1
|
Morrisette T, Stamper KC, Lev KL, Kebriaei R, Holger DJ, Abdul-Mutakabbir JC, Kunz Coyne AJ, Rybak MJ. Evaluation of Omadacycline Alone and in Combination with Rifampin against Staphylococcus aureus and Staphylococcus epidermidis in an In Vitro Pharmacokinetic/Pharmacodynamic Biofilm Model. Antimicrob Agents Chemother 2023; 67:e0131722. [PMID: 37222591 PMCID: PMC10269082 DOI: 10.1128/aac.01317-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/27/2023] [Indexed: 05/25/2023] Open
Abstract
Biofilm-associated infections lead to substantial morbidity. Omadacycline (OMC) is a novel aminomethylcycline with potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis, but data surrounding its use in biofilm-associated infections are lacking. We investigated the activity of OMC alone and in combination with rifampin (RIF) against 20 clinical strains of staphylococci in multiple in vitro biofilm analyses, including an in vitro pharmacokinetic/pharmacodynamic (PK/PD) CDC biofilm reactor (CBR) model (simulating human exposures). The observed MICs for OMC demonstrated potent activity against the evaluated strains (0.125 to 1 mg/L), with an increase of MICs generally observed in the presence of biofilm (0.25 to >64 mg/L). Furthermore, RIF was shown to reduce OMC biofilm MICs (bMICs) in 90% of strains, and OMC plus RIF combination in biofilm time-kill analyses (TKAs) exhibited synergistic activity in most of the strains. Within the PK/PD CBR model, OMC monotherapy primarily displayed bacteriostatic activity, while RIF monotherapy generally exhibited initial bacterial eradication, followed by rapid regrowth likely due to the emergence of RIF resistance (RIF bMIC, >64 mg/L). However, the combination of OMC plus RIF produced rapid and sustained bactericidal activity in nearly all the strains (3.76 to 4.03 log10 CFU/cm2 reductions from starting inoculum in strains in which bactericidal activity was reached). Furthermore, OMC was shown to prevent the emergence of RIF resistance. Our data provide preliminary evidence that OMC in combination with RIF could be a viable option for biofilm-associated infections with S. aureus and S. epidermidis. Further research involving OMC in biofilm-associated infections is warranted.
Collapse
Affiliation(s)
- Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle C. Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Katherine L. Lev
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Dana J. Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jacinda C. Abdul-Mutakabbir
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy, Detroit Receiving Hospital, Detroit, Michigan, USA
| |
Collapse
|
2
|
Gough CR, Hu X. Air-Spun Silk-Based Micro-/Nanofibers and Thin Films for Drug Delivery. Int J Mol Sci 2021; 22:9588. [PMID: 34502496 PMCID: PMC8430899 DOI: 10.3390/ijms22179588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-/nanofibers have shown high promise as drug delivery vehicles due to their high porosity and surface-area-to-volume ratio. The current study utilizes air-spraying, a novel fiber fabrication technique, to create silk micro-/nanofibers without the need for a high voltage power source. Air-spraying was used to create silk fibrous mats embedded with several model drugs with high efficiency. In order to compare the effect of biomaterial geometry on the release of the model drugs, silk films were also created and characterized. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and a drug release study were performed on both fiber and film samples to study how the model drugs interact with the protein structure. FTIR analysis showed that while drugs could interact with the protein structure of porous silk fibers, they could not interact with the flat geometry of silk films. As a result, fibers could protect select model drugs from thermal degradation and slow their release from the fiber network with more control than the silk films. A trend was also revealed where hydrophobic drugs were better protected and had a slower release than hydrophilic drugs. The results suggest that the physical and chemical properties of drugs and protein-based biomaterials are important for creating drug delivery vehicles with tailored release profiles and that fibers provide better tunability than films do.
Collapse
Affiliation(s)
- Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
3
|
DeFrates K, Markiewicz T, Xue Y, Callaway K, Gough C, Moore R, Bessette K, Mou X, Hu X. Air-jet spinning corn zein protein nanofibers for drug delivery: Effect of biomaterial structure and shape on release properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111419. [PMID: 33255020 DOI: 10.1016/j.msec.2020.111419] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023]
Abstract
Nanofiber materials are commonly used as delivery vehicles for dermatological drugs due to their high surface-area-to-volume ratio, porosity, flexibility, and reproducibility. In this study air-jet spinning was used as a novel and economic method to fabricate corn zein nanofiber meshes with model drugs of varying solubility, molecular weight and charge. The release profiles of these drugs were compared to their release from corn zein films to elucidate the effect of geometry and structure on drug delivery kinetics. In film samples, over 50% of drug was released after only 2 h. However, fiber samples exhibited more sustained release, releasing less than 50% after one day. FTIR, SEM, and DSC were performed on nanofibers and films before and after release of the drugs. Structural analysis revealed that the incorporation of model drugs into the fibers would transform the zein proteins from a random coil network to a more alpha helical structure. Upon release, the protein fiber reverted to its original random coil network. In addition, thermal analysis indicated that fibers can protect the drug molecules in high temperature above 160 °C, while drugs within films will degrade below 130 °C. These findings can likely be attributed to the mechanical infiltration of the drug molecules into the ordered structure of the zein fibers during their solution fabrication. The slow release from fiber samples can be attributed to this biophysical interaction, illustrating that release is dictated by more than diffusion in protein-based carriers. The controlled release of a wide variety of drugs from the air-jet spun corn zein nanofiber meshes demonstrates their success as drug delivery vehicles that can potentially be incorporated into different biological materials in the future.
Collapse
Affiliation(s)
- Kelsey DeFrates
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Theodore Markiewicz
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ye Xue
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kayla Callaway
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Christopher Gough
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Robert Moore
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Kristen Bessette
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Xiaoyang Mou
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
4
|
Kim SH, Lee KM, Lee GS, Seong JW, Kang TJ. Rifampicin Alleviates Atopic Dermatitis-Like Response in vivo and in vitro. Biomol Ther (Seoul) 2017; 25:634-640. [PMID: 29081091 PMCID: PMC5685433 DOI: 10.4062/biomolther.2017.147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 11/05/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder mediated by inflammatory cells, such as macrophages and mast cells. Rifampicin is mainly used for the treatment of tuberculosis. Recently, it was reported that rifampicin has anti-inflammatory and immune-suppressive activities. In this study, we investigated the effect of rifampicin on atopic dermatitis in vivo and in vitro. AD was induced by treatment with 2, 4-dinitrochlorobenzene (DNCB) in NC/Nga mice. A subset of mice was then treated with rifampicin by oral administration. The severity score and scratching behavior were alleviated in the rifampicin-treated group. Serum immunoglobulin E (IgE) and interleukin-4 (IL-4) levels were also ameliorated in mice treated with rifampicin. We next examined whether rifampicin has anti-atopic activity via suppression of mast cell activation. Rifampicin suppressed the release of β-hexosaminidase and histamine from human mast cell (HMC)-1 cultures stimulated with compound 48/80. Treatment with rifampicin also inhibited secretion of inflammatory mediators, such tumor necrosis factor-α (TNF-α) and prostaglandin D₂ (PGD₂), in mast cells activated by compound 48/80. The mRNA expression of cyclooxygenase 2 (COX-2) was reduced in the cells treated with rifampicin in a concentration-dependent manner. These results suggest that rifampicin can be used to treat atopic dermatitis.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Ki Man Lee
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Geum Seon Lee
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Ju-Won Seong
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Tae Jin Kang
- Institute of Chronic Disease and College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
5
|
Rifampin-Based Combination Therapy Is Active in Foreign-Body Osteomyelitis after Prior Rifampin Monotherapy. Antimicrob Agents Chemother 2017; 61:AAC.01822-16. [PMID: 27855064 DOI: 10.1128/aac.01822-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/06/2016] [Indexed: 12/30/2022] Open
Abstract
Staphylococcal prosthetic joint infections (PJIs) are associated with biofilm formation, making them difficult to treat; if managed with debridement and implant retention, rifampin-based therapy is usually employed. Rifampin resistance potentially challenges PJI treatment. In investigating the effects of rifampin monotherapy on methicillin-resistant Staphylococcus aureus (MRSA) foreign-body osteomyelitis in rats, we previously demonstrated that rifampin resistance was selected but that it disappeared 14 days following rifampin monotherapy (1) and that rifampin resistance occurred less frequently following two rounds than following one round of rifampin monotherapy (2). Here, we compared rifampin monotherapy followed by rifampin-vancomycin combination therapy to rifampin-vancomycin combination therapy alone in experimental MRSA foreign-body osteomyelitis. Animals treated with rifampin monotherapy followed by rifampin-vancomycin combination therapy had decreased quantities of bacteria 14 days following treatment completion (P = 0.034) compared to those in animals treated with combination therapy alone. Additionally, some isolates recovered from animals treated with combination therapy alone, although still susceptible to rifampin, had higher MIC, minimum biofilm-inhibitory concentration (MBIC), and minimum biofilm-bactericidal concentration (MBBC) values than those of the inoculating strain. This suggests that rifampin may remain a feasible treatment option in foreign-body-associated orthopedic infections following the selection of rifampin resistance.
Collapse
|
6
|
Lee SH, Teo J, Heng D, Ng WK, Zhao Y, Tan RB. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy. J Pharm Sci 2016; 105:1501-12. [DOI: 10.1016/j.xphs.2016.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 12/28/2022]
|
7
|
Wang X, Grace PM, Pham MN, Cheng K, Strand KA, Smith C, Li J, Watkins LR, Yin H. Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J 2013; 27:2713-22. [PMID: 23568774 DOI: 10.1096/fj.12-222992] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rifampin has been used for the treatment of bacterial infections for many years. Clinically, rifampin has been found to possess immunomodulatory effects. However, the molecular target responsible for the immunosuppressive effects of rifampin is not known. Herein, we show that rifampin binds to myeloid differentiation protein 2 (MD-2), the key coreceptor for innate immune TLR4. Rifampin blocked TLR4 signaling induced by LPS, including NF-κB activation and the overproduction of proinflammatory mediators nitric oxide, interleukin 1β, and tumor necrosis factor α in mouse microglia BV-2 cells and macrophage RAW 264.7 cells. Rifampin's inhibition of TLR4 signaling was also observed in immunocompetent rat primary macrophage, microglia, and astrocytes. Further, we show that rifampin (75 or 100 mg/kg b.i.d. for 3 d, intraperitoneal) suppressed allodynia induced by chronic constriction injury of the sciatic nerve and suppressed nerve injury-induced activation of microglia. Our findings indicate that MD-2 is a important target of rifampin in its inhibition of innate immune function and contributes to its clinically observed immune-suppressive effect. The results also suggest that rifampin may be repositioned as an agent for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gasymov OK, Abduragimov AR, Gasimov EO, Yusifov TN, Dooley AN, Glasgow BJ. Tear lipocalin: potential for selective delivery of rifampin. Biochim Biophys Acta Mol Basis Dis 2004; 1688:102-11. [PMID: 14990340 DOI: 10.1016/j.bbadis.2003.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 09/29/2003] [Accepted: 11/07/2003] [Indexed: 11/20/2022]
Abstract
The potential of ligand binding proteins as drug carriers and delivery systems has recently sparked great interest. We investigated the potential of tear lipocalin (TL) to bind the antibiotic, rifampin, and the environmental conditions for controlled release. To determine if TL binds rifampin, gel filtration was used to isolate protein fractions of tears. Rifampin was detected by absorbance spectroscopy in the elution fractions containing TL. The bound complex of rifampin-TL generates optical activity at about 360 nm, indicating a unique conformation at the binding site. Rifampin has a higher affinity for TL (Kd=128 microM) than albumin. Rifampin is released from the TL calyx in acidic conditions and is displaced by palmitic acid. Autooxidation of free rifampin begins in minutes but is delayed by at least 3 h in the presence of TL. These properties are conducive to stabilization and delivery of rifampin to tubercles that are acidic and rich in fatty acids. These studies show the potential of TL as a carrier for rifampin with controlled release to a targeted environment.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, Jules Stein Eye Institute, University of California, 100 Stein Plaza Rm B-279, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
9
|
Hirn M, Laitinen M, Pirkkalainen S, Vuento R. Cefuroxime, rifampicin and pulse lavage in decontamination of allograft bone. J Hosp Infect 2004; 56:198-201. [PMID: 15003667 DOI: 10.1016/j.jhin.2003.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 12/11/2003] [Indexed: 01/18/2023]
Abstract
The risk of bacterial infection through allogenic bone transplantation is one of the major problems facing tissue banks. Different screening methods and decontamination procedures are being used to achieve a safe surgical result. The purpose of this study was to investigate the contamination rate in fresh frozen bone allografts after treating them with different decontamination methods. The allografts were contaminated by rubbing on the operating theatre floor for 60 min, after which they were rinsed either with sterile physiological saline, cefuroxime or rifampicin solution or they were washed with low-pressure pulse lavage of sterile physiological saline. Our findings show that low-pressure pulse lavage with sterile saline solution is very effective in removing bacteria from bone allograft, when compared with the antibiotic solutions tested.
Collapse
Affiliation(s)
- M Hirn
- Division of Orthopaedics, Department of Surgery Tampere University Hospital, 33521 Tampere, Finland.
| | | | | | | |
Collapse
|