1
|
Zhang JF, Okai B, Iovoli A, Goulenko V, Attwood K, Lim J, Hess RM, Abad AP, Prasad D, Fenstermaker RA. Bevacizumab and gamma knife radiosurgery for first-recurrence glioblastoma. J Neurooncol 2024; 166:89-98. [PMID: 38175460 PMCID: PMC10824796 DOI: 10.1007/s11060-023-04524-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common central nervous system malignancy in adults. Despite decades of developments in surgical management, radiation treatment, chemotherapy, and tumor treating field therapy, GBM remains an ultimately fatal disease. There is currently no definitive standard of care for patients with recurrent glioblastoma (rGBM) following failure of initial management. OBJECTIVE In this retrospective cohort study, we set out to examine the relative effects of bevacizumab and Gamma Knife radiosurgery on progression-free survival (PFS) and overall survival (OS) in patients with GBM at first-recurrence. METHODS We conducted a retrospective review of all patients with rGBM who underwent treatment with bevacizumab and/or Gamma Knife radiosurgery at Roswell Park Comprehensive Cancer Center between 2012 and 2022. Mean PFS and OS were determined for each of our three treatment groups: Bevacizumab Only, Bevacizumab Plus Gamma Knife, and Gamma Knife Only. RESULTS Patients in the combined treatment group demonstrated longer post-recurrence median PFS (7.7 months) and median OS (11.5 months) compared to glioblastoma patients previously reported in the literature, and showed improvements in total PFS (p=0.015), total OS (p=0.0050), post-recurrence PFS (p=0.018), and post-recurrence OS (p=0.0082) compared to patients who received either bevacizumab or Gamma Knife as monotherapy. CONCLUSION This study demonstrates that the combined use of bevacizumab with concurrent stereotactic radiosurgery can have improve survival in patients with rGBM.
Collapse
Affiliation(s)
- Jeff F Zhang
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bernard Okai
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Austin Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Victor Goulenko
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jaims Lim
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ryan M Hess
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ajay P Abad
- Department of Neuro-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dheerendra Prasad
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Robert A Fenstermaker
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
2
|
Alessi I, Caroleo AM, de Palma L, Mastronuzzi A, Pro S, Colafati GS, Boni A, Della Vecchia N, Velardi M, Evangelisti M, Carboni A, Carai A, Vinti L, Valeriani M, Reale A, Parisi P, Raucci U. Short and Long-Term Toxicity in Pediatric Cancer Treatment: Central Nervous System Damage. Cancers (Basel) 2022; 14:cancers14061540. [PMID: 35326692 PMCID: PMC8946171 DOI: 10.3390/cancers14061540] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The purpose of this review is to describe central nervous system side effects in the treatment of pediatric cancer patients. Unfortunately, we must consider that the scarce data in the literature does not allow us to expand on some issues, especially those related to innovative immunotherapy. We have described the major neurotoxicities arising with the various types of treatment to help specialists who approach these treatments recognize them early, prevent them, and treat them promptly. Abstract Neurotoxicity caused by traditional chemotherapy and radiotherapy is well known and widely described. New therapies, such as biologic therapy and immunotherapy, are associated with better outcomes in pediatric patients but are also associated with central and peripheral nervous system side effects. Nevertheless, central nervous system (CNS) toxicity is a significant source of morbidity in the treatment of cancer patients. Some CNS complications appear during treatment while others present months or even years later. Radiation, traditional cytotoxic chemotherapy, and novel biologic and targeted therapies have all been recognized to cause CNS side effects; additionally, the risks of neurotoxicity can increase with combination therapy. Symptoms and complications can be varied such as edema, seizures, fatigue, psychiatric disorders, and venous thromboembolism, all of which can seriously influence the quality of life. Neurologic complications were seen in 33% of children with non-CNS solid malign tumors. The effects on the CNS are disabling and often permanent with limited treatments, thus it is important that clinicians recognize the effects of cancer therapy on the CNS. Knowledge of these conditions can help the practitioner be more vigilant for signs and symptoms of potential neurological complications during the management of pediatric cancers. As early detection and more effective anticancer therapies extend the survival of cancer patients, treatment-related CNS toxicity becomes increasingly vital. This review highlights major neurotoxicities due to pediatric cancer treatments and new therapeutic strategies; CNS primary tumors, the most frequent solid tumors in childhood, are excluded because of their intrinsic neurological morbidity.
Collapse
Affiliation(s)
- Iside Alessi
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Anna Maria Caroleo
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Luca de Palma
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Pro
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | | | - Alessandra Boni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Nicoletta Della Vecchia
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Margherita Velardi
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Melania Evangelisti
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Alessia Carboni
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Luciana Vinti
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Massimiliano Valeriani
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Antonino Reale
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Umberto Raucci
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
3
|
Park SJ, Lim SH, Kim YJ, Moon KS, Kim IY, Jung S, Kim SK, Oh IJ, Hong JH, Jung TY. The Tumor Control According to Radiation Dose of Gamma Knife Radiosurgery for Small and Medium-Sized Brain Metastases from Non-Small Cell Lung Cancer. J Korean Neurosurg Soc 2021; 64:983-994. [PMID: 34689476 PMCID: PMC8590918 DOI: 10.3340/jkns.2021.0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The effectiveness of gamma knife radiosurgery (GKR) in the treatment of brain metastases is well established. The aim of this study was to evaluate the efficacy and safety of maximizing the radiation dose in GKR and the factors influencing tumor control in cases of small and medium-sized brain metastases from non-small cell lung cancer (NSCLC).
Methods We analyzed 230 metastatic brain tumors less than 5 mL in volume in 146 patients with NSCLC who underwent GKR. The patients had no previous radiation therapy for brain metastases. The pathologies of the tumors were adenocarcinoma (n=207), squamous cell carcinoma (n=18), and others (n=5). The radiation doses were classified as 18, 20, 22, and 24 Gy, and based on the tumor volume, the tumors were categorized as follows : small-sized (less than 1 mL) and medium-sized (1–3 and 3–5 mL). The progression-free survival (PFS) of the individual 230 tumors and 146 brain metastases was evaluated after GKR depending on the pathology, Eastern Cooperative Oncology Group (ECOG) performance score (PS), tumor volume, radiation dose, and anti-cancer regimens. The radiotoxicity after GKR was also evaluated.
Results After GKR, the restricted mean PFS of individual 230 tumors at 24 months was 15.6 months (14.0–17.1). In small-sized tumors, as the dose of radiation increased, the tumor control rates tended to increase (p=0.072). In medium-sized tumors, there was no statistically difference in PFS with an increase of radiation dose (p=0.783). On univariate analyses, a statistically significant increase in PFS was associated with adenocarcinomas (p=0.001), tumors with ECOG PS 0 (p=0.005), small-sized tumors (p=0.003), radiation dose of 24 Gy (p=0.014), synchronous lesions (p=0.002), and targeted therapy (p=0.004). On multivariate analyses, an improved PFS was seen with targeted therapy (hazard ratio, 0.356; 95% confidence interval, 0.150–0.842; p=0.019). After GKR, the restricted mean PFS of brain at 24 months was 9.8 months (8.5–11.1) in 146 patients, and the pattern of recurrence was mostly distant within the brain (66.4%). The small and medium-sized tumors treated with GKR showed radiotoxicitiy in five out of 230 tumors (2.2%), which were controlled with medical treatment.
Conclusion The small-sized tumors were effectively controlled without symptomatic radiation necrosis as the radiation dose was increased up to 24 Gy. The medium-sized tumors showed potential for symptomatic radiation necrosis without signifcant tumor control rate, when greater than 18 Gy. GKR combined targeted therapy improved the tumor control of GKR-treated tumors.
Collapse
Affiliation(s)
- Sue Jee Park
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Sa-Hoe Lim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Young-Jin Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - In-Young Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Seul-Kee Kim
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Jong-Hwan Hong
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
4
|
Liu M, Yang Y, Zhao B, Yang Y, Wang J, Shen K, Yang X, Hu D, Zheng G, Han J. Exosomes Derived From Adipose-Derived Mesenchymal Stem Cells Ameliorate Radiation-Induced Brain Injury by Activating the SIRT1 Pathway. Front Cell Dev Biol 2021; 9:693782. [PMID: 34395427 PMCID: PMC8358610 DOI: 10.3389/fcell.2021.693782] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Studies have shown that the therapeutic effects of mesenchymal stem cells (MSCs) are mediated in a paracrine manner, mainly through extracellular vesicles such as exosomes. Here, we designed a study to investigate whether exosomes derived from adipose-derived mesenchymal stem cells (ADMSC-Exos) had protective effects in a rat model of radiation-induced brain injury and in microglia. Methods Male adult Sprague-Dawley (SD) rats were randomly divided into three groups: the control group, the radiation group (30 Gy), and the radiation + exosomes group (30 Gy + 100 ug exosomes). Meanwhile, microglia were divided into four groups: the control group, the radiation group (10 Gy), the radiation + exosomes group (10 Gy + 4 ug exosomes), and radiation + exosomes + EX527 group (10 Gy + 4 ug exosomes + 100 nM EX527). Tissue samples and the levels of oxidative stress and inflammatory factors in each group were compared. Results Statistical analysis showed that after irradiation, ADMSC-Exos intervention in vivo significantly reduced the levels of caspase-3, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and promoted the recovery of superoxide dismutase (SOD), catalase (CAT), IL-4, and IL-10. Moreover, ADMSC-Exos intervention inhibited microglial infiltration and promoted the expression of SIRT1. Furthermore, the results in vitro showed that the above effects of ADMSC-Exos could be reversed by SIRT-1 inhibitor EX527. Conclusion This study demonstrated that ADMSC-Exos exerted protective effects against radiation-induced brain injury by reducing oxidative stress, inflammation and microglial infiltration via activating the SIRT1 pathway. ADMSC-Exos may serve as a promising therapeutic tool for radiation-induced brain injury.
Collapse
Affiliation(s)
- Mengdong Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Bin Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuefan Yang
- Department of Biomedical Engineering, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Guoxu Zheng
- State key laboratory of Cancer Biology, Department of Immunology, Air Force Military Medical University, Xi'an, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Vellayappan BA, McGranahan T, Graber J, Taylor L, Venur V, Ellenbogen R, Sloan AE, Redmond KJ, Foote M, Chao ST, Suh JH, Chang EL, Sahgal A, Lo SS. Radiation Necrosis from Stereotactic Radiosurgery-How Do We Mitigate? Curr Treat Options Oncol 2021; 22:57. [PMID: 34097171 DOI: 10.1007/s11864-021-00854-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Intracranial stereotactic radiosurgery (SRS) is an effective and convenient treatment for many brain conditions. Data regarding safety come mostly from retrospective single institutional studies and a small number of prospective studies. Variations in target delineation, treatment delivery, imaging follow-up protocols and dose prescription limit the interpretation of this data. There has been much clinical focus on radiation necrosis (RN) in particular, as it is being increasingly recognized on follow-up imaging. Symptomatic RN may be treated with medical therapy (such as corticosteroids and bevacizumab) with surgical resection being reserved for refractory patients. Nevertheless, RN remains a challenging condition to manage, and therefore upfront patient selection for SRS remains critical to provide complication-free control. Mitigation strategies need to be considered in situations where the baseline risk of RN is expected to be high-such as large target volume or re-irradiation. These may involve reduction in the prescribed dose or hypofractionated stereotactic radiation therapy (HSRT). Recently published guidelines and international meta-analysis report the benefit of HSRT in larger lesions, without compromising control rates. However, careful attention to planning parameters and SRS techniques still need to be adhered, even with HSRT. In cases where the risk is deemed to be high despite mitigation, a combination approach of surgery with or without post-operative radiation should be considered.
Collapse
Affiliation(s)
- Balamurugan A Vellayappan
- Department of Radiation oncology, National University Cancer Institute, 1E Kent Ridge Road, Level 7 Tower block, Singapore, 119228, Singapore.
| | - Tresa McGranahan
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jerome Graber
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Lynne Taylor
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Vyshak Venur
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Richard Ellenbogen
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, Seidman Cancer Center and University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Samuel T Chao
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
6
|
Cohen JV, Wang N, Venur VA, Hadfield MJ, Cahill DP, Oh K, Brastianos PK. Neurologic complications of melanoma. Cancer 2020; 126:477-486. [DOI: 10.1002/cncr.32619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Justine V. Cohen
- Division of Medical Oncology and Neuro‐Oncology Massachusetts General Hospital Cancer Center Boston Massachusetts
| | - Nancy Wang
- Division of Neuro‐Oncology Massachusetts General Hospital Cancer Center Boston Massachusetts
| | - Vyshak A. Venur
- Division of Neuro‐Oncology Massachusetts General Hospital Cancer Center Boston Massachusetts
| | - Matthew J. Hadfield
- Division of Internal Medicine University of Connecticut Hartford Connecticut
| | - Daniel P. Cahill
- Division of Neurosurgery Massachusetts General Hospital Boston Massachusetts
| | - Kevin Oh
- Division of Radiation Oncology Massachusetts General Hospital Boston Massachusetts
| | - Priscilla K. Brastianos
- Division of Medical Oncology and Neuro‐Oncology Massachusetts General Hospital Cancer Center Boston Massachusetts
| |
Collapse
|
7
|
Zhuang H, Shi S, Yuan Z, Chang JY. Bevacizumab treatment for radiation brain necrosis: mechanism, efficacy and issues. Mol Cancer 2019; 18:21. [PMID: 30732625 PMCID: PMC6367784 DOI: 10.1186/s12943-019-0950-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Vascular damage is followed by vascular endothelial growth factor (VEGF) expression at high levels, which is an important mechanism forradiation brain necrosis development. Bevacizumab alleviates brain edema symptoms caused by radiation brain necrosis through inhibiting VEGF and acting on vascular tissue around the brain necrosis area. Many studies have confirmed that bevacizumab effectively relieves symptoms caused by brain necrosis, improves patients' Karnofsky performance status (KPS) scores and brain necrosis imaging. However, necrosis is irreversible, and hypoxia and ischemia localized in the brain necrosis area may easily lead to radiation brain necrosis recurrence after bevacizumab is discontinued. Further studies are necessary to investigate brain necrosis diagnoses, bevacizumab indications, and the optimal mode of administration, bevacizumab resistance and necrosis with a residual or recurrent tumor.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China.
- , Beijing, People's Republic of China.
| | - Siyu Shi
- Stanford University School of Medicine, Stanford, CA94305, USA
| | - Zhiyong Yuan
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Joe Y Chang
- Department of Radiation Oncology, Division of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, TX77054, USA
| |
Collapse
|
8
|
Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1948985. [PMID: 30009163 PMCID: PMC6020670 DOI: 10.1155/2017/1948985] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
Abstract
Radiation-induced brain injury (RI) commonly occurs in patients who received head and neck radiotherapy. However, the mechanism of RI remains unclear. We aimed to evaluate whether pyroptosis was involved in RI and the impact of mesenchymal stem cells (MSCs) on it. BALB/c male mice (6–8 weeks) were cranially irradiated (15 Gy), and MSCs were transplanted into the bilateral cortex 2 days later; then mice were sacrificed 1 month later. Meanwhile, irradiated BV-2 microglia cells (10 Gy) were cocultured with MSCs for 24 hours. We observed that irradiated mice brains presented NLRP3 and caspase-1 activation. RT-PCR then indicated that it mainly occurred in microglia cells but not in neurons. Further, irradiated BV-2 cells showed pyroptosis and increased production of IL-18 and IL-1β. RT-PCR also demonstrated an increased expression of several inflammasome genes in irradiated BV-2 cells, including NLRP3 and AIM2. Particularly, NLRP3 was activated. Knockdown of NLRP3 resulted in decreased LDH release. Noteworthily, in vivo, MSCs transplantation alleviated radiation-induced NLRP3 and caspase-1 activation. Moreover, in vitro, MSCs could decrease caspase-1 dependent pyroptosis, NLRP3 inflammasome activation, and ROS production induced by radiation. Thus, our findings proved that microglia pyroptosis occurred in RI. MSCs may act as a potent therapeutic tool in attenuating pyroptosis.
Collapse
|
9
|
Zwingenberger AL, Pollard RE, Taylor SL, Chen RX, Nunley J, Kent MS. Perfusion and Volume Response of Canine Brain Tumors to Stereotactic Radiosurgery and Radiotherapy. J Vet Intern Med 2016; 30:827-35. [PMID: 27149650 PMCID: PMC4867273 DOI: 10.1111/jvim.13945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/03/2016] [Accepted: 03/10/2016] [Indexed: 12/26/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) are highly conformal, high‐dose radiation treatment techniques used to treat people and dogs with brain tumors. Objectives To evaluate the response to SRS‐ and SRT‐treated tumors using volume and perfusion variables and to measure the survival times of affected dogs. Animals Prospective study of 34 dogs with evidence of brain tumors undergoing stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Methods Computed tomography and MRI imaging were used to calculate tumor volume and perfusion at baseline, and at 3 months and 6 months after treatment. Survival analysis was performed to evaluate treatment efficacy. Results Mean tumor volume significantly declined from baseline to the first recheck by −0.826 cm3 (95% CI: −1.165, −0.487) (P < .001); this reduction was maintained at the second recheck. Blood flow and blood volume declined significantly in the tumor after treatment. Median survival was 324 days (95% CI: 292.8, 419.4), and 4 dogs survived longer than 650 days. Neither actual tumor volume (hazard ratio = 1.21, P = .19) nor the change in tumor volume from the baseline (hazard ratio = 1.38, P = .12) significantly affected the hazard of death because of the tumor. Conclusions and Clinical Importance Stereotactic radiosurgery and SRT are effective treatments for reducing tumor volume, blood flow, and blood volume. Treated dogs surviving for more than 1 year are more likely to die from other causes than of their primary brain tumor. SRS and SRT should be considered for noninvasive treatment of intracranial brain tumors.
Collapse
Affiliation(s)
- A L Zwingenberger
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA
| | - R E Pollard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA
| | - S L Taylor
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, CA
| | - R X Chen
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, CA
| | - J Nunley
- William R. Pritchard Veterinary Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA
| | - M S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
10
|
Zhuang H, Yuan X, Sun D, Bian J, Chang JY, Yuan Z, Wang P. Acquired-resistance of bevacizumab treatment for radiation brain necrosis: a case report. Oncotarget 2016; 7:13265-13268. [PMID: 26933810 PMCID: PMC4914358 DOI: 10.18632/oncotarget.7724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
The case study reported on acquired bevacizumab resistance in one patient receiving re-treatment with bevacizumab following radiation brain necrosis progression after bevacizumab was discontinued. This case offers novel and additional insight for bevacizumab treatment. Low-dose bevacizumab is effective for radiation brain necrosis, and radiation brain necrosis may progress after bevacizumab discontinuation, whereas too many cycles of bevacizumab treatment may induce drug-resistance and re-treatment failure following the progression. Therefore, more rational administration for radiation brain necrosis with bevacizumab may include three aspects: short-course treatment, timely discontinuation upon obtaining satisfactory effects (to prevent long-term medication associated resistance) and re-treatment after brain necrosis progression.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiangkun Yuan
- Department of Radiotherapy, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei, China
| | - Dayong Sun
- Department of Chemo-Radiotherapy, Chengde Center Hospital, Second Clinical Medical School of Chengde Medical University, Hebei, China
| | - Jianliang Bian
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei, China
| | - Joe Y Chang
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiyong Yuan
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
11
|
Hatzoglou V, Yang TJ, Omuro A, Gavrilovic I, Ulaner G, Rubel J, Schneider T, Woo KM, Zhang Z, Peck KK, Beal K, Young RJ. A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol 2015; 18:873-80. [PMID: 26688076 DOI: 10.1093/neuonc/nov301] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the effectiveness of fluorine-18 fluorodeoxyglucose (FDG) PET-CT and dynamic contrast-enhanced (DCE) MRI in differentiating tumor progression and radiation injury in patients with indeterminate enhancing lesions after radiation therapy (RT) for brain malignancies. METHODS Patients with indeterminate enhancing brain lesions on conventional MRI after RT underwent brain DCE-MRI and PET-CT in a prospective trial. Informed consent was obtained. Lesion outcomes were determined by histopathology and/or clinical and imaging follow-up. Metrics obtained included plasma volume (Vp) and volume transfer coefficient (K(trans)) from DCE-MRI, and maximum standardized uptake value (SUVmax) from PET-CT; lesion-to-normal brain ratios of all metrics were calculated. The Wilcoxon rank sum test and receiver operating characteristic analysis were performed. RESULTS The study included 53 patients (29 treated for 29 gliomas and 24 treated for 26 brain metastases). Progression was determined in 38/55 (69%) indeterminate lesions and radiation injury in 17 (31%). Vpratio (VP lesion/VP normal brain, P < .001), K(trans) ratio (P = .002), and SUVratio (P = .002) correlated significantly with diagnosis of progression versus radiation injury. Progressing lesions exhibited higher values of all 3 metrics compared with radiation injury. Vpratio had the highest accuracy in determining progression (area under the curve = 0.87), with 92% sensitivity and 77% specificity using the optimal, retrospectively determined threshold of 2.1. When Vpratio was combined with K(trans) ratio (optimal threshold 3.6), accuracy increased to 94%. CONCLUSIONS Vpratio was the most effective metric for distinguishing progression from radiation injury. Adding K(trans) ratio to Vpratio further improved accuracy. DCE-MRI is an effective imaging technique for evaluating nonspecific enhancing intracranial lesions after RT.
Collapse
Affiliation(s)
- Vaios Hatzoglou
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - T Jonathan Yang
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Antonio Omuro
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Igor Gavrilovic
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Gary Ulaner
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Jennifer Rubel
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Taylor Schneider
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Kaitlin M Woo
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Zhigang Zhang
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Kyung K Peck
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Kathryn Beal
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| | - Robert J Young
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., J.R., T.S., K.K.P., R.J.Y.); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.J.Y., K.B.); Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York (G.U.); Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.O., I.G.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (K.M.W., Z.Z.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (K.K.P.); Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York (V.H., A.O., I.G., K.B., R.J.Y.)
| |
Collapse
|
12
|
Kunimatsu J, Miyamoto N, Ishikawa M, Shirato H, Tanaka M. Application of radiosurgical techniques to produce a primate model of brain lesions. Front Syst Neurosci 2015; 9:67. [PMID: 25964746 PMCID: PMC4408846 DOI: 10.3389/fnsys.2015.00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/07/2015] [Indexed: 11/29/2022] Open
Abstract
Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130-150 Gy at ISO center) to the frontal eye field (FEF) of macaque monkeys using a clinical linear accelerator (LINAC). The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR) images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans.
Collapse
Affiliation(s)
- Jun Kunimatsu
- Systems Neuroscience Laboratory, Department of Physiology, Hokkaido University School of MedicineSapporo, Japan
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University School of MedicineSapporo, Japan
| | - Masayori Ishikawa
- Department of Medical Physics, Hokkaido University School of MedicineSapporo, Japan
| | - Hiroki Shirato
- Department of Radiation Oncology, Hokkaido University School of MedicineSapporo, Japan
| | - Masaki Tanaka
- Systems Neuroscience Laboratory, Department of Physiology, Hokkaido University School of MedicineSapporo, Japan
| |
Collapse
|
13
|
Cheng L, Ma L, Ren H, Zhao H, Pang Y, Wang Y, Wei M. Alterations in the expression of vascular endothelial growth factor in the rat brain following gamma knife surgery. Mol Med Rep 2014; 10:2263-70. [PMID: 25176344 PMCID: PMC4214336 DOI: 10.3892/mmr.2014.2520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 05/14/2014] [Indexed: 01/01/2023] Open
Abstract
Gamma knife surgery (GKS) is used for the treatment of various brain diseases. However, the mechanisms underlying brain injury following irradiation remain to be elucidated. Given that vascular endothelial growth factor (VEGF) is closely associated with pathological angiogenesis and the permeability of the blood brain barrier (BBB), the present study was designed to analyze temporal alterations in VEGF expression in the cerebral cortex and the effect of VEGF on cerebral edema in rats following GKS. Adult male Wistar rats were subjected to GKS at maximum doses of 60 Gy. Animals were sacrificed between 4 and 24 weeks after GKS. Immunohistochemistry, enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction (RT-PCR) were employed for detecting VEGF expression. The vessel density was measured by CD31+ cell count and vascular structures were examined using electron microscopy. Brain water content and BBB permeability were measured in the present study. VEGF expression in the irradiated cortex progressively increased until 16 weeks after GKS when the maximal expression was reached, and then gradually decreased to the control level 24 weeks after GKS. These findings were confirmed by RT-PCR. A mild decrease in vessel density was observed 4 weeks after GKS, followed by an increase in vessel density between 8 and 20 weeks later. Furthermore, previous studies also demonstrated vascular damage, opening of the BBB and an increase in brain water content occurring simultaneously. To the best of our knowledge, these data demonstrated for the first time dynamic changes in VEGF expression following GKS and also suggest the importance of VEGF expression in pathological angiogenesis and edema formation following GKS.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Lin Ma
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Hecheng Ren
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Hongwei Zhao
- Department of Neurosurgery, Jixian People's Hospital, Tianjin 301900, P.R. China
| | - Yiqiang Pang
- Department of Neurosurgery, Fourth Hospital of Baotou, Baotou, Inner Mongolia 014030, P.R. China
| | - Yongheng Wang
- Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Ming Wei
- Department of Neurosurgery, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
14
|
Ashpole NM, Warrington JP, Mitschelen MC, Yan H, Sosnowska D, Gautam T, Farley JA, Csiszar A, Ungvari Z, Sonntag WE. Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2014; 307:H858-68. [PMID: 25038144 DOI: 10.1152/ajpheart.00308.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.
Collapse
Affiliation(s)
- Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Junie P Warrington
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Matthew C Mitschelen
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Yan
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Danuta Sosnowska
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Julie A Farley
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| |
Collapse
|
15
|
Ruzevick J, Kleinberg L, Rigamonti D. Imaging changes following stereotactic radiosurgery for metastatic intracranial tumors: differentiating pseudoprogression from tumor progression and its effect on clinical practice. Neurosurg Rev 2013; 37:193-201; discussion 201. [PMID: 24233257 DOI: 10.1007/s10143-013-0504-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/18/2013] [Accepted: 08/24/2013] [Indexed: 02/07/2023]
Abstract
Stereotactic radiosurgery has become standard adjuvant treatment for patients with metastatic intracranial lesions. There has been a growing appreciation for benign imaging changes following radiation that are difficult to distinguish from true tumor progression. These imaging changes, termed pseudoprogression, carry significant implications for patient management. In this review, we discuss the current understanding of pseudoprogression in metastatic brain lesions, research to differentiate pseudoprogression from true progression, and clinical implications of pseudoprogression on treatment decisions.
Collapse
Affiliation(s)
- Jacob Ruzevick
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, Phipps Building, Room 126, 600 N. Wolfe Street, Baltimore, MD, 21287, USA,
| | | | | |
Collapse
|
16
|
A combination of radiosurgery and soluble tissue factor enhances vascular targeting for experimental glioblastoma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:390714. [PMID: 24307995 PMCID: PMC3838847 DOI: 10.1155/2013/390714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/25/2013] [Indexed: 11/17/2022]
Abstract
Radiosurgery for glioblastoma is limited to the development of resistance, allowing tumor cells to survive and initiate tumor recurrence. Based on our previous work that coadministration of tissue factor and lipopolysaccharide following radiosurgery selectively induced thrombosis in cerebral arteriovenous malformations, achieving thrombosis of 69% of the capillaries and 39% of medium sized vessels, we hypothesized that a rapid and selective shutdown of the capillaries in glioblastoma vasculature would decrease the delivery of oxygen and nutrients, reducing tumor growth, preventing intracranial hypertension, and improving life expectancy. Glioblastoma was formed by implantation of GL261 cells into C57Bl/6 mouse brain. Mice were intravenously injected tissue factor, lipopolysaccharide, a combination of both, or placebo 24 hours after radiosurgery. Control mice received both agents after sham irradiation. Coadministration of tissue factor and lipopolysaccharide led to the formation of thrombi in up to 87 ± 8% of the capillaries and 46 ± 4% of medium sized vessels within glioblastoma. The survival rate of mice in this group was 80% versus no survivor in placebo controls 30 days after irradiation. Animal body weight increased with time in this group (r = 0.88, P = 0.0001). Thus, radiosurgery enhanced treatment with tissue factor, and lipopolysaccharide selectively induces thrombosis in glioblastoma vasculature, improving life expectancy.
Collapse
|
17
|
Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J Vasc Res 2013; 50:445-57. [PMID: 24107797 PMCID: PMC4309372 DOI: 10.1159/000354227] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/05/2013] [Indexed: 01/31/2023] Open
Abstract
Mild cognitive impairment is a well-documented consequence of whole brain radiation therapy (WBRT) that affects 40-50% of long-term brain tumor survivors. The exact mechanisms for the decline in cognitive function after WBRT remain elusive and no treatment or preventative measures are available for use in the clinic. Here, we review recent findings indicating how changes in the neurovascular unit may contribute to the impairments in learning and memory. In addition to affecting neuronal development, WBRT induces profound capillary rarefaction within the hippocampus - a region of the brain important for learning and memory. Therapeutic strategies such as hypoxia, which restore the capillary density, result in the rescue of cognitive function. In addition to decreasing vascular density, WBRT impairs vasculogenesis and/or angiogenesis, which may also contribute to radiation-induced cognitive decline. Further studies aimed at uncovering the specific mechanisms underlying these WBRT-induced changes in the cerebrovasculature are essential for developing therapies to mitigate the deleterious effects of WBRT on cognitive function.
Collapse
Affiliation(s)
- Junie P. Warrington
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicole Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Yong Woo Lee
- School of Biomedical Engineering and Sciences Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
18
|
Luther N, Kondziolka D, Kano H, Mousavi SH, Flickinger JC, Lunsford LD. Motor function after stereotactic radiosurgery for brain metastases in the region of the motor cortex. J Neurosurg 2013; 119:683-8. [DOI: 10.3171/2013.6.jns122081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The authors sought to better define the clinical response of patients who underwent stereotactic radiosurgery (SRS) for brain metastases located in the region of the motor cortex.
Methods
A retrospective analysis was performed in 2026 patients with brain metastasis who underwent SRS with the Gamma Knife between 2002 and 2012, and multiple factors that affect motor function before and after SRS were evaluated. Ninety-four patients with tumors ≥ 1.5 cm in diameter located in or adjacent to the motor strip were identified, including 2 patients with bilateral motor strip metastases.
Results
Motor function improved after SRS in 30 (31%) of 96 cases, remained stable in 48 (50%), and worsened over time in 18 (19%) instances. Forty-seven patients had no motor weakness prior to radiosurgery; 10 (22%) developed new Grade 3/5–4/5 weakness. Thirty (68%) of 44 patients with ≥ 3/5 pre-SRS weakness improved, 6 (14%) remained stable, and 8 (18%) worsened. Three of 5 patients with < 3/5 pre-SRS motor function improved. Motor deficits prior to SRS did not correlate with a worse outcome; however, worse outcomes were associated with larger tumor volumes. The median tumor volume in patients whose function improved or remained stable was 5.3 cm3, but it was 9.2 cm3 in patients who worsened (p < 0.05). Tumor volumes > 9 cm3 were associated with a higher risk of worsening motor function. Adverse radiation effects occurred in 5 patients.
Conclusions
Most intact patients with brain metastases in or adjacent to motor cortex maintained neurological function after SRS, and most patients with symptomatic motor weakness remained stable or improved. Larger tumor volumes were associated with less satisfactory outcomes.
Collapse
Affiliation(s)
- Neal Luther
- 1Center for Image-Guided Neurosurgery, Department of Neurological Surgery, and
| | - Douglas Kondziolka
- 1Center for Image-Guided Neurosurgery, Department of Neurological Surgery, and
- 3Department of Neurosurgery, New York University Langone Medical Center, New York, New York
| | - Hideyuki Kano
- 1Center for Image-Guided Neurosurgery, Department of Neurological Surgery, and
| | - Seyed H. Mousavi
- 1Center for Image-Guided Neurosurgery, Department of Neurological Surgery, and
| | - John C. Flickinger
- 2Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - L. Dade Lunsford
- 1Center for Image-Guided Neurosurgery, Department of Neurological Surgery, and
- 2Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| |
Collapse
|
19
|
Hatzoglou V, Ulaner GA, Zhang Z, Beal K, Holodny AI, Young RJ. Comparison of the effectiveness of MRI perfusion and fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor: a preliminary retrospective analysis with pathologic correlation in all patients. Clin Imaging 2013; 37:451-7. [PMID: 23068052 PMCID: PMC3789370 DOI: 10.1016/j.clinimag.2012.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Differentiating radiation injury from viable tumor is important for optimizing patient care. Our aim was to directly compare the effectiveness of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) and dynamic susceptibility-weighted contrast-enhanced (DSC) magnetic resonance (MR) perfusion in differentiating radiation effects from tumor growth in patients with increased enhancement following radiotherapy for primary or secondary brain tumors. MATERIALS AND METHODS We retrospectively identified 12 consecutive patients with primary and secondary brain tumors over a 1-year period that demonstrated indeterminate enhancing lesions after radiotherapy and that had undergone DSC MR perfusion, FDG PET-CT, and subsequent histopathologic diagnosis. The maximum standardized uptake value (SUV) of the lesion (SUVlesion max), SUVratio (SUVlesion max/SUVnormal brain), maximum relative cerebral blood volume, percentage of signal intensity recovery, and relative peak height were calculated from the positron emission tomography and MR perfusion studies. A prediction of tumor or radiation injury was made based on these variables while being blinded to the results of the surgical pathology. RESULTS SUVratio had the highest predictive value (area under the curve=0.943) for tumor progression, although this was not statistically better than any MR perfusion metric (area under the curve=0.757-0.829). CONCLUSIONS This preliminary study suggests that FDG PET-CT and DSC MR perfusion may demonstrate similar effectiveness for distinguishing tumor growth from radiation injury. Assessment of the SUVratio may increase the sensitivity and specificity of FDG PET-CT for differentiating tumor and radiation injury. Further analysis is needed to help define which modality has greater predictive capabilities.
Collapse
Affiliation(s)
- Vaios Hatzoglou
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 2013; 15:515-34. [PMID: 23325863 DOI: 10.1093/neuonc/nos307] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Differentiating treatment-induced necrosis from tumor recurrence is a central challenge in neuro-oncology. These 2 very different outcomes after brain tumor treatment often appear similarly on routine follow-up imaging studies. They may even manifest with similar clinical symptoms, further confounding an already difficult process for physicians attempting to characterize a new contrast-enhancing lesion appearing on a patient's follow-up imaging. Distinguishing treatment necrosis from tumor recurrence is crucial for diagnosis and treatment planning, and therefore, much effort has been put forth to develop noninvasive methods to differentiate between these disparate outcomes. In this article, we review the latest developments and key findings from research studies exploring the efficacy of structural and functional imaging modalities for differentiating treatment necrosis from tumor recurrence. We discuss the possibility of computational approaches to investigate the usefulness of fine-grained imaging characteristics that are difficult to observe through visual inspection of images. We also propose a flexible treatment-planning algorithm that incorporates advanced functional imaging techniques when indicated by the patient's routine follow-up images and clinical condition.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
21
|
Vale FL, Bozorg AM, Schoenberg MR, Wong K, Witt TC. Long-term radiosurgery effects in the treatment of temporal lobe epilepsy. J Neurosurg 2012; 117:962-9. [DOI: 10.3171/2012.6.jns111905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epilepsy surgery is an effective treatment for medically resistant temporal lobe epilepsy (TLE). To minimize complication rates and potentially improve neuropsychology outcomes, stereotactic radiosurgery (SRS) has been explored as an alternative. Two pilot trials have demonstrated the effectiveness of SRS for the treatment of medically resistant TLE, with seizure-free outcomes for approximately 65% of patients at last follow-up. Despite encouraging results, no conclusive long-term outcomes are available for SRS. This article discusses a single patient who presented with recurrent seizures, worsening headaches, and persistent abnormal MRI findings 7 years and 8 months after SRS.
This 29-year-old woman with a history of medically refractory complex partial seizures since childhood was referred for evaluation. Medical management had failed in this patient. The workup was compatible with left mesial temporal lobe onset, with MRI findings suggestive of mesial temporal sclerosis. In 2003, at the age of 23 years, she underwent Gamma Knife surgery (GKS) targeting the left temporal mesial area with a dose of 24 Gy at the 50% marginal isodose line. After GKS, the patient's seizures decreased in frequency over several months, but auras were persistent. Nine months after treatment, she developed worsening headaches. A follow-up MRI study demonstrated a thick, irregular, enhancing lesion in the medial part of the temporal lobe. She was placed on corticosteroids, with resolution of her headaches.
Her seizures and headaches recurred in March 2010. An MRI study showed a 2.2-cm, ill-defined, enhancing cystic lesion in the left mesial temporal lobe with T2 and FLAIR hyperintensity, which was presumably radiation induced. At that time, the patient opted for left temporal lobe resection to control her seizures. Histological examination showed moderately severe, remote, longstanding sclerosis at the level of the hippocampus. A vascular lesion was identified, and it was most consistent with radiation-induced capillary hemangioma. The entorhinal region was severely damaged, with hemorrhage, necrosis, neuronal loss, astrogliosis, and hemosiderin deposition. There was evidence of radiation vasculopathy.
Radiation-induced lesions after SRS for the treatment of epilepsy are not well documented. Although GKS is a promising technique for the treatment of medically resistant TLE, the ideal candidate is not yet well defined. The selection of the appropriate technical parameters to obtain a desirable functional effect without histological damage to the surrounding neural tissue remains a challenge. This case illustrates the need for long-term follow-up when radiosurgery is used for epilepsy.
Collapse
Affiliation(s)
| | | | - Mike R. Schoenberg
- 1Departments of Neurosurgery,
- 2Neurology, and
- 3Psychiatry and Behavioral Neurosciences, University of South Florida
| | - Kondi Wong
- 4Department of Pathology, Tampa General Hospital, University of South Florida, Tampa, Florida; and
| | - Thomas C. Witt
- 5Goodman Campbell Brain and Spine, Department of Neurosurgery, Indiana University, Indianapolis, Indiana
| |
Collapse
|
22
|
Warrington JP, Csiszar A, Mitschelen M, Lee YW, Sonntag WE. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One 2012; 7:e30444. [PMID: 22279591 PMCID: PMC3261195 DOI: 10.1371/journal.pone.0030444] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023] Open
Abstract
Whole brain radiation therapy (WBRT) is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40–50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia) or 21% oxygen (normoxia) for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.
Collapse
Affiliation(s)
- Junie P. Warrington
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - William E. Sonntag
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Stereotactic radiosurgery, well established in the noninvasive treatment of focal lesions that are otherwise difficult to access through open surgery, is an emerging technology in the treatment of focal epileptic lesions. Recent studies suggest that seizures from hypothalamic hamartomas and mesial temporal lobe epilepsy remit at clinically significant rates with radiosurgery, but large variations among different studies have raised questions about appropriate treatment protocols and mechanisms. Proposed anticonvulsant mechanisms include neuromodulatory effects or ischemic necrosis of epileptic tissue. An ongoing trial that directly compares efficacy, morbidities, and cost of radiosurgery versus open surgery for mesial temporal lobe epilepsy is underway.
Collapse
Affiliation(s)
- Mark Quigg
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
24
|
Kim JY, Kim ST, Nam DH, Lee JI, Park K, Kong DS. Leukoencephalopathy and disseminated necrotizing leukoencephalopathy following intrathecal methotrexate chemotherapy and radiation therapy for central nerve system lymphoma or leukemia. J Korean Neurosurg Soc 2011; 50:304-10. [PMID: 22200011 DOI: 10.3340/jkns.2011.50.4.304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/05/2011] [Accepted: 03/21/2011] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Intrathecal methotrexate (MTX) therapy combined with whole brain radiotherapy (WBRT) is one of the major treatment modalities for leukemia and lymphoma involving the central nervous system (CNS). The purpose of this study was to retrospectively determine the incidences of leukoencephalopathy and disseminated necrotizing leukoencephalopathy (DNL) following intrathecal MTX therapy for CNS lymphoma or leukemia and to assess the potential risk factors. METHODS Between January 2000 and August 2009, 143 patients with CNS lymphoma or leukemia received intrathecal MTX therapy alone or in combination with WBRT at a single institution. Patients were followed up clinically and radiologically at regular two- or three-month intervals. Medical records were reviewed to obtain information regarding the patients' demographics, medical histories, radiologic characteristics, treatments, and clinical courses. RESULTS On follow-up MR images, leukoencephalopathy was found in 95 of 143 patients (66.4%). The median time to develop leukoencephalopathy was 6.6 months. Among those with leukoencephalopathy, four patients showed seven extensive white-matter changes with strongly enhancing lesions demonstrating DNL. Histological confirmation was done in six lesions of three patients and radiological diagnosis alone in one patient. Four lesions spontaneously disappeared on MR images without any treatment, with a mean duration of 14 months before disappearance of DNL. CONCLUSION Leukoencephalopathy is a common phenomenon that occurs following intrathecal MTX therapy; however, DNL occurs at a very low incidence. For newly developed enhancing lesions, consideration for the occurrence of DNL should be taken to avoid unnecessary invasive procedures or therapies.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Neurosurgery, Center for Imaging Science, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Jain R, Narang J, Schultz L, Scarpace L, Saksena S, Brown S, Rock JP, Rosenblum M, Gutierrez J, Mikkelsen T. Permeability estimates in histopathology-proved treatment-induced necrosis using perfusion CT: can these add to other perfusion parameters in differentiating from recurrent/progressive tumors? AJNR Am J Neuroradiol 2011; 32:658-63. [PMID: 21330392 DOI: 10.3174/ajnr.a2378] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Differentiating treatment effects from RPT is a common yet challenging task in a busy neuro-oncologic practice. PS probably represents a different aspect of angiogenesis and vasculature and can provide additional physiologic information about recurrent/progressive enhancing lesions. The purpose of the study was to use PS measured by using PCT to differentiate TIN from RPT in patients with previously irradiated brain tumor who presented with a recurrent/progressive enhancing lesion. MATERIALS AND METHODS Seventy-two patients underwent PCT for assessment of a recurrent/progressive enhancing lesion from January 2006 to November 2009. Thirty-eight patients who underwent surgery and histopathologic diagnosis were included in this analysis. Perfusion parameters such as PS, CBV, CBF, and MTT were obtained from the enhancing lesion as well as from the NAWM. RESULTS Of 38 patients, 11 were diagnosed with pure TIN and 27 had RPT. Patients with TIN showed significantly lower mean PS values than those with RPT (1.8 ± 0.8 versus 3.6 ± 1.6 mL/100 g/min; P value=.001). The TIN group also showed lower rCBV (1.2 ± 0.3 versus 2.1 ± 0.7; P value<.001), lower rCBF (1.2 ± 0.5 versus 2.6 ± 1.7; P value=.004), and higher rMTT (1.4 ± 0.4 versus 1.0 ± 0.4; P value=.018) compared with the RPT group. CONCLUSIONS PCT and particularly PS can be used in patients with previously treated brain tumors to differentiate TIN from RPT. PS estimates can help increase the accuracy of PCT in differentiating these 2 entities.
Collapse
Affiliation(s)
- R Jain
- Division of Neuroradiology, Department of Radiology, Henry Ford Health System, 2799 West Grand Blvd, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Warrington JP, Csiszar A, Johnson DA, Herman TS, Ahmad S, Lee YW, Sonntag WE. Cerebral microvascular rarefaction induced by whole brain radiation is reversible by systemic hypoxia in mice. Am J Physiol Heart Circ Physiol 2010; 300:H736-44. [PMID: 21186274 DOI: 10.1152/ajpheart.01024.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole brain radiation therapy (WBRT) leads to cognitive impairment in 40-50% of brain tumor survivors following treatment. Although the etiology of cognitive deficits post-WBRT remains unclear, vascular rarefaction appears to be an important component of these impairments. In this study, we assessed the effects of WBRT on the cerebrovasculature and the effects of systemic hypoxia as a potential mechanism to reverse the microvascular rarefaction. Transgenic mice expressing green fluorescent protein driven by the Acta2 (smooth muscle actin) promoter for blood vessel visualization were randomly assigned to control or radiated groups. Animals received a clinical series of 4.5 Gy WBRT two times weekly for 4 wk followed by 1 mo of recovery. Subsequently, mice were subjected to 11% (hypoxia) or 21% (normoxia) oxygen for 1 mo. Capillary density in subregions of the hippocampus revealed profound vascular rarefaction that persisted despite local tissue hypoxia. Nevertheless, systemic hypoxia was capable of completely restoring cerebrovascular density. Thus hippocampal microvascular rarefaction post-WBRT is not capable of stimulating angiogenesis and can be reversed by chronic systemic hypoxia. Our results indicate a potential shift in sensitivity to angiogenic stimuli and/or the existence of an independent pathway of regulating cerebral microvasculature.
Collapse
Affiliation(s)
- Junie P Warrington
- Oklahoma Center for Neuroscience, Oklahoma Center on Aging, Donald W Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Perfusion imaging of brain tumors has been performed by using various tracer and nontracer modalities and can provide additional physiologic and hemodynamic information, which is not available with routine morphologic imaging. Tumor vascular perfusion parameters obtained by using CT or MR perfusion have been used for tumor grading, prognosis, and treatment response in addition to differentiating treatment/radiation effects and non-neoplastic lesions from neoplasms. This article is an overview of the utility of PCT for assessment of brain tumors and describes the technique, its advantages, and limitations.
Collapse
Affiliation(s)
- R Jain
- Division of Neuroradiology, Departments of Radiology and Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA.
| |
Collapse
|
28
|
Karunanyaka A, Tu J, Watling A, Storer KP, Windsor A, Stoodley MA. Endothelial molecular changes in a rodent model of arteriovenous malformation. J Neurosurg 2008; 109:1165-72. [PMID: 19035737 DOI: 10.3171/jns.2008.109.12.1165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The cellular and molecular processes underlying arteriovenous malformation (AVM) development and response to radiosurgery are largely unknown. An animal model mimicking the molecular properties of AVMs is required to examine these processses. This study was performed to determine whether the endothelial molecular changes in an animal model of arteriovenous fistula (AVF) are similar to those in human AVMs.
Methods
Arteriovenous fistulas were created in 18 Sprague–Dawley rats by end-to-side anastomosis of the left jugular vein to the common carotid artery creating a model “nidus” of arterialized branching veins that coalesce into a “draining vein” (sigmoid sinus). Six control animals underwent sham operations.
Results
After 1 or 3 days, or 1, 3, 6, or 12 weeks, fresh-frozen sections of the fistula, nidus vessels, and contralateral vessels were studied immunohistochemically for thrombomodulin, von Willebrand factor, E-selectin, P-selectin, and vascular endothelial growth factor.
Conclusions
The AVF model has a “nidus” with endothelial molecular changes similar to those observed in human AVMs, supporting its use as a model for studying the effects of radiosurgery on AVMs.
Collapse
Affiliation(s)
- Athula Karunanyaka
- 1Prince of Wales Medical Research Institute, University of New South Wales, Sydney; and
| | - Jian Tu
- 1Prince of Wales Medical Research Institute, University of New South Wales, Sydney; and
| | - Amy Watling
- 1Prince of Wales Medical Research Institute, University of New South Wales, Sydney; and
| | - Kingsley P. Storer
- 1Prince of Wales Medical Research Institute, University of New South Wales, Sydney; and
| | - Apsara Windsor
- 1Prince of Wales Medical Research Institute, University of New South Wales, Sydney; and
| | - Marcus A. Stoodley
- 1Prince of Wales Medical Research Institute, University of New South Wales, Sydney; and
- 2Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2008; 30:367-72. [PMID: 19022867 DOI: 10.3174/ajnr.a1362] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE MR image-guided gamma knife radiosurgery is often used to treat intra-axial metastatic neoplasms. Following treatment, it is often difficult to determine whether a progressively enhancing lesion is due to metastatic tumor recurrence or radiation necrosis. The purpose of our study was to determine whether relative cerebral blood volume (rCBV), relative peak height (rPH), and percentage of signal-intensity recovery (PSR) derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging can distinguish recurrent metastatic tumor from radiation necrosis. MATERIALS AND METHODS Twenty-seven patients with systemic cancer underwent gamma knife radiosurgery for metastatic lesions of the brain and subsequently developed enlarging regions of enhancement within the radiation field. Subsequent surgical resection or clinicoradiologic follow-up established a diagnosis of recurrent metastatic tumor or radiation necrosis. Perfusion MR imaging datasets were retrospectively reprocessed, and regions of interest were drawn around the entire contrast-enhancing region. The resulting T2* signal-intensity time curves produced rCBV, rPH, and PSR values for each examination. A Welch t test was used to compare imaging values between groups. RESULTS The mean, minimum, and maximum PSR values were significantly lower (P < .01) in cases of recurrent metastatic tumor. The mean and maximum rCBV and rPH values were significantly higher (P < .02) in the recurrent metastatic tumor group. CONCLUSIONS The findings of our study suggest that perfusion MR imaging may be used to differentiate recurrent intra-axial metastatic tumor from gamma knife-induced radiation necrosis.
Collapse
Affiliation(s)
- R F Barajas
- Department of Radiology, Neuroradiology Section; University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
OBJECTIVES Despite revolutionary technical advancement in neuroimaging and operative neurosurgery, surgical extirpation of focal brainstem glioma (BSG) remains steeped in controversy. In this study, we evaluated our senior author's (CT) surgical experience in radically treating these tumours in children to determine the safety and efficacy of such approach. MATERIALS AND METHODS Thirty-four consecutive patients aged between 3 and 16 years who underwent endoscope-assisted microsurgery for focal BSG with the intent of radial resection from 1999 to 2005 were evaluated. The clinical outcome at 6 months and long-term survival were analysed. CONCLUSION Thirty-one patients had >90% tumour resection and the remainder had >50%. There was no perioperative mortality. The average follow-up was 46 months. Twenty-three patients (74%) harboured low-grade gliomas, whilst the remainder (26%) had high-grade gliomas. Kaplan-Meier survival analysis revealed marked difference in the 5-year survival rates between the two groups (100% vs 33%). Multivariate analysis demonstrated that the degree of tumour resection was not associated with poor outcome at 6 months. This series underscores the benefits of surgical resection for focal BSG. Radical resection can be achieved in a majority of patients with favourable outcome regardless of tumour pathology.
Collapse
Affiliation(s)
- Charles Teo
- Centre for Minimally Invasive Neurosurgery, Barker Street, Randwick, NSW, 2031, Australia
| | | |
Collapse
|
31
|
Barami K, Grow A, Brem S, Dagnew E, Sloan AE. Vascular complications after radiosurgery for meningiomas. Neurosurg Focus 2007; 22:E9. [PMID: 17608362 DOI: 10.3171/foc.2007.22.3.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
✓During the past 25 years, radiosurgery has evolved as a primary treatment modality for certain meningiomas when resection would be associated with high patient morbidity. In addition, radiosurgery is now routinely used as an adjunctive therapy for residual or recurrent meningiomas after surgical removal. In this review the authors summarize the vascular complications that occur after radiosurgery for meningiomas as well as experimental study data that give insight into the pathogenesis of this complication. These data may be useful when discussing with patients the risk/benefit ratio of choosing among conservative management, radiosurgery, and surgery.
Collapse
Affiliation(s)
- Kaveh Barami
- Memorial Neuroscience Center, Memorial Hospital Jacksonville, Florida, USA.
| | | | | | | | | |
Collapse
|
32
|
Erbayraktar S, de Lanerolle N, de Lotbinière A, Knisely JPS, Erbayraktar Z, Yilmaz O, Cerami A, Coleman TR, Brines M. Carbamylated erythropoietin reduces radiosurgically-induced brain injury. Mol Med 2006; 12:74-80. [PMID: 16953562 PMCID: PMC1578768 DOI: 10.2119/2006-00042.erbayraktar] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/10/2006] [Indexed: 12/21/2022] Open
Abstract
Gamma knife radiosurgery is an attractive noninvasive treatment of brain tumors and vascular malformations that minimizes collateral tissue damage. However, exposure of normal tissue to even low-dose radiation triggers a cascade of acute and chronic injury and potentially significant morbidity and mortality. Because many irradiated patients now survive for years, identifying methods to prevent radiotherapy-induced collateral tissue damage is a major focus of current research. Erythropoietin (EPO), a cytokine produced locally by many tissues in response to injury, antagonizes apoptosis, reduces inflammation, and promotes healing. Systemic administration of recombinant EPO, widely used for treatment of anemia, provides robust protection from numerous insults in a variety of tissues, including the brain. Although irradiation injury is likely sensitive to EPO, the hematopoietic activity of EPO is undesirable in this setting, increasing erythrocyte number and predisposing to thrombosis. To avoid these potential adverse effects, we developed carbamylated EPO (CEPO) which does not stimulate the bone marrow. In this study, we show that CEPO (50 microg kg(-1) intraperitoneally) improves functional outcome when administered to adult rats just before, and then once daily for 10 d after, a necrotizing dose of radiation (100 Gy) to the right striatum. Immediately following irradiation, use and reflex movements of the contralateral forelimb to vibrissae stimulation were abnormal but rapidly improved in animals receiving CEPO. Moreover, histological examination revealed that the extent of brain necrosis after 90 days was reduced by approximately 50%. These findings further extend the kinds of injury for which administration of a tissue-protective cytokine provides benefit.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anthony Cerami
- The Kenneth S. Warren Institute and Warren Pharmaceuticals, Ossining, NY, USA
| | - Thomas R Coleman
- The Kenneth S. Warren Institute and Warren Pharmaceuticals, Ossining, NY, USA
| | - Michael Brines
- The Kenneth S. Warren Institute and Warren Pharmaceuticals, Ossining, NY, USA
- Address correspondence and reprint requests to Michael Brines, The Kenneth S. Warren Institute, 712 Kitchawan Road, Ossining, NY 10562. Phone: 914-762-7586; fax: 914-762-4000; e-mail:
| |
Collapse
|
33
|
Murillo TP, Sandquist C, Jacobs PM, Nesbit G, Manninger S, Neuwelt EA. Imaging brain tumors with ferumoxtran-10, a nanoparticle magnetic resonance contrast agent. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/14750708.2.6.871] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Ohtake M, Morino S, Kaidoh T, Inoué T. Three-dimensional structural changes in cerebral microvessels after transient focal cerebral ischemia in rats: scanning electron microscopic study of corrosion casts. Neuropathology 2004; 24:219-27. [PMID: 15484700 DOI: 10.1111/j.1440-1789.2004.00560.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pathological changes of cerebral microvessels in transient ischemia were investigated by scanning electron microscopy of vascular corrosion casts. Wistar rats were treated with middle cerebral artery (MCA) occlusion for 30 min, 1 h, 3 h, 4 h, 5 h or 7 h and subsequent reperfusion for 2 h. The ultrastructures of the cast were observed and computer-aided montage micrographs were obtained for visualization of the whole microvasculature in the ischemic brain hemisphere. Avascular areas representing ischemic areas were detected in the frontotemporal cortex and caudate putamen in the groups from 30 min to 5 h occlusion. Extravasation of the resin, which probably corresponded to the leakage of plasma or hemorrhage, was seen as spheroidal, conglomerative, large massive and worm-like types. The spheroidal type, which probably indicated a small leakage or minor hemorrhage, began to appear in the 30-min occlusion group. The conglomerative type, which probably indicated a larger leakage or moderate hemorrhage, appeared in the 3- to 5-h occlusion groups. The large massive and worm-like types, which probably indicated a significant hemorrhage, appeared in the 4- and 5-h occlusion groups. The number of these extravasations increased significantly in the 4-h occlusion group. Arterioles near the avascular area frequently showed vasospastic appearances, such as corrugations, fusiform indentations of endothelial nuclei, continuous circulatory constrictions and severe narrowing with interrupted branches. Arteriolar vasospasm possibly caused prolonged hypoperfusion even if reperfusion was achieved. The capillaries had a thin stringy appearance in the 4- and 5-h occlusion groups. These changes seemed to relate closely with increased intracranial pressure by brain edema or hemorrhage. The present study suggested that the risk of brain edema or hemorrhagic infarction increased beyond 3 h of MCA occlusion, and vasospasm of the arterioles might participate in stroke pathophysiology.
Collapse
Affiliation(s)
- Minoru Ohtake
- Division of Morphological Analysis, Department of Functional, Morphological and Regulation Science, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | |
Collapse
|