1
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Polito MP, Romaldini A, Rinaldo S, Enzo E. Coordinating energy metabolism and signaling pathways in epithelial self-renewal and differentiation. Biol Direct 2024; 19:63. [PMID: 39113077 PMCID: PMC11308432 DOI: 10.1186/s13062-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Epidermal stem cells (EPSCs) are essential for maintaining skin homeostasis and ensuring a proper wound healing. During in vitro cultivations, EPSCs give rise to transient amplifying progenitors and differentiated cells, finally forming a stratified epithelium that can be grafted onto patients. Epithelial grafts have been used in clinics to cure burned patients or patients affected by genetic diseases. The long-term success of these advanced therapies relies on the presence of a correct amount of EPSCs that guarantees long-term epithelial regeneration. For this reason, a deeper understanding of self-renewal and differentiation is fundamental to fostering their clinical applications.The coordination between energetic metabolism (e.g., glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and amino acid synthesis pathways), molecular signalling pathways (e.g., p63, YAP, FOXM1, AMPK/mTOR), and epigenetic modifications controls fundamental biological processes as proliferation, self-renewal, and differentiation. This review explores how these signalling and metabolic pathways are interconnected in the epithelial cells, highlighting the distinct metabolic demands and regulatory mechanisms involved in skin physiology.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Alessio Romaldini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, 00185, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
3
|
Adibi H, Arjmand B, Aghayan HR, Bahrami-Vahdat E, Alavi-Moghadam S, Rezaei-Tavirani M, Arjmand R, Namazi N, Larijani B. Standardized GMP-Compliant Scalable 3D-Bioprocessing of Epidermal Stem Cells for Diabetic Foot Ulcers. Methods Mol Biol 2024; 2849:173-183. [PMID: 38376750 DOI: 10.1007/7651_2024_514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Diabetic foot ulcers (DFUs) pose a significant threat to the health and well-being of individuals with diabetes, often leading to lower limb amputations. Fortunately, epidermal stem cell therapy offers hope for improving the treatment of DFUs. By leveraging 3D culture techniques, the scalability of stem cell manufacturing can be greatly enhanced. In particular, using bioactive materials and scaffolds can promote the healing potential of cells, enhance their proliferation, and facilitate their survival. Furthermore, 3D tissue-mimicking cultures can accurately replicate the complex interactions between cells and extracellular matrix, thereby ensuring that the stem cells are primed for therapeutic application. To ensure the safety and quality of these stem cells, it is essential to adhere to good manufacturing practice (GMP) principles during cultivation. This chapter provides a comprehensive overview of the step-by-step process for GMP-based 3D epidermal stem cell cultivation, thus laying the groundwork for developing reliable regenerative medicine therapies.
Collapse
Affiliation(s)
- Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Aja University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Cancedda R, Mastrogiacomo M. Transit Amplifying Cells (TACs): a still not fully understood cell population. Front Bioeng Biotechnol 2023; 11:1189225. [PMID: 37229487 PMCID: PMC10203484 DOI: 10.3389/fbioe.2023.1189225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Maintenance of tissue homeostasis and tissue regeneration after an insult are essential functions of adult stem cells (SCs). In adult tissues, SCs proliferate at a very slow rate within "stem cell niches", but, during tissue development and regeneration, before giving rise to differentiated cells, they give rise to multipotent and highly proliferative cells, known as transit-amplifying cells (TACs). Although differences exist in diverse tissues, TACs are not only a transitory phase from SCs to post-mitotic cells, but they also actively control proliferation and number of their ancestor SCs and proliferation and differentiation of their progeny toward tissue specific functional cells. Autocrine signals and negative and positive feedback and feedforward paracrine signals play a major role in these controls. In the present review we will consider the generation and the role played by TACs during development and regeneration of lining epithelia characterized by a high turnover including epidermis and hair follicles, ocular epithelial surfaces, and intestinal mucosa. A comparison between these different tissues will be made. There are some genes and molecular pathways whose expression and activation are common to most TACs regardless their tissue of origin. These include, among others, Wnt, Notch, Hedgehog and BMP pathways. However, the response to these molecular signals can vary in TACs of different tissues. Secondly, we will consider cultured cells derived from tissues of mesodermal origin and widely adopted for cell therapy treatments. These include mesenchymal stem cells and dedifferentiated chondrocytes. The possible correlation between cell dedifferentiation and reversion to a transit amplifying cell stage will be discussed.
Collapse
Affiliation(s)
- Ranieri Cancedda
- Emeritus Professor, Università degli Studi di Genova, Genoa, Italy
| | - Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università Degli Studi di Genova, Genova, Italy
| |
Collapse
|
5
|
Nanba D, Sakabe JI, Mosig J, Brouard M, Toki F, Shimokawa M, Kamiya M, Braschler T, Azzabi F, Droz-Georget Lathion S, Johnsson K, Roy K, Schmid CD, Bureau JB, Rochat A, Barrandon Y. Low temperature and mTOR inhibition favor stem cell maintenance in human keratinocyte cultures. EMBO Rep 2023:e55439. [PMID: 37139607 DOI: 10.15252/embr.202255439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
Adult autologous human epidermal stem cells can be extensively expanded ex vivo for cell and gene therapy. Identifying the mechanisms involved in stem cell maintenance and defining culture conditions to maintain stemness is critical, because an inadequate environment can result in the rapid conversion of stem cells into progenitors/transient amplifying cells (clonal conversion), with deleterious consequences on the quality of the transplants and their ability to engraft. Here, we demonstrate that cultured human epidermal stem cells respond to a small drop in temperature through thermoTRP channels via mTOR signaling. Exposure of cells to rapamycin or a small drop in temperature induces the nuclear translocation of mTOR with an impact on gene expression. We also demonstrate by single-cell analysis that long-term inhibition of mTORC1 reduces clonal conversion and favors the maintenance of stemness. Taken together, our results demonstrate that human keratinocyte stem cells can adapt to environmental changes (e.g., small variations in temperature) through mTOR signaling and constant inhibition of mTORC1 favors stem cell maintenance, a finding of high importance for regenerative medicine applications.
Collapse
Affiliation(s)
- Daisuke Nanba
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Division of Aging and Regeneration, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichi Sakabe
- Duke-NUS Medical School, Singapore City, Singapore
- Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital and A*STAR Skin Research Labs, Singapore City, Singapore
| | - Johannes Mosig
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Brouard
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Fujio Toki
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Division of Aging and Regeneration, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mariko Shimokawa
- Division of Aging and Regeneration, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Thomas Braschler
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fahd Azzabi
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Stéphanie Droz-Georget Lathion
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Kai Johnsson
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Keya Roy
- Duke-NUS Medical School, Singapore City, Singapore
- Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital and A*STAR Skin Research Labs, Singapore City, Singapore
| | - Christoph D Schmid
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jean-Baptiste Bureau
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Ariane Rochat
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Yann Barrandon
- Laboratory of Stem Cell Dynamics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Experimental Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Duke-NUS Medical School, Singapore City, Singapore
- Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital and A*STAR Skin Research Labs, Singapore City, Singapore
| |
Collapse
|
6
|
Adamo D, Attico E, Pellegrini G. Education for the translation of Advanced Therapy Medicinal Products. Front Med (Lausanne) 2023; 10:1125892. [PMID: 37081845 PMCID: PMC10110892 DOI: 10.3389/fmed.2023.1125892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Davide Adamo
- Centre for Regenerative Medicine “Stefano Ferrari”, Interdepartmental Center for Stem Cells and Regenerative Medicine (CIDSTEM), University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Davide Adamo
| | - Eustachio Attico
- Centre for Regenerative Medicine “Stefano Ferrari”, Interdepartmental Center for Stem Cells and Regenerative Medicine (CIDSTEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine “Stefano Ferrari”, Interdepartmental Center for Stem Cells and Regenerative Medicine (CIDSTEM), University of Modena and Reggio Emilia, Modena, Italy
- Holostem Terapie Avanzate s.r.l., Modena, Italy
- Graziella Pellegrini
| |
Collapse
|
7
|
Pitt K, Mochida Y, Senoo M. Greener Grass: The Modern History of Epithelial Stem Cell Innovation. Life (Basel) 2023; 13:688. [PMID: 36983843 PMCID: PMC10058258 DOI: 10.3390/life13030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The field of epithelial stem cell development has been irrevocably shaped by the work of American scientist Howard Green, whose breakthroughs in stem cell culture methods translated to therapeutic practice. In this review, we chronicle the milestones that propelled the field of regenerative medicine of the skin forward over the last fifty years. We detail the early discoveries made by Green and his collaborators, highlight clinical cases that made life-saving use of his findings, and discuss the accomplishments of other scientists who later innovated upon his discoveries.
Collapse
Affiliation(s)
- Keshia Pitt
- Graduate Program in Molecular and Translational Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Yoshiyuki Mochida
- Graduate Program in Molecular and Translational Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Makoto Senoo
- Graduate Program in Molecular and Translational Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Cell Exosome Therapeutics Inc., 2-16-9 Higashi, Shibuya-ku, Tokyo 150-0011, Japan
| |
Collapse
|
8
|
Freitas-Ribeiro S, Reis RL, Pirraco RP. Long-term and short-term preservation strategies for tissue engineering and regenerative medicine products: state of the art and emerging trends. PNAS NEXUS 2022; 1:pgac212. [PMID: 36714838 PMCID: PMC9802477 DOI: 10.1093/pnasnexus/pgac212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
There is an ever-growing need of human tissues and organs for transplantation. However, the availability of such tissues and organs is insufficient by a large margin, which is a huge medical and societal problem. Tissue engineering and regenerative medicine (TERM) represent potential solutions to this issue and have therefore been attracting increased interest from researchers and clinicians alike. But the successful large-scale clinical deployment of TERM products critically depends on the development of efficient preservation methodologies. The existing preservation approaches such as slow freezing, vitrification, dry state preservation, and hypothermic and normothermic storage all have issues that somehow limit the biomedical applications of TERM products. In this review, the principles and application of these approaches will be summarized, highlighting their advantages and limitations in the context of TERM products preservation.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | - Rui L Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | | |
Collapse
|
9
|
Aliberti F, Paolin E, Benedetti L, Cusella G, Ceccarelli G. 3D bioprinting and Rigenera® micrografting technology: A possible countermeasure for wound healing in spaceflight. Front Bioeng Biotechnol 2022; 10:937709. [PMID: 36110324 PMCID: PMC9468613 DOI: 10.3389/fbioe.2022.937709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plant and animal life forms have progressively developed mechanisms for perceiving and responding to gravity on Earth, where homeostatic mechanisms require feedback. Lack of gravity, as in the International Space Station (ISS), induces acute intra-generational changes in the quality of life. These include reduced bone calcium levels and muscle tone, provoking skin deterioration. All these problems reduce the work efficiency and quality of life of humans not only during exposure to microgravity (µG) but also after returning to Earth. This article discusses forthcoming experiments required under gravity and µG conditions to ensure effective and successful medical treatments for astronauts during long-term space missions, where healthcare is difficult and not guaranteed.
Collapse
Affiliation(s)
- Flaminia Aliberti
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Center for Inherited Cardiovascular Diseases, Transplant Research Area, Pavia, Italy
| | - Elisa Paolin
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
- Human Brain Wave, Turin, Italy
| | - Laura Benedetti
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Gabriella Cusella
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
- *Correspondence: Gabriele Ceccarelli,
| |
Collapse
|
10
|
Palamenghi M, De Luca M, De Rosa L. The steep uphill path leading to ex vivo gene therapy for genodermatoses. Am J Physiol Cell Physiol 2022; 323:C896-C906. [PMID: 35912986 DOI: 10.1152/ajpcell.00117.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapy, gene therapy and tissue engineering have the potential to revolutionize the field of regenerative medicine. In particular, gene therapy is understood as the therapeutical correction of mutated genes by addition of a correct copy of the gene or site-specific gene modifications. Gene correction of somatic stem cells sustaining renewing tissues is critical to ensure long-term clinical success of ex vivo gene therapy. To date, remarkable clinical outcomes arose from combined ex vivo cell and gene therapy of different genetic diseases, such as immunodeficiencies and genodermatoses. Despite the efforts of researchers around the world, only few of these advanced approaches has yet made it to routine therapy. In fact, gene therapy poses one of the greatest technical challenges in modern medicine, spanning safety and efficacy issues, regulatory constraints, registration and market access, all of which need to be addressed to make the therapy available to rare disease patients. In this review, we survey at some of the main challenges in the development of combined cell and gene therapy of genetic skin diseases.
Collapse
Affiliation(s)
- Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
11
|
Clinical Grade Human Pluripotent Stem Cell-Derived Engineered Skin Substitutes Promote Keratinocytes Wound Closure In Vitro. Cells 2022; 11:cells11071151. [PMID: 35406716 PMCID: PMC8998132 DOI: 10.3390/cells11071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic wounds, such as leg ulcers associated with sickle cell disease, occur as a consequence of a prolonged inflammatory phase during the healing process. They are extremely hard to heal and persist as a significant health care problem due to the absence of effective treatment and the uprising number of patients. Indeed, there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Development in skin engineering leads to a small catalogue of available substitutes manufactured in Good Manufacturing Practices compliant (GMPc) conditions. Those substitutes are produced using primary cells that could limit their use due to restricted sourcing. Here, we propose GMPc protocols to produce functional populations of keratinocytes and fibroblasts derived from pluripotent stem cells to reconstruct the associated dermo-epidermal substitute with plasma-based fibrin matrix. In addition, this manufactured composite skin is biologically active and enhances in vitro wounding of keratinocytes. The proposed composite skin opens new perspectives for skin replacement using allogeneic substitute.
Collapse
|
12
|
Enzo E, Cattaneo C, Consiglio F, Polito MP, Bondanza S, De Luca M. Clonal analysis of human clonogenic keratinocytes. Methods Cell Biol 2022; 170:101-116. [DOI: 10.1016/bs.mcb.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Kueckelhaus M, Rothoeft T, De Rosa L, Yeni B, Ohmann T, Maier C, Eitner L, Metze D, Losi L, Secone Seconetti A, De Luca M, Hirsch T. Transgenic Epidermal Cultures for Junctional Epidermolysis Bullosa - 5-Year Outcomes. N Engl J Med 2021; 385:2264-2270. [PMID: 34881838 DOI: 10.1056/nejmoa2108544] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inherited junctional epidermolysis bullosa is a severe genetic skin disease that leads to epidermal loss caused by structural and mechanical fragility of the integuments. There is no established cure for junctional epidermolysis bullosa. We previously reported that genetically corrected autologous epidermal cultures regenerated almost an entire, fully functional epidermis on a child who had a devastating form of junctional epidermolysis bullosa. We now report long-term clinical outcomes in this patient. (Funded by POR FESR 2014-2020 - Regione Emilia-Romagna and others.).
Collapse
Affiliation(s)
- Maximilian Kueckelhaus
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Rothoeft
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura De Rosa
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Burcu Yeni
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Ohmann
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Christoph Maier
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lynn Eitner
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Dieter Metze
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Secone Seconetti
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Hirsch
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
An Analysis of the Progression of Conjunctivalisation after Transplantation of Cultivated Corneal Epithelium. J Ophthalmol 2021; 2021:8499640. [PMID: 34853705 PMCID: PMC8629671 DOI: 10.1155/2021/8499640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To analyse the recurrence of superficial neovascularisation after previous corneal surface reconstruction with cultivated corneal epithelial cells. Materials and Methods Forty-eight eyes underwent autologous transplantation of cultivated corneal epithelium to treat partial or total limbal stem cell deficiency caused by chemical or thermal injury. The carrier for the epithelial sheets was a denuded amniotic membrane. Follow-up was conducted for up to 120 months. Recurrent revascularisation (measured in terms of clock hours affected) was evaluated with slit-lamp examination and the support of confocal microscopy. Results During the long-term observation, only 7 eyes had stable epithelia with no neovascularisation from the conjunctiva. Nineteen eyes developed pathologic vessels in 1 quadrant, with additional 4 eyes developing them in 2 quadrants. Twelve patients developed subtotal or total conjunctivalisation of the corneal surface. They were referred for second cultivated epithelium transplantation (3 patients), allogenic keratolimbal transplantation (7 patients), or keratoprosthesis (2 patients). Six patients withdrew consent. The use of confocal scans of up to 100 µm in resolution enabled the detection of pathologic microvasculature originating from the conjunctiva and the exclusion of stromal vascular ingrowth. Conclusions Local ingrowth of the conjunctiva is a common complication after the transplantation of cultivated epithelial cells. Severe and progressive vascularisation inevitably leads to graft failure. However, if local ingrowth stops before reaching the central cornea, the treatment even with this complication can be considered a success.
Collapse
|
15
|
A Beginner's Introduction to Skin Stem Cells and Wound Healing. Int J Mol Sci 2021; 22:ijms222011030. [PMID: 34681688 PMCID: PMC8538579 DOI: 10.3390/ijms222011030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The primary function of the skin is that of a physical barrier against the environment and diverse pathogens; therefore, its integrity is essential for survival. Skin regeneration depends on multiple stem cell compartments within the epidermis, which, despite their different transcriptional and proliferative capacity, as well as different anatomical location, fall under the general term of skin stem cells (SSCs). Skin wounds can normally heal without problem; however, some diseases or extensive damage may delay or prevent healing. Non-healing wounds represent a serious and life-threatening scenario that may require advanced therapeutic strategies. In this regard, increased focus has been directed at SSCs and their role in wound healing, although emerging therapeutical approaches are considering the use of other stem cells instead, such as mesenchymal stem cells (MSCs). Given its extensive and broad nature, this review supplies newcomers with an introduction to SSCs, wound healing, and therapeutic strategies for skin regeneration, thus familiarizing the reader with the subject in preparation for future in depth reading.
Collapse
|
16
|
Ali D, Alhattab D, Jafar H, Alzubide M, Sharar N, Bdour S, Awidi A. Differential Marker Expression between Keratinocyte Stem Cells and Their Progeny Generated from a Single Colony. Int J Mol Sci 2021; 22:ijms221910810. [PMID: 34639148 PMCID: PMC8509450 DOI: 10.3390/ijms221910810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
The stemness in keratinocyte stem cells (KSCs) is determined by their gene expression patterns. KSCs are crucial in maintaining epidermal homeostasis and wound repair and are widely used candidates for therapeutic applications. Although several studies have reported their positive identifiers, unique biomarkers for KSCs remain elusive. Here, we aim to identify potential candidate stem cell markers. Human epidermal keratinocytes (HEKs) from neonatal foreskin tissues were isolated and cultured. Single-cell clonal analysis identified and characterized three types of cells: KSCs (holoclones), transient amplifying cells (TACs; meroclones), and differentiated cells (DSCs; paraclones). The clonogenic potential of KSCs demonstrated the highest proliferation potential of KSCs, followed by TACs and DSCs, respectively. Whole-transcriptome analysis using microarray technology unraveled the molecular signatures of these cells. These results were validated by quantitative real-time polymerase chain reaction and flow cytometry analysis. A total of 301 signature upregulated and 149 downregulated differentially expressed genes (DEGs) were identified in the KSCs, compared to TACs and DSCs. Furthermore, DEG analyses revealed new sets of genes related to cell proliferation, cell adhesion, surface makers, and regulatory factors. In conclusion, this study provides a useful source of information for the identification of potential SC-specific candidate markers.
Collapse
Affiliation(s)
- Dema Ali
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Laboratory for Nanomedicine, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Malak Alzubide
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
| | - Nour Sharar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
| | - Salwa Bdour
- Department of Clinical Laboratory Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
- Correspondence: (S.B.); (A.A.)
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Hematology and Oncology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
- Correspondence: (S.B.); (A.A.)
| |
Collapse
|
17
|
De Rosa L, Enzo E, Zardi G, Bodemer C, Magnoni C, Schneider H, De Luca M. Hologene 5: A Phase II/III Clinical Trial of Combined Cell and Gene Therapy of Junctional Epidermolysis Bullosa. Front Genet 2021; 12:705019. [PMID: 34539738 PMCID: PMC8440932 DOI: 10.3389/fgene.2021.705019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Epidermolysis bullosa (EB) is a group of devastating genetic diseases characterized by skin and mucosal fragility and formation of blisters, which develop either spontaneously or in response to minor mechanical trauma. There is no definitive therapy for any form of EB. Intermediate junctional EB (JEB) caused by mutations in the gene LAMB3 has been the first genetic skin disease successfully tackled by ex vivo gene therapy. Here, we present a multicenter, open-label, uncontrolled phase II/III study that aims at confirming the efficacy of Hologene 5, a graft consisting of cultured transgenic keratinocytes and epidermal stem cells and meant to combine cell and gene therapy for the treatment of LAMB3-related JEB. Autologous clonogenic keratinocytes will be isolated from patients’ skin biopsies, genetically corrected with a gamma-retroviral vector (γRV) carrying the full-length human LAMB3 cDNA and plated onto a fibrin support (144cm2). The transgenic epidermis will be transplanted onto surgically prepared selected skin areas of at least six JEB patients (four pediatric and two adults). Evaluation of clinical efficacy will include, as primary endpoint, a combination of clinical parameters, such as percentage of re-epithelialization, cellular, molecular, and functional parameters, mechanical stress tests, and patient-reported outcome (PRO), up to 12months after transplantation. Safety and further efficacy endpoints will also be assessed during the clinical trial and for additional 15years in an interventional non-pharmacological follow-up study. If successful, this clinical trial would provide a therapeutic option for skin lesions of JEB patients with LAMB3 mutations and pave the way to a combined cell and gene therapy platform tackling other forms of EB and different genodermatoses. Clinical Trial Registration: EudraCT Number: 2018-000261-36.
Collapse
Affiliation(s)
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Zardi
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Christine Bodemer
- Department of Dermatology, Necker Enfants Malades Hospital, APHP, University Paris Centre, ERN-Skin Network (European Network for Rare Skin Disorders), Paris, France
| | - Cristina Magnoni
- Unit of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Holm Schneider
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Michele De Luca
- Holostem Terapie Avanzate, s.r.l, Modena, Italy.,Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med 2021; 6:35. [PMID: 34140525 PMCID: PMC8211795 DOI: 10.1038/s41536-021-00144-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers' purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient's health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.
| | - Kevin H Kim
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Gonzalo Blasco-Morente
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
19
|
Enzo E, Secone Seconetti A, Forcato M, Tenedini E, Polito MP, Sala I, Carulli S, Contin R, Peano C, Tagliafico E, Bicciato S, Bondanza S, De Luca M. Single-keratinocyte transcriptomic analyses identify different clonal types and proliferative potential mediated by FOXM1 in human epidermal stem cells. Nat Commun 2021; 12:2505. [PMID: 33947848 PMCID: PMC8097075 DOI: 10.1038/s41467-021-22779-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Autologous epidermal cultures restore a functional epidermis on burned patients. Transgenic epidermal grafts do so also in genetic skin diseases such as Junctional Epidermolysis Bullosa. Clinical success strictly requires an adequate number of epidermal stem cells, detected as holoclone-forming cells, which can be only partially distinguished from the other clonogenic keratinocytes and cannot be prospectively isolated. Here we report that single-cell transcriptome analysis of primary human epidermal cultures identifies categories of genes clearly distinguishing the different keratinocyte clonal types, which are hierarchically organized along a continuous, mainly linear trajectory showing that stem cells sequentially generate progenitors producing terminally differentiated cells. Holoclone-forming cells display stem cell hallmarks as genes regulating DNA repair, chromosome segregation, spindle organization and telomerase activity. Finally, we identify FOXM1 as a YAP-dependent key regulator of epidermal stem cells. These findings improve criteria for measuring stem cells in epidermal cultures, which is an essential feature of the graft.
Collapse
Affiliation(s)
- Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Secone Seconetti
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Holostem Terapie Avanzate, s.r.l, Modena, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Tenedini
- Department of Laboratory Medicine and Pathology, Diagnostic hematology and Clinical, Genomics Unit, Modena University Hospital, Modena, Italy
| | - Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Sala
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | | - Roberta Contin
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Clinical Sampling & Alliances, AstraZeneca, Cambridge, UK
| | - Clelia Peano
- Genomic Unit, IRCSS, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic hematology and Clinical, Genomics Unit, Modena University Hospital, Modena, Italy.,Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Centre for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
20
|
Maurizi E, Adamo D, Magrelli FM, Galaverni G, Attico E, Merra A, Maffezzoni MBR, Losi L, Genna VG, Sceberras V, Pellegrini G. Regenerative Medicine of Epithelia: Lessons From the Past and Future Goals. Front Bioeng Biotechnol 2021; 9:652214. [PMID: 33842447 PMCID: PMC8026866 DOI: 10.3389/fbioe.2021.652214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
This article explores examples of successful and unsuccessful regenerative medicine on human epithelia. To evaluate the applications of the first regenerated tissues, the analysis of the past successes and failures addresses some pending issues and lay the groundwork for developing new therapies. Research should still be encouraged to fill the gap between pathologies, clinical applications and what regenerative medicine can attain with current knowledge.
Collapse
Affiliation(s)
| | - Davide Adamo
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Galaverni
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Eustachio Attico
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Graziella Pellegrini
- Holostem Terapie Avanzate S.r.l., Modena, Italy
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Advanced Therapy Medicinal Products for the Eye: Definitions and Regulatory Framework. Pharmaceutics 2021; 13:pharmaceutics13030347. [PMID: 33800934 PMCID: PMC8000705 DOI: 10.3390/pharmaceutics13030347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products for human use that comprises somatic cell therapy medicinal products, tissue engineered products, gene therapy medicinal products, and the so-called combined ATMPs that consist of one of the previous three categories combined with one or more medical devices. During the last few years, the development of ATMPs for the treatment of eye diseases has become a fast-growing field as it offers the potential to find novel therapeutic approaches for treating pathologies that today have no cure or are just subjected to symptomatic treatments. Therefore, it is important for all professionals working in this field to be familiar with the regulatory principles associated with these types of innovative products. In this review, we outline the legal framework that regulates the development of ATMPs in the European Union and other international jurisdictions, and the criteria that each type of ATMP must meet to be classified as such. To illustrate each legal definition, ATMPs that have already completed the research and development stages and that are currently used for the treatment of eye diseases are presented as examples.
Collapse
|
22
|
Gronbach L, Jurmeister P, Schäfer-Korting M, Keilholz U, Tinhofer I, Zoschke C. Primary Extracellular Matrix Enables Long-Term Cultivation of Human Tumor Oral Mucosa Models. Front Bioeng Biotechnol 2020; 8:579896. [PMID: 33344431 PMCID: PMC7746540 DOI: 10.3389/fbioe.2020.579896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
3D tumor models clearly outperform 2D cell cultures in recapitulating tissue architecture and drug response. However, their potential in understanding treatment efficacy and resistance development should be better exploited if also long-term effects of treatment could be assessed in vitro. The main disadvantages of the matrices commonly used for in vitro culture are their limited cultivation time and the low comparability with patient-specific matrix properties. Extended cultivation periods are feasible when primary human cells produce the extracellular matrix in situ. Herein, we adapted the hyalograft-3D approach from reconstructed human skin to normal and tumor oral mucosa models and compared the results to bovine collagen-based models. The hyalograft models showed similar morphology and cell proliferation after 7 weeks compared to collagen-based models after 2 weeks of cultivation. Tumor thickness and VEGF expression increased in hyalograft-based tumor models, whereas expression of laminin-332, tenascin C, and hypoxia-inducible factor 1α was lower than in collagen-based models. Taken together, the in situ produced extracellular matrix better confined tumor invasion in the first part of the cultivation period, with continuous tumor proliferation and increasing invasion later on. This proof-of-concept study showed the successful transfer of the hyalograft approach to tumor oral mucosa models and lays the foundation for the assessment of long-term drug treatment effects. Moreover, the use of an animal-derived extracellular matrix is avoided.
Collapse
Affiliation(s)
- Leonie Gronbach
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Philipp Jurmeister
- Institute of Pathology, Berlin Institute of Health, Humboldt-Universität zu Berlin, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Heidelberg and German Cancer Consortum Partner Site Berlin, German Cancer Research Center, Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Ulrich Keilholz
- Comprehensive Cancer Center, Berlin Institute of Health, Humboldt-Universität zu Berlin, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ingeborg Tinhofer
- Heidelberg and German Cancer Consortum Partner Site Berlin, German Cancer Research Center, Berlin, Germany.,Department of Radiooncology and Radiotherapy, Berlin Institute of Health, Humboldt-Universität zu Berlin, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Flora P, Ezhkova E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development 2020; 147:147/22/dev194100. [PMID: 33191273 DOI: 10.1242/dev.194100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
24
|
Duan M, Zhang Y, Zhang H, Meng Y, Qian M, Zhang G. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Res Ther 2020; 11:452. [PMID: 33097078 PMCID: PMC7584097 DOI: 10.1186/s13287-020-01971-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Scar formation, which may be caused by myofibroblast aggregations, is the greatest challenge during skin wound healing in the clinical setting. Studies have indicated that epidermal stem cells (EPSC) improve wound healing and reduce scar formation. METHODS We investigated the therapeutic effects of EPSC-derived exosomes (EPSC-Exos) on skin wound healing in a skin-defect rat model. We also examined the roles of EPSC-Exos-specific microRNAs in inhibiting the differentiation of human dermal fibroblasts (HDF) into myofibroblasts. RESULTS We found that EPSC-Exos increased the wound healing rate and reduced scar formation in rats. Also, EPSC-Exos improved the regeneration levels of skin appendages, nerves and vessels, as well as the natural distribution of collagen. Furthermore, we found these functions may be achieved by inhibiting the activity of transforming growth factor-β1 (TGF-β1) and its downstream genes. The results showed that some specific microRNAs, including miR-16, let-7a, miR-425-5p and miR-142-3p, were enriched in EPSC-Exos. EPSC-Exos-specific microRNAs, especially miR-425-5p and miR-142-3p, played vital roles in inhibiting myofibroblast differentiation via reducing the TGF-β1 expression in dermal fibroblasts. CONCLUSION We found a novel function of EPSC-Exos-specific microRNAs, suggesting that EPSC-Exos might represent a strategy to prevent scar formation during wound healing in the clinical setting.
Collapse
Affiliation(s)
- Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, 130021, Jilin, China.,Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, 1500 Qinghua Rd., Changchun, 130021, Jilin, China
| | - Yan Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, 130021, Jilin, China
| | - Haiyang Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, 130021, Jilin, China
| | - Yupeng Meng
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, 130021, Jilin, China
| | - Ming Qian
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, 130021, Jilin, China.
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 1345 Pudong Rd., Changchun, 130600, Jilin, China. .,Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), 4899 Juye St., Changchun, 130112, Jilin, China.
| |
Collapse
|
25
|
Wang Z, Zhang G, Le Y, Ju J, Zhang P, Wan D, Zhao Q, Jin G, Su H, Liu J, Feng J, Fu Y, Hou R. Quercetin promotes human epidermal stem cell proliferation through the estrogen receptor/β-catenin/c-Myc/cyclin A2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1102-1110. [PMID: 32840291 DOI: 10.1093/abbs/gmaa091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Skin epidermal stem cells (EpSCs) play an important role in wound healing. Quercetin is a phytoestrogen reported to accelerate skin wound healing, but its effect on EpSCs is unknown. In this study, we investigated the effect of quercetin on human EpSC proliferation and explored the underlying mechanisms. We found that quercetin at 0.1~1 μM significantly promoted EpSC proliferation and increased the number of cells in S phase. The pro-proliferative effect of quercetin on EpSCs was confirmed in cultured human skin tissue. Mechanistic studies showed that quercetin significantly upregulated the expressions of β-catenin, c-Myc, and cyclins A2 and E1. Inhibitor for β-catenin or c-Myc significantly inhibited quercetin-induced EpSC proliferation. The β-catenin inhibitor XAV-939 suppressed quercetin-induced expressions of β-catenin, c-Myc, and cyclins A2 and E1. The c-Myc inhibitor 10058-F4 inhibited the upregulation of c-Myc and cyclin A2 by quercetin. Pretreatment of EpSCs with estrogen receptor (ER) antagonist ICI182780, but not the G protein-coupled ER1 antagonist G15, reversed quercetin-induced cell proliferation and upregulation of β-catenin, c-Myc, and cyclin A2. Collectively, these results indicate that quercetin promotes EpSC proliferation through ER-mediated activation of β-catenin/c-Myc/cyclinA2 signaling pathway and ER-independent upregulation of cyclin E1 and that quercetin may accelerate skin wound healing through promoting EpSC proliferation. As EpSCs are used not only in clinic to treat skin wounds but also as seed cells in skin tissue engineering, quercetin is a useful reagent to expand EpSCs for basic research, skin wound treatment, and skin tissue engineering.
Collapse
Affiliation(s)
- Zhaodong Wang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Guangliang Zhang
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jihui Ju
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Ping Zhang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Dapeng Wan
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Qiang Zhao
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Guangzhe Jin
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Hao Su
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Jinwei Liu
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Jiaxuan Feng
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ruixing Hou
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| |
Collapse
|
26
|
Keith AR, Twaroski K, Ebens CL, Tolar J. Leading edge: emerging drug, cell, and gene therapies for junctional epidermolysis bullosa. Expert Opin Biol Ther 2020; 20:911-923. [PMID: 32178539 PMCID: PMC7392816 DOI: 10.1080/14712598.2020.1740678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Junctional epidermolysis bullosa (JEB) is a rare inherited genetic disorder with limited treatments beyond palliative care. A major hallmark of JEB is skin blistering caused by functional loss or complete absence of major structural proteins of the skin. Impaired wound healing in patients with JEB gives rise to chronic cutaneous ulcers that require daily care. Wound care and infection control are the current standard of care for this patient population. AREAS COVERED This review covers research and clinical implementation of emerging drug, cell, and gene therapies for JEB. Current clinical trials use topical drug delivery to manipulate the inflammation and re-epithelialization phases of wound healing or promote premature stop codon readthrough to accelerate chronic wound closure. Allogeneic cell therapies for JEB have been largely unsuccessful, with autologous skin grafting emerging as a reliable method of resolving the cutaneous manifestations of JEB. Genetic correction and transplant of autologous keratinocytes have demonstrated persistent amelioration of chronic wounds in a subset of patients. EXPERT OPINION Emerging therapies address the cutaneous symptoms of JEB but are unable to attend to systemic manifestations of the disease. Investigations into the molecular mechanism(s) underpinning the failure of systemic allogeneic cell therapies are necessary to expand the range of effective JEB therapies.
Collapse
Affiliation(s)
- Allison R. Keith
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirk Twaroski
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christen L. Ebens
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Zhang M, Ye Y, Zhao P, Bai L, Li X. Preliminary studies of hair follicle regeneration by injections of epidermal stem cells and dermal papilla cells into nude mice. Cell Tissue Bank 2020; 21:321-327. [PMID: 32162163 PMCID: PMC7230069 DOI: 10.1007/s10561-020-09825-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/05/2020] [Indexed: 01/13/2023]
Abstract
The ultimate goal of organ regenerative therapy is to reproduce fully functional organs to replace which have been damaged as a result of diseases or injury. Although several studies claimed that using different types of cells in some animal models promote hair follicles regeneration, more researches can be done to develop a sufficient and efficient protocol to induce hair generation from different animal models. In this study, we investigated the therapeutic potentials for hair follicle formation by injecting a mixture of epidermal stem cells and dermal papilla cells. Those cells were isolated and culture-expanded. Then we randomly allocated 8 nude mice into two groups. The experiment group received an injection of a mixture that containing of epidermal stem cells and dermal papilla cells. The control group received injection of keratinocyte serum-free medium. The hair follicles regeneration was observed and the injection area was harvested for HE staining. 14 day later, the regenerated hair shafts were observed and HE staining indicated that the newly hair follicle formed the correct structures in experiment group. Furthermore, the mixture injection induced a regular and multilayered stratified epidermis and the epidermis contained of hair follicle-likes structures. Our data showed that injection of a mixture of epidermal stem cells and dermal papilla cells could induce hair follicles regeneration and well-ordered epidermis formation. This study emphasized that the rearrangement of the interactions during seed cells and the niches of the seed cells is essential and necessary for tissue-engineered construct success.
Collapse
Affiliation(s)
- Mingsheng Zhang
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Yan Ye
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Guangzhou, 528000, China
| | - Pin Zhao
- Guangzhou Huayin Medical Laboratory Center, Guangzhou, 510515, China
| | - Liming Bai
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Xinping Li
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, 510080, China.
| |
Collapse
|
28
|
De Rosa L, Latella MC, Secone Seconetti A, Cattelani C, Bauer JW, Bondanza S, De Luca M. Toward Combined Cell and Gene Therapy for Genodermatoses. Cold Spring Harb Perspect Biol 2020; 12:a035667. [PMID: 31653644 PMCID: PMC7197428 DOI: 10.1101/cshperspect.a035667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Maria Carmela Latella
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Alessia Secone Seconetti
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Cecilia Cattelani
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sergio Bondanza
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
29
|
Tjin MS, Chua AWC, Tryggvason K. Chemically defined and xenogeneic-free culture method for human epidermal keratinocytes on laminin-based matrices. Nat Protoc 2020; 15:694-711. [DOI: 10.1038/s41596-019-0270-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
|
30
|
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2019; 20:e1900283. [PMID: 31769933 DOI: 10.1002/mabi.201900283] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
This review focuses on fibrin, starting from biological mechanisms (its production from fibrinogen and its enzymatic degradation), through its use as a medical device and as a biomaterial, and finally discussing the techniques used to add biological functions and/or improve its mechanical performance through its molecular engineering. Fibrin is a material of biological (human, and even patient's own) origin, injectable, adhesive, and remodellable by cells; further, it is nature's most common choice for an in situ forming, provisional matrix. Its widespread use in the clinic and in research is therefore completely unsurprising. There are, however, areas where its biomedical performance can be improved, namely achieving a better control over mechanical properties (and possibly higher modulus), slowing down degradation or incorporating cell-instructive functions (e.g., controlled delivery of growth factors). The authors here specifically review the efforts made in the last 20 years to achieve these aims via biomimetic reactions or self-assembly, as much via formation of hybrid materials.
Collapse
Affiliation(s)
- Iwan Vaughan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Deena Bukhary
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| |
Collapse
|
31
|
Kaushik K, Das A. Endothelial progenitor cell therapy for chronic wound tissue regeneration. Cytotherapy 2019; 21:1137-1150. [PMID: 31668487 DOI: 10.1016/j.jcyt.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Despite advancements in wound care, healing of chronic diabetic wounds remains a great challenge for the clinical fraternity because of the intricacies of the healing process. Due to the limitations of existing treatment strategies for chronic wounds, stem/progenitor cell transplantation therapies have been explored as an alternative for tissue regeneration at the wound site. The non-healing phenotype of chronic wounds is directly associated with lack of vascularization. Therefore, endothelial progenitor cell (EPC) transplantation is proving to be a promising approach for the treatment of hypo-vascular chronic wounds. With the existing knowledge in EPC biology, significant efforts have been made to enrich EPCs at the chronic wound site, generating EPCs from somatic cells, induced pluripotent stem cells (iPSCs) using transcription factors, or from adult stem cells using chemicals/drugs for use in transplantation, as well as modulating the endogenous dysfunctional/compromised EPCs under diabetic conditions. This review mainly focuses on the pre-clinical and clinical approaches undertaken to date with EPC-based translational therapy for chronic diabetic as well as non-diabetic wounds to evaluate their vascularity-mediated regeneration potential.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India.
| |
Collapse
|
32
|
Fortunel NO, Chadli L, Coutier J, Lemaître G, Auvré F, Domingues S, Bouissou-Cadio E, Vaigot P, Cavallero S, Deleuze JF, Roméo PH, Martin MT. KLF4 inhibition promotes the expansion of keratinocyte precursors from adult human skin and of embryonic-stem-cell-derived keratinocytes. Nat Biomed Eng 2019; 3:985-997. [PMID: 31636412 DOI: 10.1038/s41551-019-0464-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/13/2019] [Indexed: 01/01/2023]
Abstract
Expanded autologous skin keratinocytes are currently used in cutaneous cell therapy, and embryonic-stem-cell-derived keratinocytes could become a complementary alternative. Regardless of keratinocyte provenance, for efficient therapy it is necessary to preserve immature keratinocyte precursors during cell expansion and graft processing. Here, we show that stable and transient downregulation of the transcription factor Krüppel-like factor 4 (KLF4) in keratinocyte precursors from adult skin, using anti-KLF4 RNA interference or kenpaullone, promotes keratinocyte immaturity and keratinocyte self-renewal in vitro, and enhances the capacity for epidermal regeneration in mice. Both stable and transient KLF4 downregulation had no impact on the genomic integrity of adult keratinocytes. Moreover, transient KLF4 downregulation in human-embryonic-stem-cell-derived keratinocytes increased the efficiency of skin-orientated differentiation and of keratinocyte immaturity, and was associated with improved generation of epidermis. As a regulator of the cell fate of keratinocyte precursors, KLF4 could be used for promoting the ex vivo expansion and maintenance of functional immature keratinocyte precursors.
Collapse
Affiliation(s)
- Nicolas O Fortunel
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France. .,INSERM U967, Université Paris-Diderot, Paris, France. .,Université Paris-Saclay, Paris, France.
| | - Loubna Chadli
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Julien Coutier
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Gilles Lemaître
- Université d'Evry Val d'Essonne, Université Paris-Saclay, INSERM U861, Institut des Cellules Souches pour le Traitement et l'Etude des Maladies Monogéniques, Corbeil Essonne, France
| | - Frédéric Auvré
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Sophie Domingues
- Centre d'Etude des Cellules Souches, Institut des Cellules Souches pour le Traitement et l'Etude des Maladies Monogéniques, Corbeil Essonne, France
| | - Emmanuelle Bouissou-Cadio
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Pierre Vaigot
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Sophie Cavallero
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | | | - Paul-Henri Roméo
- INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France.,Laboratoire de Recherche sur la Réparation et la Transcription dans les Cellules Souches, CEA/DRF/IBFJ/IRCM, Fontenay-aux-Roses, France
| | - Michèle T Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France. .,INSERM U967, Université Paris-Diderot, Paris, France. .,Université Paris-Saclay, Paris, France.
| |
Collapse
|
33
|
Pellegrini G, De Luca M. Living with Keratinocytes. Stem Cell Reports 2019; 11:1026-1033. [PMID: 30428385 PMCID: PMC6235013 DOI: 10.1016/j.stemcr.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 10/31/2022] Open
Abstract
A feature distinguishing human hematopoietic and epithelial stem cells from other equally fascinating stem cells is perhaps their easier translation into a clinical setting. We have devoted nearly our entire scientific career in trying to turn our understanding of epithelial stem cell biology into something that could help people suffering from virtually untreatable diseases of squamous epithelia. We have done that as a team, together with our numerous students, postdocs, technicians and valuable collaborators, clinicians, regulators, and, lately, industrial partners. We had rewarding successes and burning failures, but we always did our best. This award, given by friends and colleagues deserving it more than us, has been the most important recognition of our work. Below, we summarize our story.
Collapse
Affiliation(s)
- Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari", Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
34
|
Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther 2019; 10:229. [PMID: 31358069 PMCID: PMC6664527 DOI: 10.1186/s13287-019-1312-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The skin has important barrier, sensory, and immune functions, contributing to the health and integrity of the organism. Extensive skin injuries that threaten the entire organism require immediate and effective treatment. Wound healing is a natural response, but in severe conditions, such as burns and diabetes, this process is insufficient to achieve effective treatment. Epidermal stem cells (EPSCs) are a multipotent cell type and are committed to the formation and differentiation of the functional epidermis. As the contributions of EPSCs in wound healing and tissue regeneration have been increasingly attracting the attention of researchers, a rising number of therapies based on EPSCs are currently under development. In this paper, we review the characteristics of EPSCs and the mechanisms underlying their functions during wound healing. Applications of EPSCs are also discussed to determine the potential and feasibility of using EPSCs clinically in wound healing.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Jingru Wang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 512100, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
35
|
Jusoh N, Ko J, Jeon NL. Microfluidics-based skin irritation test using in vitro 3D angiogenesis platform. APL Bioeng 2019; 3:036101. [PMID: 31431937 PMCID: PMC6697035 DOI: 10.1063/1.5093975] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/26/2019] [Indexed: 01/19/2023] Open
Abstract
A global ban on animal experiments has been proposed. Hence, it is imperative to develop alternative models. Artificial skin models should reflect the responses of subcutaneous blood vessels and the immune system to elucidate disease and identify cosmetics' base materials. Notably, in vivo skin-irritation cascades involve disruption of the epidermal barrier and the release of proinflammatory mediators in response to chemical stimuli. Such proinflammatory factors promote angiogenesis and blood vessel permeability, as observed in irritant contact dermatitis. As an alternative to animal models, we propose a novel skin-irritation model based on a three-dimensional in vitro angiogenesis platform, in which irritated keratinocytes biochemically stimulate vascular endothelial growth factors. Our microfluidic platform hosts interactions between keratinocytes and dermal fibroblasts, which promote angiogenic sprouting. We use sodium lauryl sulfate (SLS) and steartrimonium chloride (SC) as chemical irritants. The irritative effects of SLS and SC are of particular interest due to the ubiquity of both SLS and SC in cosmetics. SLS was observed to significantly affect angiogenic performance, with increasing sprout length. Further promotion of vessel sprouting and lumen formation was observed with 10, 20, and 60 μM of SC, despite its classification as nonirritating and use in supposedly safe formulations. This platform provides an alternative to animal testing as a basis for testing cosmetics and pharmaceutical substances, in addition to serving as a disease model for irritant contact dermatitis.
Collapse
Affiliation(s)
| | - Jihoon Ko
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, South Korea
| | | |
Collapse
|
36
|
Lo CH, Chong E, Akbarzadeh S, Brown WA, Cleland H. A systematic review: Current trends and take rates of cultured epithelial autografts in the treatment of patients with burn injuries. Wound Repair Regen 2019; 27:693-701. [DOI: 10.1111/wrr.12748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/15/2019] [Accepted: 07/07/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Cheng H. Lo
- Victorian Adult Burns Service Melbourne Victoria Australia
- Department of Surgery, Central Clinical SchoolMonash University Melbourne Victoria Australia
| | - Elaine Chong
- Centre for Eye Research AustraliaRoyal Victorian Eye & Ear Hospital East Melbourne Victoria Australia
| | - Shiva Akbarzadeh
- Skin Bioengineering LaboratoryVictorian Adult Burns Service Melbourne Victoria Australia
| | - Wendy A. Brown
- Department of Surgery, Central Clinical SchoolMonash University Melbourne Victoria Australia
| | - Heather Cleland
- Victorian Adult Burns Service Melbourne Victoria Australia
- Department of Surgery, Central Clinical SchoolMonash University Melbourne Victoria Australia
| |
Collapse
|
37
|
Iterative Three-Dimensional Epidermis Bioengineering and Xenografting to Assess Long-Term Regenerative Potential in Human Keratinocyte Precursor Cells. Methods Mol Biol 2019. [PMID: 31309517 DOI: 10.1007/7651_2019_250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The functional definition of somatic adult stem cells is based on their regenerative capacity, which allows tissue regeneration throughout life. Thus, refining methodologies to characterize this capacity is of great importance for progress in the fundamental knowledge of specific keratinocyte subpopulations but also for preclinical and clinical research, considering the high potential of keratinocytes in cell therapy. We present here a methodology which we define as iterative xenografting, which originates in the classical model of human skin substitute xenografts onto immunodeficient recipient mice. The principle of this functional assay is first to perform primary xenografts to assess graft take and the quality of epidermal differentiation. Then, human keratinocytes are extracted from primary graft samples to perform secondary xenografts, to assess the presence and preservation of functional keratinocyte stem cells with long-term regenerative potential. In the example of experiments shown, iterative skin xenografting was used to document the high regenerative potential of epidermal holoclone keratinocytes.
Collapse
|
38
|
Chen SY, Cheng AMS, Zhang Y, Zhu YT, He H, Mahabole M, Tseng SCG. Pax 6 Controls Neural Crest Potential of Limbal Niche Cells to Support Self-Renewal of Limbal Epithelial Stem Cells. Sci Rep 2019; 9:9763. [PMID: 31278274 PMCID: PMC6611810 DOI: 10.1038/s41598-019-45100-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
On ocular surface, corneal epithelial stem cells (SC) reside in limbus between cornea and conjunctiva. Pax6, an evolutionally conserved transcription factor essential for eye development, is expressed in post-natal corneal and limbal epithelia progenitors (LEPC) but not in underlying stroma. Because Pax6 is transiently expressed in developing corneal stroma and a subset of limbal and corneal stromal progenitors, we examined the role of Pax6 in limbal niche cells (LNC) in maintaining the phenotype of neural crest (NC) progenitors to support LEPC. Our results showed that nuclear Pax6 staining was found in freshly isolated LNC but not corneal stromal cells. Serial passaged LNC resulted in gradual loss of nuclear Pax6 (46 kDa) staining and neural crest progenitor status defined by the expression of embryonic SCs and NC markers, neurosphere formation, and differentiation into neurons, oligodendrocytes and astrocytes. Gain of function of 46 kDa Pax6 in late-passaged LNC resulted in nuclear Pax6 staining and promotion of the aforementioned NC progenitor status. In an in vitro reunion assay, early passaged LNC and late passaged LNC with overexpression of Pax6 inhibited the expression of corneal epithelial differentiation marker and promoted holoclone by LEPC. Therefore, expression of nuclear 46 kDa Pax6 in LNC plays an important developmental role in maintaining NC progenitor status to support self-renewal of corneal epithelial SCs in the limbal niche.
Collapse
Affiliation(s)
- Szu-Yu Chen
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136, USA
| | - Anny M S Cheng
- Department of Ophthalmology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL33199, USA.,Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA
| | - Yuan Zhang
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Ying-Ting Zhu
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Hua He
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Megha Mahabole
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Scheffer C G Tseng
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA. .,Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA.
| |
Collapse
|
39
|
De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol 2019; 21:801-811. [PMID: 31209293 DOI: 10.1038/s41556-019-0344-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Despite many reports of putative stem-cell-based treatments in genetic and degenerative disorders or severe injuries, the number of proven stem cell therapies has remained small. In this Review, we survey advances in stem cell research and describe the cell types that are currently being used in the clinic or are close to clinical trials. Finally, we analyse the scientific rationale, experimental approaches, caveats and results underpinning the clinical use of such stem cells.
Collapse
Affiliation(s)
- Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari", Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pamela Gehron Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
40
|
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019; 7:135. [PMID: 31245365 PMCID: PMC6579817 DOI: 10.3389/fbioe.2019.00135] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea. Corneal strength comes from about 200 collagen lamellae which criss-cross the cornea in different directions and comprise nearly 90% of the thickness of the cornea. Regarding corneal transparency, the specific characteristics of the cornea include its immune and angiogenic privilege besides its limbus zone. On the other hand, angiogenic privilege involves several active cascades in which anti-angiogenic factors are produced to compensate for the enhanced production of proangiogenic factors after wound healing. Limbus of the cornea forms a border between the corneal and conjunctival epithelium, and its limbal stem cells (LSCs) are essential in maintenance and repair of the adult cornea through its support of corneal epithelial tissue repair and regeneration. As a result, the main factors which threaten the corneal clarity are inflammatory reactions, neovascularization, and limbal deficiency. In fact, the influx of inflammatory cells causes scar formation and destruction of the limbus zone. Current studies about wound healing treatment focus on corneal characteristics such as the immune response, angiogenesis, and cell signaling. In this review, studied topics related to wound healing and new approaches in cornea regeneration, which are mostly related to the criteria mentioned above, will be discussed.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Abbasi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Omidian Vandchali
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:344-365. [PMID: 29981800 DOI: 10.1016/j.addr.2018.06.019] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Cutaneous wound healing in adult mammals is a complex multi-step process involving overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodelling. Re-epithelialization describes the resurfacing of a wound with new epithelium. The cellular and molecular processes involved in the initiation, maintenance, and completion of epithelialization are essential for successful wound closure. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here, we focus on cellular mechanisms underlying keratinocyte migration and proliferation during epidermal closure. Inability to re-epithelialize is a clear indicator of chronic non-healing wounds, which fail to proceed through the normal phases of wound healing in an orderly and timely manner. This review summarizes the current knowledge regarding the management and treatment of acute and chronic wounds, with a focus on re-epithelialization, offering some insights into novel future therapies.
Collapse
|
42
|
De Rosa L, Secone Seconetti A, De Santis G, Pellacani G, Hirsch T, Rothoeft T, Teig N, Pellegrini G, Bauer JW, De Luca M. Laminin 332-Dependent YAP Dysregulation Depletes Epidermal Stem Cells in Junctional Epidermolysis Bullosa. Cell Rep 2019; 27:2036-2049.e6. [PMID: 31091444 DOI: 10.1016/j.celrep.2019.04.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/12/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Laminin 332-deficient junctional epidermolysis bullosa (JEB) is a severe genetic skin disease. JEB is marked by epidermal stem cell depletion, the origin of which is unknown. We show that dysregulation of the YAP and TAZ pathway underpins such stem cell depletion. Laminin 332-mediated YAP activity sustains human epidermal stem cells, detected as holoclones. Ablation of YAP selectively depletes holoclones, while enforced YAP blocks conversion of stem cells into progenitors and indefinitely extends the keratinocyte lifespan. YAP is dramatically decreased in JEB keratinocytes, which contain only phosphorylated, inactive YAP. In normal keratinocytes, laminin 332 and α6β4 ablation abolish YAP activity and recapitulate the JEB phenotype. In JEB keratinocytes, laminin 332-gene therapy rescues YAP activity and epidermal stem cells in vitro and in vivo. In JEB cells, enforced YAP recapitulates laminin 332-gene therapy, thus uncoupling adhesion from proliferation in epidermal stem cells. This work has important clinical implication for ex vivo gene therapy of JEB.
Collapse
Affiliation(s)
- Laura De Rosa
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Secone Seconetti
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio De Santis
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Pellacani
- Department of Surgery, Medicine, Dentistry, and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Hirsch
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| | - Tobias Rothoeft
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital, Ruhr-University Bochum, Germany
| | - Norbert Teig
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital, Ruhr-University Bochum, Germany
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Surgery, Medicine, Dentistry, and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
43
|
Wound healing after cultured epithelial autografting in patients with massive burn injury: A cohort study. J Plast Reconstr Aesthet Surg 2019; 72:427-437. [DOI: 10.1016/j.bjps.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/12/2018] [Accepted: 11/03/2018] [Indexed: 01/26/2023]
|
44
|
Hamilton NJ, Hynds RE, Gowers KH, Tait A, Butler CR, Hopper C, Burns AJ, Birchall MA, Lowdell M, Janes SM. Using a Three-Dimensional Collagen Matrix to Deliver Respiratory Progenitor Cells to Decellularized Trachea In Vivo. Tissue Eng Part C Methods 2019; 25:93-102. [PMID: 30648458 PMCID: PMC6389769 DOI: 10.1089/ten.tec.2018.0241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022] Open
Abstract
IMPACT STATEMENT This article describes a method for engrafting epithelial progenitor cells to a revascularized scaffold in a protective and supportive collagen-rich environment. This method has the potential to overcome two key limitations of existing grafting techniques as epithelial cells are protected from mechanical shear and the relatively hypoxic phase that occurs while grafts revascularize, offering the opportunity to provide epithelial cells to decellularized allografts at the point of implantation. Advances in this area will improve the safety and efficacy of bioengineered organ transplantation.
Collapse
Affiliation(s)
- Nick J.I. Hamilton
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Kate H.C. Gowers
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Angela Tait
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Colin Hopper
- Maxillofacial Surgery, Eastman Dental Institute, London, United Kingdom
| | - Alan J. Burns
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Martin A. Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Mark Lowdell
- Institute of Immunity and Transplantation, Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
45
|
Shaik MM, Dapkekar A, Rajwade JM, Jadhav SH, Kowshik M. Antioxidant-antibacterial containing bi-layer scaffolds as potential candidates for management of oxidative stress and infections in wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:13. [PMID: 30635734 DOI: 10.1007/s10856-018-6212-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Tissue engineering techniques are continuously evolving towards providing better microenvironment along with therapeutic potential to address the skin tissue defects. Factors such as microbial infections, presence of excessive free radicals and depletion in antioxidant based scavenging systems pose serious challenges by prolonging inflammation and delaying the repair process. Incorporation of bioactive molecules in polymer based biomimetic scaffolds may present new vistas for handling chronic wounds. In this study, chitosan/collagen scaffolds incorporating 0.5, 1 and 2% (w/w) silymarin (CS-CO-SM) were synthesized and studied for their biocompatibility, in vitro release kinetics and anti-oxidant activity. The release kinetics of silymarin from the CS-CO-SM scaffold showed an initial burst followed by sustained release. The scaffolds were biocompatible and supported the recovery of COS-7 cells from UV induced oxidative stress. Further the CS-CO-SM(2) scaffolds were used to fabricate a bi-layer scaffold by layer upon layer arrangement with CS-Ag3 (3% Ag, w/w). The Ag was incorporated to impart antimicrobial property to the scaffold. The in vivo studies on bi-layer scaffolds were carried out in Wistar rat models at 3, 7 and 10 days post injury and the skin excisions were studied for wound contraction, histology (H&E staining), and lipid peroxidation. The bi-layer scaffold accelerated the process of wound healing with no inflammatory cells, proliferation of fibroblast, neovascularization and collagen deposition. By day 10 post transplantation of the scaffold, the skin had a structure similar to normal skin with complete re-epithelization. This bi-layer scaffold with antioxidant and antimicrobial properties promotes wound healing and is proposed as a potential tissue engineering material for managing chronic wounds.
Collapse
Affiliation(s)
- M Monsoor Shaik
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, 403726, India
| | - Ashwin Dapkekar
- Nanobioscience group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India
| | - Jyutika M Rajwade
- Nanobioscience group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India
| | - Sachin H Jadhav
- Animal Sciences Division, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India
| | - Meenal Kowshik
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
46
|
Sriram G, Bigliardi PL, Bigliardi-Qi M. Full-Thickness Human Skin Equivalent Models of Atopic Dermatitis. Methods Mol Biol 2019; 1879:367-383. [PMID: 29790095 DOI: 10.1007/7651_2018_163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease caused by complex multifactorial etiology. In the recent years, there have been significant advances in tissue engineering and the generation of in vitro skin models representative of healthy and diseased states. This chapter describes the methodology for the fabrication of in vitro human skin equivalent (HSE) from human keratinocytes and fibroblasts using a fibrin-based dermal matrix and serum-free culture conditions. Modification of the culture conditions with the supplementation of Th2 cytokines such as interleukin-4 induces the development of atopic dermatitis-like skin model. The chapter also describes the histological and immunohistochemical tools for characterization of the HSE model. The reconstruction of tissue-engineered HSE models that recapitulate the essential features of atopic dermatitis provides powerful tools for deeper understanding of the underlying pathological mechanisms on epidermal level, identification and testing of novel treatment options, and safety and toxicological evaluation in a pathophysiologically relevant system.
Collapse
Affiliation(s)
- Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
| | | | - Mei Bigliardi-Qi
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
47
|
Limbal Stem Cell Transplantation: Clinical Results, Limits, and Perspectives. Stem Cells Int 2018; 2018:8086269. [PMID: 30405723 PMCID: PMC6201383 DOI: 10.1155/2018/8086269] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) is a clinical condition characterized by damage of cornea limbal stem cells, which results in an impairment of corneal epithelium turnover and in an invasion of the cornea by the conjunctival epithelium. In these patients, the conjunctivalization of the cornea is associated with visual impairment and cornea transplantation has poor prognosis for recurrence of the conjunctivalization. Current treatments of LSCD are aimed at replacing the damaged corneal stem cells in order to restore a healthy corneal epithelium. The autotransplantation of limbal tissue from the healthy, fellow eye is effective in unilateral LSCD but leads to depauperation of the stem cell reservoir. In the last decades, novel techniques such as cultivated limbal epithelial transplantation (CLET) have been proposed in order to reduce the damage of the healthy fellow eye. Clinical and experimental evidence showed that CLET is effective in inducing long-term regeneration of a healthy corneal epithelium in patients with LSCD with a success rate of 70%–80%. Current limitations for the treatment of LSCD are represented by the lack of a marker able to unequivocally identify limbal stem cells and the treatment of total, bilateral LSCD which requires other sources of stem cells for ocular surface reconstruction.
Collapse
|
48
|
Dai NT, Huang WS, Chang FW, Wei LG, Huang TC, Li JK, Fu KY, Dai LG, Hsieh PS, Huang NC, Wang YW, Chang HI, Parungao R, Wang Y. Development of a Novel Pre-Vascularized Three-Dimensional Skin Substitute Using Blood Plasma Gel. Cell Transplant 2018; 27:1535-1547. [PMID: 30203684 PMCID: PMC6180730 DOI: 10.1177/0963689718797570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skin substitutes with existing vascularization are in great demand for the repair of
full-thickness skin defects. In the present study, we hypothesized that a pre-vascularized
skin substitute can potentially promote wound healing. Novel three-dimensional (3D) skin
substitutes were prepared by seeding a mixture of human endothelial progenitor cells
(EPCs) and fibroblasts into a human plasma/calcium chloride formed gel scaffold, and
seeding keratinocytes onto the surface of the plasma gel. The capacity of the EPCs to
differentiate into a vascular-like tubular structure was evaluated using
immunohistochemistry analysis and WST-8 assay. Experimental studies in mouse
full-thickness skin wound models showed that the pre-vascularized gel scaffold
significantly accelerated wound healing 7 days after surgery, and resembled normal skin
structures after 14 days post-surgery. Histological analysis revealed that
pre-vascularized gel scaffolds were well integrated in the host skin, resulting in the
vascularization of both the epidermis and dermis in the wound area. Moreover, mechanical
strength analysis demonstrated that the healed wound following the implantation of the
pre-vascularized gel scaffolds exhibited good tensile strength. Taken together, this novel
pre-vascularized human plasma gel scaffold has great potential in skin tissue
engineering.
Collapse
Affiliation(s)
- Niann-Tzyy Dai
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Wen-Shyan Huang
- 2 Plastic and Reconstructive Surgery, Zouying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Fang-Wei Chang
- 3 Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Lin-Gwei Wei
- 4 Division of Plastic and Reconstructive Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, R.O.C
| | - Tai-Chun Huang
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Jhen-Kai Li
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Keng-Yen Fu
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Lien-Guo Dai
- 5 Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan, R.O.C
| | - Pai-Shan Hsieh
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Nien-Chi Huang
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yi-Wen Wang
- 6 Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Hsin-I Chang
- 7 Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, R.O.C
| | - Roxanne Parungao
- 8 Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, New South Wales, Australia
| | - Yiwei Wang
- 8 Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Hassanzadeh H, Matin MM, Naderi-Meshkin H, Bidkhori HR, Mirahmadi M, Raeesolmohaddeseen M, Sanjar-Moussavi N, Bahrami AR. Using paracrine effects of Ad-MSCs on keratinocyte cultivation and fabrication of epidermal sheets for improving clinical applications. Cell Tissue Bank 2018; 19:531-547. [PMID: 30105667 DOI: 10.1007/s10561-018-9702-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Recent advances in wound healing have made cell therapy a potential approach for the treatment of various types of skin defects such as trauma, burns, scars and diabetic leg ulcers. Cultured keratinocytes have been applied to burn patients since 1981. Patients with acute and chronic wounds can be treated with autologous/allograft cultured keratinocytes. There are various methods for cultivation of epidermal keratinocytes used in cell therapy. One of the important properties of an efficient cell therapy is the preservation of epidermal stem cells. Mesenchymal Stem Cells (MSCs) are major regulatory cells involved in the acceleration of wound healing via induction of cell proliferation, angiogenesis and stimulating the release of paracrine signaling molecules. Considering the beneficial effects of MSCs on wound healing, the main aim of the present study is investigating paracrine effects of Adipose-derived Mesenchymal Stem Cell (Ad-MSCs) on cultivation of keratinocytes with focusing on preservation of stem cells and their differentiation process. We further introduced a new approach for culturing isolated keratinocytes in vitro in order to generate epidermal keratinocyte sheets without using a feeder layer. To do so, Ad-MSC conditioned medium was applied as an alternative to commercial media for keratinocyte cultivation. In this study, the expression of several stem/progenitor cell (P63, K19 and K14) and differentition (K10, IVL and FLG) markers was examined using real time PCR on days 7, 14 and 21 of culture in keratinocytes in Ad-MSC conditioned medium. P63 and α6 integrin expression was also evaluated via flow cytometry. The results were compared with control group including keratinocytes cultured in EpiLife medium and our data indicated that this Ad-MSC conditioned medium is a good alternative for keratinocyte cultivation and producing epidermal sheets for therapeutic and clinical purposes. The reasons are the expression of stem cell and differentiation markers and overcoming the requirement for feeder layer which leads to a xenograft-free transplantation. Besides, this approach has low cost and is easier to perform. However, more in vitro and in vivo experiments as well as safety evaluation required before clinical applications.
Collapse
Affiliation(s)
- Halimeh Hassanzadeh
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran. .,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mahmood Raeesolmohaddeseen
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Ahmad Reza Bahrami
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran. .,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
50
|
Current approaches to the problem of carrier selection for limbal stem cells cultivation in the treatment of limbal stem cell deficiency. OPHTHALMOLOGY JOURNAL 2018. [DOI: 10.17816/ov11248-56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Diseases and damages of the ocular surface are one of the common causes of decreased vision and blindness. Dysfunction or death of limbal epithelial stem cells (LESC) plays an important role in the development of pathological processes in these conditions, which leads to the development of the limbal stem cell deficiency (LSCD). Currently, one of the methods to treat LSCD is a transplantation of cultured ex vivo LESC. The most common carriers for the cultivation of LESC in the world is the amniotic membrane (AM). However, the presence of certain disadvantages in using AM for the cultivation of LESC compels to search new types of carriers made from biological or synthetic materials. In this review, we have analyzed various types of carriers: collagen, fibrin, chitosan with gelatin, silk fibroin, keratin, contact lenses, polylactide-co-glycolide, polycaprolactone, and the possibility of their application as carriers for the LESC cultivation followed by transplantation on the ocular surface is considered.
Collapse
|