgical Treatment of Drug-Resistant Generalized Epilepsy. Curr Neurol Neurosci Rep 2022; 22:459-465. [PMID: 35713776 DOI: 10.1007/s11910-022-01210-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To summarize current evidence and recent developments in the surgical treatment of drug-resistant generalized epilepsy. RECENT FINDINGS Current surgical treatments of drug-resistant generalized epilepsy include vagus nerve stimulation (VNS), deep brain stimulation (DBS) and corpus callosotomy (CC). Neurostimulation with VNS and/or DBS has been shown to be effective in reducing seizure frequency in patients with generalized epilepsy. DBS for generalized epilepsy is primarily consisted of open-loop stimulation directed at the centromedian (CM) nucleus in the thalamus, though closed-loop stimulation and additional targets are being explored. CC can be effective in treating some seizure types and can be performed using traditional surgical techniques or with the less invasive methods of laser ablation and radiosurgery. This current literature supports the use of VNS, DBS and CC, alone or in combination, as palliative treatments of drug-resistant generalized epilepsy.
Collapse
|
35
|
Agashe S, Burkholder D, Starnes K, Van Gompel JJ, Lundstrom BN, Worrell GA, Gregg NM. Centromedian Nucleus of the Thalamus Deep Brain Stimulation for Genetic Generalized Epilepsy: A Case Report and Review of Literature. Front Hum Neurosci 2022; 16:858413. [PMID: 35669200 PMCID: PMC9164300 DOI: 10.3389/fnhum.2022.858413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
There is a paucity of treatment options for cognitively normal individuals with drug resistant genetic generalized epilepsy (GGE). Centromedian nucleus of the thalamus (CM) deep brain stimulation (DBS) may be a viable treatment for GGE. Here, we present the case of a 27-year-old cognitively normal woman with drug resistant GGE, with childhood onset. Seizure semiology are absence seizures and generalized onset tonic clonic (GTC) seizures. At baseline she had 4–8 GTC seizures per month and weekly absence seizures despite three antiseizure medications and vagus nerve stimulation. A multidisciplinary committee recommended off-label use of CM DBS in this patient. Over 12-months of CM DBS she had two GTC seizure days, which were in the setting of medication withdrawal and illness, and no GTC seizures in the last 6 months. There was no significant change in the burden of absence seizures. Presently, just two studies clearly document CM DBS in cognitively normal individuals with GGE or idiopathic generalized epilepsy (IGE) [in contrast to studies of cognitively impaired individuals with developmental and epileptic encephalopathies (DEE)]. Our results suggest that CM DBS can be an effective treatment for cognitively normal individuals with GGE and underscore the need for prospective studies of CM DBS.
Collapse
Affiliation(s)
- Shruti Agashe
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Shruti Agashe,
| | - David Burkholder
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Keith Starnes
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | | | | | - Nicholas M. Gregg
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Nicholas M. Gregg,
| |
Collapse
|
36
|
Koubeissi MZ, Joshi S, Eid A, Emami M, Jaafar N, Syed T, Foreman PJ, Sheth A, Amdur R, Bou Nasif M, Puente AN, Aly R, Chen H, Becker A, Gholipour T, Makke Y, Elmashad A, Gagnon L, Durand DM, Gaillard WD, Shields DC. Low-frequency stimulation of a fiber tract in bilateral temporal lobe epilepsy. Epilepsy Behav 2022; 130:108667. [PMID: 35344808 DOI: 10.1016/j.yebeh.2022.108667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Pharmacoresistant bilateral mesial temporal lobe epilepsy often implies poor resective surgical candidacy. Low-frequency stimulation of a fiber tract connected to bilateral hippocampi, the fornicodorsocommissural tract, has been shown to be safe and efficacious in reducing seizures in a previous short-term study. Here, we report a single-blinded, within-subject control, long-term deep-brain stimulation trial of low-frequency stimulation of the fornicodorsocommissural tract in bilateral mesial temporal lobe epilepsy. Outcomes of interest included safety with respect to verbal memory scores and reduction of seizure frequency. METHODS Our enrollment goal was 16 adult subjects to be randomized to 2-Hz or 5-Hz low-frequency stimulation of the fornicodorsocommissural tract starting at 2 mA. The study design consisted of four two-month blocks of stimulation with a 50%-duty cycle, alternating with two-month blocks of no stimulation. RESULTS We terminated the study after enrollment of five subjects due to slow accrual. Fornicodorsocommissural tract stimulation elicited bilateral hippocampal evoked responses in all subjects. Three subjects underwent implantation of pulse generators and long-term low-frequency stimulation with mean monthly seizures of 3.14 ± 2.67 (median 3.0 [IQR 1-4.0]) during stimulation-off blocks, compared with 0.96 ± 1.23 (median 1.0 [IQR 0-1.0]) during stimulation-on blocks (p = 0.0005) during the blinded phase. Generalized Estimating Equations showed that low-frequency stimulation reduced monthly seizure-frequency by 0.71 per mA (p < 0.001). Verbal memory scores were stable with no psychiatric complications or other adverse events. SIGNIFICANCE The results demonstrate feasibility of stimulating both hippocampi using a single deep-brain stimulation electrode in the fornicodorsocommissural tract, efficacy of low-frequency stimulation in reducing seizures, and safety as regards verbal memory.
Collapse
Affiliation(s)
- Mohamad Z Koubeissi
- Department of Neurology, The George Washington University, Washington, DC 20052, USA.
| | - Sweta Joshi
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Alexandra Eid
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Mehrdad Emami
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Nadim Jaafar
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | | | - Perry J Foreman
- Department of Neurology, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA
| | - Anumeha Sheth
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Richard Amdur
- Department of Surgery, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Mei Bou Nasif
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Antonio N Puente
- Department of Psychiatry, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Radwa Aly
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Hai Chen
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Andrew Becker
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Taha Gholipour
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Yamane Makke
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Ahmed Elmashad
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Linda Gagnon
- Department of Neurology, The George Washington University, Washington, DC 20052, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William D Gaillard
- Center for Neuroscience and Behavioral Health, Children's National Hospital, Washington, DC 20010, USA
| | - Donald C Shields
- Department of Neurosurgery, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
37
|
Ilyas A, Snyder KM, Pati S, Tandon N. Optimally Targeting the Centromedian Nucleus of the Thalamus for Generalized Epilepsy: A Meta-Analysis. Epilepsy Res 2022; 184:106954. [DOI: 10.1016/j.eplepsyres.2022.106954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
|
38
|
Sisterson ND, Kokkinos V, Urban A, Li N, Richardson RM. Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalised epilepsy: initial case series. J Neurol Neurosurg Psychiatry 2022; 93:491-498. [PMID: 35217517 PMCID: PMC9016239 DOI: 10.1136/jnnp-2021-327512] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Up to 40% of patients with idiopathic generalised epilepsy (IGE) are drug resistant and potentially could benefit from intracranial neuromodulation of the seizure circuit. We present outcomes following 2 years of thalamic-responsive neurostimulation for IGE. METHODS Four patients with pharmacoresistant epilepsy underwent RNS System implantation in the bilateral centromedian (CM) nucleus region. Electrophysiological data were extracted from the clinical patient data management system and analysed using a specialised platform (BRAINStim). Postoperative visualisation of electrode locations was performed using Lead-DBS. Seizure outcomes were reported using the Engel scale. RESULTS Patients experienced a 75%-99% reduction in seizure frequency with decreased seizure duration and severity (Engel class IB, IC, IIA and IIIA), as well as significant improvements in quality of life. Outcomes were durable through at least 2 years of therapy. Detection accuracy for all patients overall decreased over successive programming epochs from a mean of 96.5% to 88.3%. Most electrodes used to deliver stimulation were located in the CM (7/10) followed by the posterior dorsal ventral lateral (2/2), posterior ventral posterior lateral (3/4) and posterior ventral ventral lateral (2/3). In all patients, stimulation varied from 0.2 to 2.0 mA and amplitude only increased over successive epochs. The raw percentage of intracranial electroencephalography recordings with stimulations delivered to electrographic seizures was 24.8%, 1.2%, 7.6% and 8.8%. CONCLUSION Closed-loop stimulation of the CM region may provide significant improvement in seizure control and quality of life for patients with drug-resistant IGE. Optimal detection and stimulation locations and parameters remain an active area of investigation for accelerating and fine-tuning clinical responses.
Collapse
Affiliation(s)
- Nathaniel D Sisterson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexandra Urban
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ningfei Li
- Department of Neurology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Abstract
DBS of Thalamic Centromedian Nucleus for Lennox–Gastaut Syndrome (ESTEL
Trial) Dalic LJ, Warren AEL, Bulluss KJ, Thevathasan W, et al. Ann Nuerol.
2022;91(2):253-267. doi:10.1002/ana.26280. PMID:
34877694. Objective: Prior uncontrolled studies have reported seizure reductions following deep brain
stimulation (DBS) in patients with Lennox-Gastaut syndrome (LGS), but evidence from
randomized controlled studies is lacking. We aimed to formally assess the efficacy
and safety of DBS to the centromedian thalamic nucleus (CM) for the treatment of
LGS. Methods: We conducted a prospective, double-blind, randomized study of continuous, cycling
stimulation of CM-DBS, in patients with LGS. Following pre- and post-implantation
periods, half received 3 months of stimulation (blinded phase), then all received 3
months of stimulation (unblinded phase). The primary outcome was the proportion of
participants with ≥50% reduction in diary-recorded seizures in stimulated vs control
participants, measured at the end of the blinded phase. A secondary outcome was the
proportion of participants with a ≥50% reduction in electrographic seizures on
24-hour ambulatory electroencephalography (EEG) at the end of the blinded phase. Results: Between November 2017 and December 2019, 20 young adults with LGS (17-37 years;13
women) underwent bilateral CM-DBS at a single center in Australia, with 19
randomized (treatment, n = 10 and control, n = 9). Fifty percent of the stimulation
group achieved ≥50% seizure reduction, compared with 22% of controls (odds ratio
[OR] = 3.1, 95% confidence interval [CI] = .44-21.45, P = .25). For electrographic
seizures, 59% of the stimulation group had ≥50% reduction at the end of the blinded
phase, compared with none of the controls (OR= 23.25, 95% CI = 1.0-538.4, P = .05).
Across all patients, median seizure reduction (baseline vs study exit) was 46.7%
(interquartile range [IQR] = 28-67%) for diary recorded seizures and 53.8% (IQR =
27-73%) for electrographic seizures. Interpretation: CM-DBS in patients with LGS reduced electrographic rather than diary-recorded
seizures, after 3 months of stimulation. Fifty percent of all participants had
diary-recorded seizures reduced by half at the study exit, providing supporting
evidence of the treatment effect.
Collapse
Affiliation(s)
- Gewalin Aungaroon
- Department of Neurology, College of Medicine, Cincinnati Children’s Hospital, University of Cincinnati, OH, USA
| |
Collapse
|
40
|
Vetkas A, Germann J, Elias G, Loh A, Boutet A, Yamamoto K, Sarica C, Samuel N, Milano V, Fomenko A, Santyr B, Tasserie J, Gwun D, Jung HH, Valiante T, Ibrahim GM, Wennberg R, Kalia SK, Lozano AM. Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs. Brain Commun 2022; 4:fcac092. [PMID: 35611305 PMCID: PMC9123846 DOI: 10.1093/braincomms/fcac092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Deep brain stimulation is a treatment option for patients with drug-resistant epilepsy. The precise mechanism of neuromodulation in epilepsy is unknown, and biomarkers are needed for optimizing treatment. The aim of this study was to describe the neural network associated with deep brain stimulation targets for epilepsy and to explore its potential application as a novel biomarker for neuromodulation. Using seed-to-voxel functional connectivity maps, weighted by seizure outcomes, brain areas associated with stimulation were identified in normative resting state functional scans of 1000 individuals. To pinpoint specific regions in the normative epilepsy deep brain stimulation network, we examined overlapping areas of functional connectivity between the anterior thalamic nucleus, centromedian thalamic nucleus, hippocampus and less studied epilepsy deep brain stimulation targets. Graph network analysis was used to describe the relationship between regions in the identified network. Furthermore, we examined the associations of the epilepsy deep brain stimulation network with disease pathophysiology, canonical resting state networks and findings from a systematic review of resting state functional MRI studies in epilepsy deep brain stimulation patients. Cortical nodes identified in the normative epilepsy deep brain stimulation network were in the anterior and posterior cingulate, medial frontal and sensorimotor cortices, frontal operculum and bilateral insulae. Subcortical nodes of the network were in the basal ganglia, mesencephalon, basal forebrain and cerebellum. Anterior thalamic nucleus was identified as a central hub in the network with the highest betweenness and closeness values, while centromedian thalamic nucleus and hippocampus showed average centrality values. The caudate nucleus and mammillothalamic tract also displayed high centrality values. The anterior cingulate cortex was identified as an important cortical hub associated with the effect of deep brain stimulation in epilepsy. The neural network of deep brain stimulation targets shared hubs with known epileptic networks and brain regions involved in seizure propagation and generalization. Two cortical clusters identified in the epilepsy deep brain stimulation network included regions corresponding to resting state networks, mainly the default mode and salience networks. Our results were concordant with findings from a systematic review of resting state functional MRI studies in patients with deep brain stimulation for epilepsy. Our findings suggest that the various epilepsy deep brain stimulation targets share a common cortico-subcortical network, which might in part underpin the antiseizure effects of stimulation. Interindividual differences in this network functional connectivity could potentially be used as biomarkers in selection of patients, stimulation parameters and neuromodulation targets.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Neurology clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Dave Gwun
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hyun Ho Jung
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taufik Valiante
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - George M Ibrahim
- Division of Pediatric Neurosurgery, Sick Kids Toronto, University of Toronto, Toronto, ON, Canada
| | - Richard Wennberg
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
| |
Collapse
|
41
|
Abouelleil M, Deshpande N, Ali R. Emerging Trends in Neuromodulation for Treatment of Drug-Resistant Epilepsy. FRONTIERS IN PAIN RESEARCH 2022; 3:839463. [PMID: 35386582 PMCID: PMC8977768 DOI: 10.3389/fpain.2022.839463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
Abstract
Epilepsy is a neurological disorder that affects more than 70 million people globally. A considerable proportion of epilepsy is resistant to anti-epileptic drugs (AED). For patients with drug-resistant epilepsy (DRE), who are not eligible for resective or ablative surgery, neuromodulation has been a palliative option. Since the approval of vagus nerve stimulation (VNS) in 1997, expansion to include other modalities, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), has led to improved seizure control in this population. In this article, we discuss the current updates and emerging trends on neuromodulation for epilepsy.
Collapse
Affiliation(s)
- Mohamed Abouelleil
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
| | - Nachiket Deshpande
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Rushna Ali
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
- *Correspondence: Rushna Ali
| |
Collapse
|
42
|
Warsi NM, Yan H, Suresh H, Wong SM, Arski ON, Gorodetsky C, Zhang K, Gouveia FV, Ibrahim GM. The anterior and centromedian thalamus: anatomy, function, and dysfunction in epilepsy. Epilepsy Res 2022; 182:106913. [DOI: 10.1016/j.eplepsyres.2022.106913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 01/21/2023]
|
43
|
Velasco F, Saucedo-Alvarado PE, Vazquez-Barron D, Trejo D, Velasco AL. Deep Brain Stimulation for Refractory Temporal Lobe Epilepsy. Current Status and Future Trends. Front Neurol 2022; 13:796846. [PMID: 35280275 PMCID: PMC8904383 DOI: 10.3389/fneur.2022.796846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
A comparative analysis of the targets for deep brain stimulation (DBS) to treat refractory temporal lobe epilepsy and the rationale for its use is presented, with an emphasis on the latency to obtain the significant antiepileptic effect and the long-term seizure control. The analysis includes consideration of surgical techniques currently used to optimize antiseizure effects and decrease surgical risks. Seizure control is similar for programed DBS and DBS responsive to abnormal cortical or subcortical electroencephalogram (EEG) activity. There is no difference in the long-term seizure control between programmed and responsive and intermittent or continuous DBS. However, intermittent programed DBS may have a significant antiseizure effect starting in the first month when applied to a non-sclerotic tissue such as the parahippocampal cortex. DBS induces no neuropsychological deterioration.
Collapse
Affiliation(s)
| | | | | | | | - Ana Luisa Velasco
- Unit for Stereotactic and Functional Neurosurgery, Epilepsy Clinic, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| |
Collapse
|
44
|
Khan M, Paktiawal J, Piper RJ, Chari A, Tisdall MM. Intracranial neuromodulation with deep brain stimulation and responsive neurostimulation in children with drug-resistant epilepsy: a systematic review. J Neurosurg Pediatr 2022; 29:208-217. [PMID: 34678764 DOI: 10.3171/2021.8.peds21201] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In children with drug-resistant epilepsy (DRE), resective, ablative, and disconnective surgery may not be feasible or may fail. Neuromodulation in the form of deep brain stimulation (DBS) and responsive neurostimulation (RNS) may be viable treatment options, however evidence for their efficacies in children is currently limited. This systematic review aimed to summarize the literature on DBS and RNS for the treatment of DRE in the pediatric population. Specifically, the authors focused on currently available data for reported indications, neuromodulation targets, clinical efficacy, and safety outcomes. METHODS PRISMA guidelines were followed throughout this systematic review (PROSPERO no. CRD42020180669). Electronic databases, including PubMed, Embase, Cochrane Library, OpenGrey, and CINAHL Plus, were searched from their inception to February 19, 2021. Inclusion criteria were 1) studies with at least 1 pediatric patient (age < 19 years) who underwent DBS and/or RNS for DRE; and 2) retrospective, prospective, randomized, or nonrandomized controlled studies, case series, and case reports. Exclusion criteria were 1) letters, commentaries, conference abstracts, and reviews; and 2) studies without full text available. Risk of bias of the included studies was assessed using the Cochrane ROBINS-I (Risk of Bias in Non-randomised Studies - of Interventions) tool. RESULTS A total of 35 studies were selected that identified 72 and 46 patients who underwent DBS and RNS, respectively (age range 4-18 years). Various epilepsy etiologies and seizure types were described in both cohorts. Overall, 75% of patients had seizure reduction > 50% after DBS (among whom 6 were seizure free) at a median (range) follow-up of 14 (1-100) months. In an exploratory univariate analysis of factors associated with favorable response, the follow-up duration was shorter in those patients with a favorable response (18 vs 33 months, p < 0.05). In the RNS cohort, 73.2% of patients had seizure reduction > 50% after RNS at a median (range) follow-up of 22 (5-39) months. On closer inspection, 83.3% of patients who had > 50% reduction in seizures actually had > 75% reduction, with 4 patients being seizure free. CONCLUSIONS Overall, both DBS and RNS showed favorable response rates, indicating that both techniques should be considered for pediatric patients with DRE. However, serious risks of overall bias were found in all included studies. Many research needs in this area would be addressed by conducting high-quality clinical trials and establishing an international registry of patients who have undergone pediatric neuromodulation, thereby ensuring robust prospective collection of predictive variables and outcomes.
Collapse
Affiliation(s)
- Mehdi Khan
- 1University College London Medical School, London, United Kingdom
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
| | - Jaber Paktiawal
- 2Medical University Pleven, Pleven, Bulgaria
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
| | - Rory J Piper
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Aswin Chari
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Martin M Tisdall
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
45
|
Vetkas A, Fomenko A, Germann J, Sarica C, Iorio-Morin C, Samuel N, Yamamoto K, Milano V, Cheyuo C, Zemmar A, Elias G, Boutet A, Loh A, Santyr B, Gwun D, Tasserie J, Kalia SK, Lozano AM. Deep brain stimulation targets in epilepsy: Systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia 2022; 63:513-524. [PMID: 34981509 DOI: 10.1111/epi.17157] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation (DBS) is a neuromodulatory treatment used in patients with drug-resistant epilepsy (DRE). The primary goal of this systematic review and meta-analysis is to describe recent advancements in the field of DBS for epilepsy, to compare the results of published trials, and to clarify the clinical utility of DBS in DRE. A systematic literature search was performed by two independent authors. Forty-four articles were included in the meta-analysis (23 for anterior thalamic nucleus [ANT], 8 for centromedian thalamic nucleus [CMT], and 13 for hippocampus) with a total of 527 patients. The mean seizure reduction after stimulation of the ANT, CMT, and hippocampus in our meta-analysis was 60.8%, 73.4%, and 67.8%, respectively. DBS is an effective and safe therapy in patients with DRE. Based on the results of randomized controlled trials and larger clinical series, the best evidence exists for DBS of the anterior thalamic nucleus. Further randomized trials are required to clarify the role of CMT and hippocampal stimulation. Our analysis suggests more efficient deep brain stimulation of ANT for focal seizures, wider use of CMT for generalized seizures, and hippocampal DBS for temporal lobe seizures. Factors associated with clinical outcome after DBS for epilepsy are electrode location, stimulation parameters, type of epilepsy, and longer time of stimulation. Recent advancements in anatomical targeting, functional neuroimaging, responsive neurostimulation, and sensing of local field potentials could potentially lead to improved outcomes after DBS for epilepsy and reduced sudden, unexpected death of patients with epilepsy. Biomarkers are needed for successful patient selection, targeting of electrodes and optimization of stimulation parameters.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Neurology Clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Centre de recherché du CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ajmal Zemmar
- Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Dave Gwun
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
46
|
McGinn RJ, Von Stein EL, Summers Stromberg JE, Li Y. Precision medicine in epilepsy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:147-188. [DOI: 10.1016/bs.pmbts.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Velasco AL, Saucedo-Alvarado PE, Alejandre-Sánchez M, Guzmán-Jiménez DE, González-Garcia I, Velasco F. New Horizons in Temporal Lobe Seizure Control. J Clin Neurophysiol 2021; 38:478-484. [PMID: 34261115 DOI: 10.1097/wnp.0000000000000715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY In patients with mesial temporal lobe epilepsy, high-frequency, low-amplitude electrical stimulation (ES) was applied during 3 weeks through contacts of intracranial electrodes that defined the epileptogenic zone. This subacute ES induced cessation of spontaneous seizures, decreased the number of EEG interictal spikes, caused a 10-fold increase in threshold to induce postdischarges, and showed a profound decrease in regional blood flow of the stimulated area in SPECT studies. Autoradiography analysis of surgical specimens from these patients demonstrated increased expression of benzodiazepine receptors and in gamma-aminobutyric acid content, particularly in the parahippocampal cortex. These observations provided evidence of a gamma-aminobutyric acid-mediated antiepileptic effect induced by ES. Several reports of long-term hippocampal ES through internalized neurostimulators have confirmed the antiepileptic effect on mesial temporal lobe-initiated seizures, with preservation of neuropsychological performance, in particular memory functions. The experience of the authors is that the response is optimal in patients without hippocampal sclerosis evidenced by MRI, whereas it is less significant and delayed in patients with hippocampal sclerosis. Other studies reported the best result stimulating through the contacts in the subiculum, the transition between the hippocampus and parahippocampal cortex, that usually escapes to the hippocampal sclerosis. Currently, the effect of ES directed at the subiculum and the parahippocampal cortex in patients with hippocampal sclerosis is under investigation.
Collapse
Affiliation(s)
- Ana L Velasco
- Unit for Stereotactic and Functional Neurosurgery, Epilepsy Clinic, Hospital General de México, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
48
|
Velasco F, Saucedo-Alvarado PE, Reichrath A, Valdés-Quiroz H, Aguado-Carrillo G, Velasco AL. Centromedian Nucleus and Epilepsy. J Clin Neurophysiol 2021; 38:485-493. [PMID: 34261113 DOI: 10.1097/wnp.0000000000000735] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY Centromedian thalamic nucleus is an intralaminar nucleus with vast connectivity to cerebral cortex and basal ganglia. It receives afferents from the brain stem through the central tegmental tract and is part of the diffuse thalamic projection system. Because the reticulothalamic system has been related to initiation and propagation of epileptic activity (centroencephalic theory of epilepsy), deep brain stimulation has been proposed to interfere with seizure genesis or propagation. Centromedian thalamic nucleus is a large nucleus laying nearby the anatomical references for stereotaxis and therefore a convenient surgical target to approach. Electrodes are implanted in the anterior ventral lateral part of the nucleus (parvocellular area), guided by intraoperative recruiting responses elicited by unilateral 6 to 8 Hz electrical stimulation delivered through the deep brain stimulation electrode. Therapeutic stimulation is delivered with the following parameters: 60 Hz, 450 μs, 3.0 V. Seizure control runs between 69% and 83% in different reports, decreasing mainly generalized seizures from the start, with significant improvement in neuropsychological performance. Significant decrease in seizure occurs from hours to days after the onset of deep brain stimulation. Some reports refer that seizure improvement may occur by the simple insertion of the deep brain stimulation electrodes, and therefore, it was used to treat refractory epileptic status.
Collapse
Affiliation(s)
- Francisco Velasco
- Epilepsy Clinic, Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
49
|
Matern TS, DeCarlo R, Ciliberto MA, Singh RK. Palliative Epilepsy Surgery Procedures in Children. Semin Pediatr Neurol 2021; 39:100912. [PMID: 34620461 DOI: 10.1016/j.spen.2021.100912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Surgical treatment of epilepsy typically focuses on identification of a seizure focus with subsequent resection and/or disconnection to "cure" the patient's epilepsy and achieve seizure freedom. Palliative epilepsy surgery modalities are efficacious in improving seizure frequency, severity, and quality of life. In this paper, we review palliative epilepsy surgical options for children: vagus nerve stimulation, responsive neurostimulation, deep brain stimulation, hemispherotomy, corpus callosotomy, lobectomy and/or lesionectomy and multiple subpial transection. Reoperation after surgical resection should also be considered. If curative resection is not a viable option for seizure freedom, these methods should be considered with equal emphasis and urgency in the treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
| | | | - Michael A Ciliberto
- Department of Pediatrics, Stead Family Children's Hospital/University of Iowa
| | - Rani K Singh
- Department of Pediatrics, Atrium Health System/Levine Children's Hospital.
| |
Collapse
|
50
|
Foutz T, Wong M. Brain Stimulation Treatments in Epilepsy: Basic Mechanisms and Clinical Advances. Biomed J 2021; 45:27-37. [PMID: 34482013 PMCID: PMC9133258 DOI: 10.1016/j.bj.2021.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Drug-resistant epilepsy, characterized by ongoing seizures despite appropriate trials of anti-seizure medications, affects approximately one-third of people with epilepsy. Brain stimulation has recently become available as an alternative treatment option to reduce symptomatic seizures in short and long-term follow-up studies. Several questions remain on how to optimally develop patient-specific treatments and manage therapy over the long term. This review aims to discuss the clinical use and mechanisms of action of Responsive Neural Stimulation and Deep Brain Stimulation in the treatment of epilepsy and highlight recent advances that may both improve outcomes and present new challenges. Finally, a rational approach to device selection is presented based on current mechanistic understanding, clinical evidence, and device features.
Collapse
Affiliation(s)
- Thomas Foutz
- Department of Neurology, Washington University in St. Louis, USA.
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis, USA.
| |
Collapse
|