1
|
Nazerian A, Jafarzadeh A, Salehi S, Ghasemi M, Goodarzi A. Cyclosporin for the treatment of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN): a systematic review of observational studies and clinical trials focusing on single therapy, combination therapy, and comparative assessments. Inflammopharmacology 2024:10.1007/s10787-024-01590-0. [PMID: 39470865 DOI: 10.1007/s10787-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare, severe, and potentially life-threatening skin and mucous membrane disorders. They are characterized by widespread skin and mucosal detachment and necrosis, and are classified based on the percentage of total body surface area (TBSA) affected. Given the severe and often life-threatening nature of these conditions, the identification and implementation of effective treatments is crucial. Notably, cyclosporin has demonstrated efficacy in managing these challenging conditions. METHODS A systematic search was carried out through the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases until May 2024. Additionally, a manual search was conducted through the reference lists of the included studies to minimize the risk of missing reports. RESULTS Overall, 17 studies involving 4761 patients were included in our analysis. The majority of the included studies suggested favorable outcomes for the use of cyclosporin in SJS/TEN patients. The use of cyclosporin was associated with improved survival rates, early arrest of disease progression, faster re-epithelialization, reduced length of hospital stays, and lower rates of multi-organ failure. However, a few studies did not find a survival advantage with cyclosporin and even reported an increased risk of mortality, as well as an increased TBSA detachment and risk of infection. CONCLUSION Most studies indicate positive outcomes with cyclosporin treatment in SJS/TEN patients. This is likely due to cyclosporin's immunomodulatory properties, which may help attenuate the severe inflammatory response associated with these conditions.
Collapse
Affiliation(s)
| | - Alireza Jafarzadeh
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Rasool Akram Hospital, Niayesh Street, Sattar Khan Avenue, Tehran, 1445613131, Iran
| | - Sadaf Salehi
- Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Rasool Akram Hospital, Niayesh Street, Sattar Khan Avenue, Tehran, 1445613131, Iran.
| |
Collapse
|
2
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
3
|
Cangemi M, Montico B, Faè DA, Steffan A, Dolcetti R. Dissecting the Multiplicity of Immune Effects of Immunosuppressive Drugs to Better Predict the Risk of de novo Malignancies in Solid Organ Transplant Patients. Front Oncol 2019; 9:160. [PMID: 30972289 PMCID: PMC6445870 DOI: 10.3389/fonc.2019.00160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
De novo malignancies constitute an emerging cause of morbidity after solid organ transplant (SOT), significantly affecting the long-term survival of transplant recipients. Pharmacologic immunosuppression may functionally impair the immunosurveillance in these patients, thereby increasing the risk of cancer development. Nevertheless, the multiplicity and heterogeneity of the immune effects induced by immunosuppressive drugs limit the current possibilities to reliably predict the risk of de novo malignancy in SOT patients. Therefore, there is the pressing need to better characterize the immune dysfunctions induced by the different immunosuppressive regimens administered to prevent allograft rejection to tailor more precisely the therapeutic schedule and decrease the risk of de novo malignancies. We herein highlight the impact exerted by different classes of immunosuppressants on the most relevant immune cells, with a particular focus on the effects on dendritic cells (DCs), the main regulators of the balance between immunosurveillance and tolerance.
Collapse
Affiliation(s)
- Michela Cangemi
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Damiana A Faè
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Riccardo Dolcetti
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Liddicoat AM, Lavelle EC. Modulation of innate immunity by cyclosporine A. Biochem Pharmacol 2019; 163:472-480. [PMID: 30880061 DOI: 10.1016/j.bcp.2019.03.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
Cyclosporine A has long been known to suppress T cell responses by inhibiting the production of IL-2, which drives T cell proliferation, enabling its use as a therapeutic for transplantation or autoimmunity. However, cyclosporine A also impacts on innate immune cells including dendritic cells, macrophages and neutrophils. In dendritic cells, which are essential for T cell priming, cyclosporine A can modulate both expression of surface molecules that engage with T cells and cytokine secretion, leading to altered induction of T cell responses. In macrophages and neutrophils, which play key antimicrobial roles, cyclosporine A reduces the production of cytokines that can play protective roles against pathogens. Some of these molecules, if produced in the context of chronic disease, can also contribute to pathology. There have been a number of elegant recent studies addressing the mechanisms by which cyclosporine A can modulate innate immunity. In particular, cyclosporine A inhibits the release of mitochondrial factors that stimulate the production of type 1 interferons by innate immune cells. This review addresses the emerging literature on modulation of innate immune responses by cyclosporine A, its resultant impact on adaptive immune responses and how this offers potential for new therapeutic applications.
Collapse
Affiliation(s)
- Alex M Liddicoat
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin 2, Ireland.
| |
Collapse
|
5
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Abo El Gheit R, Emam MN. Targeting heme oxygenase-1 in early diabetic nephropathy in streptozotocin-induced diabetic rats. Physiol Int 2017; 103:413-427. [PMID: 28229631 DOI: 10.1556/2060.103.2016.4.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular diabetic complications. This study was designed to evaluate the possible protective effect and underlying mechanisms of HO-1 induction in streptozotocin (STZ)-induced early DN in rats. The diabetic rats were divided into three groups: STZ-diabetic, cobalt protoporphyrin (CoPP)-treated diabetic, and zinc protoporphyrin IX (ZnPP)-treated diabetic groups. Compared to the STZ-diabetic group, CoPP-induced HO-1 upregulation improved the diabetic state and renal functional parameters, suppressed the renal proinflammatory marker, NF-κB, abrogated the elevated renal hydroxyprolin, and decreased the enhanced renal nicotinamide adenine dinucleotide phosphate oxidase activity with parallel reduction of urinary oxidative stress markers. On the contrary, treatment with ZnPP abrogated HO-1 levels, aggravated the diabetic condition with further increases in renal oxidative stress, fibrotic and inflammatory markers, and exacerbated renal dysfunction in diabetic animals. These findings suggest that the reduced diabetic renal injury upon HO-1 induction implicates the role of HO-1 induction as a potential treatment for DN.
Collapse
Affiliation(s)
- R Abo El Gheit
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - M N Emam
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
7
|
Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A. Therapeutic effects of curcumin in inflammatory and immune‐mediated diseases: A nature‐made jack‐of‐all‐trades? J Cell Physiol 2017; 233:830-848. [DOI: 10.1002/jcp.25778] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Elham Abdollahi
- Department of Medical ImmunologySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Amir Abbas Momtazi
- Student Research Committee, Nanotechnology Research Center, Department of Medical BiotechnologySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmaceutical SciencesSchool of Pharmacy, University of Missouri‐Kansas CityKansas CityMissouri
| | - Amirhossein Sahebkar
- Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
D'Errico G, Machado HL, Sainz B. A current perspective on cancer immune therapy: step-by-step approach to constructing the magic bullet. Clin Transl Med 2017; 6:3. [PMID: 28050779 PMCID: PMC5209322 DOI: 10.1186/s40169-016-0130-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is the new trend in cancer treatment due to the selectivity, long lasting effects, and demonstrated improved overall survival and tolerance, when compared to patients treated with conventional chemotherapy. Despite these positive results, immunotherapy is still far from becoming the perfect magic bullet to fight cancer, largely due to the facts that immunotherapy is not effective in all patients nor in all cancer types. How and when will immunotherapy overcome these hurdles? In this review we take a step back to walk side by side with the pioneers of immunotherapy in order to understand what steps need to be taken today to make immunotherapy effective across all cancers. While early scientists, such as Coley, elicited an unselective but effective response against cancer, the search for selectivity pushed immunotherapy to the side in favor of drugs focused on targeting cancer cells. Fortunately, the modern era would revive the importance of the immune system in battling cancer by releasing the brakes or checkpoints (anti-CTLA-4 and anti-PD-1/PD-L1) that have been holding the immune system at bay. However, there are still many hurdles to overcome before immunotherapy becomes a universal cancer therapy. For example, we discuss how the redundant and complex nature of the immune system can impede tumor elimination by teeter tottering between different polarization states: one eliciting anti-cancer effects while the other promoting cancer growth and invasion. In addition, we highlight the incapacity of the immune system to choose between a fight or repair action with respect to tumor growth. Finally we combine these concepts to present a new way to think about the immune system and immune tolerance, by introducing two new metaphors, the “push the accelerator” and “repair the car” metaphors, to explain the current limitations associated with cancer immunotherapy.
Collapse
Affiliation(s)
- Gabriele D'Errico
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, #8543, New Orleans, LA, 70112, USA.
| | - Bruno Sainz
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain. .,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain. .,Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
9
|
García-González P, Ubilla-Olguín G, Catalán D, Schinnerling K, Aguillón JC. Tolerogenic dendritic cells for reprogramming of lymphocyte responses in autoimmune diseases. Autoimmun Rev 2016; 15:1071-1080. [PMID: 27485011 DOI: 10.1016/j.autrev.2016.07.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) control immune responses by driving potent inflammatory actions against external and internal threats while generating tolerance to self and harmless components. This duality and their potential to reprogram immune responses in an antigen-specific fashion have made them an interesting target for immunotherapeutic strategies to control autoimmune diseases. Several protocols have been described for in vitro generation of tolerogenic DCs (tolDCs) capable of modulating adaptive immune responses and restoring tolerance through different mechanisms that involve anergy, generation of regulatory lymphocyte populations, or deletion of potentially harmful inflammatory T cell subsets. Recently, the capacity of tolDCs to induce interleukin (IL-10)-secreting regulatory B cells has been demonstrated. In vitro assays and rodent models of autoimmune diseases provide insights to the molecular regulators and pathways enabling tolDCs to control immune responses. Here we review mechanisms through which tolDCs modulate adaptive immune responses, particularly focusing on their suitability for reprogramming autoreactive CD4+ effector T cells. Furthermore, we discuss recent findings establishing that tolDCs also modulate B cell populations and discuss clinical trials applying tolDCs to patients with autoimmune diseases.
Collapse
Affiliation(s)
- Paulina García-González
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Gabriela Ubilla-Olguín
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Diego Catalán
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Katina Schinnerling
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile.
| | - Juan Carlos Aguillón
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile.
| |
Collapse
|
10
|
Schinnerling K, Soto L, García-González P, Catalán D, Aguillón JC. Skewing dendritic cell differentiation towards a tolerogenic state for recovery of tolerance in rheumatoid arthritis. Autoimmun Rev 2015; 14:517-27. [PMID: 25633325 DOI: 10.1016/j.autrev.2015.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
To date, the available options to treat autoimmune diseases such as rheumatoid arthritis (RA) include traditional corticoids and biological drugs, which are not exempt of adverse effects. The development of cellular therapies based on dendritic cells with tolerogenic functions (TolDCs) has opened a new possibility to efficiently eradicate symptoms and control the immune response in the field of autoimmunity. TolDCs are an attractive tool for antigen-specific immunotherapy to restore self-tolerance in RA and other autoimmune disorders. A promising strategy is to inject autologous self-antigen-loaded TolDCs, which are able to delete or reprogram autoreactive T cells. Different protocols for the generation of stable human TolDCs have been established and the therapeutic effect of TolDCs has been investigated in multiple rodent models of arthritis. Pilot studies in humans confirmed that TolDC application is safe, encouraging clinical trials using self-antigen-loaded TolDCs in RA patients. Although an abundance of molecular regulators of DC functions has been discovered in the last decade, no master regulator of tolerogenicity has been identified yet. Further research is required to define biomarkers or key regulators of tolerogenicity that might facilitate the induction and monitoring of TolDCs.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paulina García-González
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
11
|
Ezzelarab M, Zahorchak A, Lu L, Morelli A, Chalasani G, Demetris A, Lakkis F, Wijkstrom M, Murase N, Humar A, Shapiro R, Cooper D, Thomson A. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates. Am J Transplant 2013; 13:1989-2005. [PMID: 23758811 PMCID: PMC4070451 DOI: 10.1111/ajt.12310] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/03/2013] [Accepted: 04/16/2013] [Indexed: 01/25/2023]
Abstract
We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5-10 × 10(6) /kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on Day -2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n = 6) and 113.5 days (p < 0.05) in DCreg-treated animals (n = 6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95(+) T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further preclinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation.
Collapse
Affiliation(s)
- M. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.E. Morelli
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - G. Chalasani
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.J. Demetris
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - F.G. Lakkis
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M. Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - N. Murase
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A. Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - R. Shapiro
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - D.K.C. Cooper
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Angus W. Thomson, PhD DSc, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392,
| |
Collapse
|
12
|
Giannoukakis N, Trucco M. Dendritic cell therapy for Type 1 diabetes suppression. Immunotherapy 2013; 4:1063-74. [PMID: 23148758 DOI: 10.2217/imt.12.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
While dendritic cell-based therapy is a clinical reality for human malignancies, until now, some conceptual concerns have served to delay its consideration to treat human autoimmune diseases, even in light of almost two decades' worth of overwhelmingly supportive preclinical animal studies. This article provides an overview of the development of dendritic cell-based therapy for Type 1 diabetes mellitus, given that this is the best-studied autoimmune disorder and that there is a good understanding of the underlying immunology. This article also highlights data from the authors' pioneering Phase I clinical trial with tolerogenic dendritic cells, which hopes to motivate the clinical translation of other dendritic cell-based approaches, to one or more carefully selected Type 1 diabetic patient populations.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | |
Collapse
|
13
|
Vu D, Tellez-Corrales E, Sakharkar P, Kissen MS, Shah T, Hutchinson I, Min DI. Impact of NF-κB gene polymorphism on allograft outcome in Hispanic renal transplant recipients. Transpl Immunol 2012; 28:18-23. [PMID: 23153769 DOI: 10.1016/j.trim.2012.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/29/2012] [Accepted: 11/02/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND The dimeric NF-κB transcription factors play critical roles in diverse cellular processes including adaptive and innate immunity, cell differentiation, proliferation and apoptosis. It regulates the expression of numerous genes that play a key role in the inflammatory response during kidney allograft rejection. This study aims to determine the association of NF-κB gene polymorphisms with allograft outcomes in the Hispanic renal transplant recipients. METHODS A total of 607 Hispanic renal transplant recipients at St. Vincent Medical Center between 2001 and 2010 were included in this study. The NF-κB genotypes were studied along with clinical data. In the case of NF-κB genotypes, the following single nucleotide polymorphisms (SNPs) were included: NF-κB1 (rs3774959, rs3774932, rs3774937, rs230526, rs230519), NF-κB2 (rs1056890, rs7897947, rs12769316) and NF-κB inducing kinase (NIK) (rs9908330, rs7222094). The association of each genotype with renal allograft survival and acute rejection was evaluated. RESULTS NF-κB1 (rs3774937) CC genotype showed protective association with allograft rejection (OR=0.66, 95% CI=0.44-0.99, p=0.04). There was a significant increase in allograft survival time associated with the NF-κB1 (rs3774959) A allele (OR=0.76, 95% CI=0.60-0.98, p=0.03) while GG genotype was associated with a higher risk of graft failure (OR=1.51, 95% CI=1.02-2.21, p=0.03). There were no associations between polymorphic markers in NF-κB2 and NIK genes with allograft survival or acute rejection. Among non-genetic factors, we found that the use of tacrolimus, a deceased donor, delayed graft function and acute rejection were associated with allograft failure. CONCLUSION The result of present study suggests that NF-κB1 gene polymorphisms may determine the incidence of acute rejection or graft survival among Hispanic allograft recipients.
Collapse
Affiliation(s)
- Don Vu
- Mendez National Institute of Transplantation, 2200W 3rd ST, Suite 370, Los Angeles, CA 90057, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Rojas-Canales D, Krishnan R, Jessup CF, Coates PT. Early exposure of interferon-γ inhibits signal transducer and activator of transcription-6 signalling and nuclear factor κB activation in a short-term monocyte-derived dendritic cell culture promoting 'FAST' regulatory dendritic cells. Clin Exp Immunol 2012; 167:447-58. [PMID: 22288588 DOI: 10.1111/j.1365-2249.2011.04537.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interferon (IFN)-γ is a cytokine with immunomodulatory properties, which has been shown previously to enhance the generation of tolerogenic dendritic cells (DC) when administered early ex vivo in 7-day monocyte-derived DC culture. To generate tolerogenic DC rapidly within 48 h, human monocytes were cultured for 24 h with interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the presence (IFN-γ-DC) or absence of IFN-γ (500 U/ml) (UT-DC). DC were matured for 24 h with TNF-α and prostaglandin E(2) (PGE(2) ). DC phenotype, signal transducer and activator of transcription-6 (STAT-6) phosphorylation and promotion of CD4(+) CD25(+) CD127(neg/low) forkhead box P3 (FoxP3)(hi) T cells were analysed by flow cytometry. DC nuclear factor (NF)-κB transcription factor reticuloendotheliosis viral oncogene homologue B (RELB) and IL-12p70 protein expression were also determined. Phenotypically, IFN-γ-DC displayed reduced DC maturation marker CD83 by 62% and co-stimulation molecules CD80 (26%) and CD86 (8%). IFN-γ treatment of monocytes inhibited intracellular STAT6, RELB nuclear translocation and IL-12p70 production. IFN-γ-DC increased the proportion of CD4(+) CD25(+) CD127(neg/low) foxp3(hi) T cells compared to UT-DC from 12 to 23%. IFN-γ-DC primed T cells inhibited antigen-specific, autologous naive T cell proliferation by 70% at a 1:1 naive T cells to IFN-γ-DC primed T cell ratio in suppression assays. In addition, we examined the reported paradoxical proinflammatory effects of IFN-γ and confirmed in this system that late IFN-γ exposure does not inhibit DC maturation marker expression. Early IFN-γ exposure is critical in promoting the generation of regulatory DC. Early IFN-γ modulated DC generated in 48 h are maturation arrested and promote the generation of antigen-specific regulatory T cells, which may be clinically applicable as a novel cellular therapy for allograft rejection.
Collapse
Affiliation(s)
- D Rojas-Canales
- Renal and Transplantation Immunobiology Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
15
|
Marín LA, Moya-Quiles MR, Miras M, Minguela A, Bermejo J, Ramírez P, García-Alonso AM, Parrilla P, Alvarez-López MR, Muro M. Evolution of soluble forms of CD86, CD95 and CD95L molecules in liver transplant recipients. Transpl Immunol 2011; 26:94-100. [PMID: 22182632 DOI: 10.1016/j.trim.2011.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/17/2011] [Accepted: 12/05/2011] [Indexed: 11/27/2022]
Abstract
Co-stimulatory factors such as CD86 and apoptotic molecules such as CD95 and CD95L required to start and to turn off the allogenic immune response may also be present as soluble proteins. To determine the role of the soluble forms of CD86 (sCD86), CD95 (sCD95) and CD95L (sCD95L) in the outcome of liver transplants, we analyzed the circulating levels of these molecules in patients subjected to liver transplantation in the pre-operative period and during the first month post-transplantation. Serum samples were obtained from sixty-nine first orthotopic liver transplants (OLT). The patients were classified into acute rejection (AR=24) and not acute rejection (NAR=45), or considering the presence of chronic active hepatitis B or C (VP=30) or other primary liver diseases (VN=39). The levels of sCD86, sCD95 and sCD95L were analyzed by solid phase sandwich enzyme-linked immunoabsorbent assays. Our results first showed that the pre-transplantation serum levels of sCD86 in the AR group were significantly higher than in the NAR group (1007±82U/mL vs. 739±46U/mL, p=0.006), and in the post-transplantation period these levels decreased sharply. Second, the levels of sCD95L and sCD95 in the pre-transplantation period did not point to statistically significant differences between the AR and NAR groups. Considering primary liver disease, the pre-transplantation levels of sCD86 and sCD95L in the VP group were significantly higher than those of the VN group (VP, 977±69U/mL vs. VN, 722±51U/mL, p<0.002, and VP, 482±78pg/mL vs. VN, 221±31pg/mL, p=0.002, respectively). Multivariate analysis revealed that only the pre-transplantation levels of sCD86 were independently associated with the development of episodes of acute rejection (p=0.005, OR=2.1, IC 95%=1.27-3.47). In conclusion, the present work shows that primary liver disease could influence the pre-transplantation levels of sCD86 and sCD95L. High pre-transplantation serum levels of sCD86 could favor the development of episodes of acute rejection.
Collapse
Affiliation(s)
- L A Marín
- Immunology Service, University Hospital Virgen de la Arrixaca, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Current state of type 1 diabetes immunotherapy: incremental advances, huge leaps, or more of the same? Clin Dev Immunol 2011; 2011:432016. [PMID: 21785616 PMCID: PMC3139873 DOI: 10.1155/2011/432016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/28/2011] [Indexed: 01/09/2023]
Abstract
Thus far, none of the preclinically successful and promising immunomodulatory agents for type 1 diabetes mellitus (T1DM) has conferred stable, long-term insulin independence to diabetic patients. The majority of these immunomodulators are humanised antibodies that target immune cells or cytokines. These as well as fusion proteins and inhibitor proteins all share varying adverse event occurrence and severity. Other approaches have included intact putative autoantigens or autoantigen peptides. Considerable logistical outlays have been deployed to develop and to translate humanised antibodies targeting immune cells, cytokines, and cytokine receptors to the clinic. Very recent phase III trials with the leading agent, a humanised anti-CD3 antibody, call into question whether further development of these biologics represents a step forward or more of the same. Combination therapies of one or more of these humanised antibodies are also being considered, and they face identical, if not more serious, impediments and safety issues. This paper will highlight the preclinical successes and the excitement generated by phase II trials while offering alternative possibilities and new translational avenues that can be explored given the very recent disappointment in leading agents in more advanced clinical trials.
Collapse
|
17
|
Rogers NM, Kireta S, Coates PTH. Curcumin induces maturation-arrested dendritic cells that expand regulatory T cells in vitro and in vivo. Clin Exp Immunol 2011; 162:460-73. [PMID: 21070208 DOI: 10.1111/j.1365-2249.2010.04232.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dendritic cells (DC) and regulatory T cells (T(regs) ) are vital to the development of transplant tolerance. Curcumin is a novel biological agent extracted from Curcuma longa (turmeric), with anti-inflammatory and anti-oxidant activity mediated via nuclear factor (NF)-κB inhibition. We investigated the immunomodulatory effects of curcumin on human monocyte-derived and murine DC. Human monocyte-derived DC (hu-Mo-DC) were generated in the presence (CurcDC) or absence (matDC) of 25 µM curcumin, and matured using lipopolysaccharide (1 µg/ml). DC phenotype and allostimulatory capacity was assessed. CD11c(+) DC were isolated from C57BL/6 mice, pretreated with curcumin and injected into BALB/c mice, followed by evaluation of in vivo T cell populations and alloproliferative response. Curcumin induced DC differentiation towards maturation-arrest. CurcDC demonstrated minimal CD83 expression (<2%), down-regulation of CD80 and CD86 (50% and 30%, respectively) and reduction (10%) in both major histocompatibility complex (MHC) class II and CD40 expression compared to matDC. CurcDC also displayed decreased RelB and interleukin (IL)-12 mRNA and protein expression. Functionally, CurcDC allostimulatory capacity was decreased by up to 60% (P < 0·001) and intracellular interferon (IFN-γ) expression in the responding T cell population were reduced by 50% (P < 0·05). T cell hyporesponsiveness was due to generation of CD4(+) CD25(hi) CD127(lo) forkhead box P3 (FoxP3)(+) T(regs) that exerted suppressive functions on naïve syngeneic T cells, although the effect was not antigen-specific. In mice, in vivo infusion of allogeneic CurcDC promoted development of FoxP3(+) T(regs) and reduced subsequent alloproliferative capacity. Curcumin arrests maturation of DC and induces a tolerogenic phenotype that subsequently promotes functional FoxP3(+) T(regs) in vitro and in vivo.
Collapse
Affiliation(s)
- N M Rogers
- Renal Transplant Immunology Laboratory, Hanson Institute, Adelaide, SA, Australia
| | | | | |
Collapse
|
18
|
Abstract
Dendritic cells (DCs) play a pivotal role in regulating the balance between immunity and tolerance of the immune system. Recent advancements in DC biology and techniques for manipulating the function of these cells have shown their immense therapeutic potential for treating a variety of immune disorders. Theoretically, antigen-specific tolerogenic DCs can be generated in vitro and delivered to patients to correct the dysfunctional immune responses that attack their own tissues or over-react to innocuous foreign antigens. However, DCs are a heterogeneous population of cells with differences in cell surface makers, differentiation pathways and functions. Studies are needed to examine which subset of DCs can be used for what type of applications. Furthermore, most of the information on tolerogenic DCs has been obtained from animal models and translational studies are needed to examine how a DC therapeutic strategy can be implemented clinically to modulate immunity.
Collapse
Affiliation(s)
- Jim Hu
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada.
| | | |
Collapse
|
19
|
Vlad G, Chang CC, Colovai AI, Vasilescu ER, Cortesini R, Suciu-Foca N. Membrane and soluble ILT3 are critical to the generation of T suppressor cells and induction of immunological tolerance. Int Rev Immunol 2010; 29:119-32. [PMID: 20132030 DOI: 10.3109/08830180903281185] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tolerogenic phenotype of human dendritic cells is characterized by high cell surface expression of the inhibitory receptor ILT3. ILT3 signals both intracellularly inhibiting tyrosine phosphorylation, NF-kappaB and MAPK p38 activity, transcription of certain co-stimulatory molecules, secretion of cytokines and chemokines, and extracellularly into the T cells with which the dendritic cells interact. Both ILT3(high) tolerogenic dendritic cells and soluble ILT3 induce CD4 Th anergy and differentiation of antigen specific CD8 T suppressor cells. Recombinant ILT3-Fc protein has important immunotherapeutic potential acting directly on activated T cells and promoting the induction of immunological tolerance.
Collapse
Affiliation(s)
- George Vlad
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
20
|
Taher YA, Henricks PA, van Oosterhout AJ. Allergen-specific subcutaneous immunotherapy in allergic asthma: immunologic mechanisms and improvement. Libyan J Med 2010; 5:10.3402/ljm.v5i0.5303. [PMID: 21483568 PMCID: PMC3071166 DOI: 10.3402/ljm.v5i0.5303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 05/21/2010] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a disease characterized by persistent allergen-driven airway inflammation, remodeling, and airway hyperresponsiveness. CD4(+) T-cells, especially T-helper type 2 cells, play a critical role in orchestrating the disease process through the release of the cytokines IL-4, IL-5, and IL-13. Allergen-specific immunotherapy (SIT) is currently the only treatment with a long-term effect via modifying the natural course of allergy by interfering with the underlying immunological mechanisms. However, although SIT is effective in allergic rhinitis and insect venom allergy, in allergic asthma it seldom results in complete alleviation of the symptoms. Improvement of SIT is needed to enhance its efficacy in asthmatic patients. Herein, the immunoregulatory mechanisms underlying the beneficial effects of SIT are discussed with the ultimate aim to improve its treatment efficacy.
Collapse
Affiliation(s)
- Yousef A. Taher
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Al-Fateh Medical University, Tripoli, Libya
| | - Paul A.J. Henricks
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Antoon J.M. van Oosterhout
- Laboratory of Allergology and Pulmonary Diseases, University Medical Center Groningen, Groningen University, Groningen, The Netherlands
| |
Collapse
|
21
|
Phillips B, Giannoukakis N, Trucco M. Dendritic cell-based therapy in Type 1 diabetes mellitus. Expert Rev Clin Immunol 2010; 5:325-39. [PMID: 20477010 DOI: 10.1586/eci.09.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) immunotherapy is a clinical reality. Despite two decades of considerable data demonstrating the feasibility of using DCs to prolong transplant allograft survival and to prevent autoimmunity, only now are these cells entering clinical trials in humans. Type 1 diabetes is the first autoimmune disorder to be targeted for treatment in humans using autologous-engineered DCs. This review will highlight the role of DCs in autoimmunity and the manner in which they have been engineered to treat these disorders in rodent models, either via the induction of immune hyporesponsiveness, which may be cell- and/or antigen-specific, or indirectly by upregulation of other immune cell networks.
Collapse
Affiliation(s)
- Brett Phillips
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Immunogenetics, Children's Hospital of Pittsburgh, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA.
| | | | | |
Collapse
|
22
|
Vukcevic M, Zorzato F, Spagnoli G, Treves S. Frequent calcium oscillations lead to NFAT activation in human immature dendritic cells. J Biol Chem 2010; 285:16003-11. [PMID: 20348098 DOI: 10.1074/jbc.m109.066704] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Spontaneous Ca(2+) oscillations have been observed in a number of excitable and non-excitable cells, but in most cases their biological role remains elusive. In the present study we demonstrate that spontaneous Ca(2+) oscillations occur in immature human monocyte-derived dendritic cells but not in dendritic cells stimulated to undergo maturation with lipopolysaccharide or other toll like-receptor agonists. We investigated the mechanism and role of spontaneous Ca(2+) oscillations in immature dendritic cells and found that they are mediated by the inositol 1,4,5-trisphosphate receptor as they were blocked by pretreatment of cells with the inositol 1,4,5-trisphosphate receptor antagonist Xestospongin C and 2-aminoethoxydiphenylborate. A component of the Ca(2+) signal is also due to influx from the extracellular environment and may be involved in maintaining the level of the intracellular Ca(2+) stores. As to their biological role, our results indicate that they are intimately linked to the "immature" phenotype and are associated with the translocation of the transcription factor NFAT into the nucleus. In fact, once the Ca(2+) oscillations are blocked with 2-aminoethoxydiphenylborate or by treating the cells with lipopolysaccharide, NFAT remains cytoplasmic. The results presented in this report provide novel insights into the physiology of monocyte-derived dendritic cells and into the mechanisms involved in maintaining the cells in the immature stage.
Collapse
Affiliation(s)
- Mirko Vukcevic
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Basel 4031, Switzerland
| | | | | | | |
Collapse
|
23
|
Jennings C, Kusler B, Jones PP. Calcineurin inactivation leads to decreased responsiveness to LPS in macrophages and dendritic cells and protects against LPS-induced toxicity in vivo. Innate Immun 2009; 15:109-20. [PMID: 19318421 DOI: 10.1177/1753425908100928] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial components such as lipopolysaccharide (LPS) bind to Toll-like receptors (TLRs) and activate innate and inflammatory responses. Responses to LPS and other microbial components are limited by the activation of negative feedback mechanisms that reduce responsiveness to subsequent LPS exposure, often termed LPS tolerance. Our laboratory has previously shown that calcineurin, a phosphatase known for its activation of T cells via NFAT, negatively regulates the TLR pathway in macrophages; consequently, calcineurin inhibitors (FK506 and cyclosporin A) mimic TLR ligands in activating the TLR pathway, NF-KB, and associated innate and inflammatory responses. This study investigated the physiological consequences of calcineurin inactivation for LPS-induced inflammatory responses in vitro and in vivo using two models: calcineurin inhibition by FK506 (tacrolimus) and myeloid cell-specific calcineurin deletion. Activation of dendritic cells and macrophages with FK506 in vitro was shown to induce a state of reduced responsiveness to LPS (i.e. a form of LPS tolerance). Similarly, macrophages from FK506-treated mice or from mice in which the calcineurin B1 (CnB1) subunit was conditionally knocked out in myeloid cells were found to have diminished LPS-induced inflammatory responses. In addition, mice with CnB1-deficient myeloid cells and mice undergoing FK506 treatment showed improved survival and recovery when challenged with high doses of systemic LPS compared to controls. These results demonstrate that inactivation of calcineurin in macrophages and other myeloid cells by inhibition or deletion can induce a form of LPS tolerance and protect the host from LPS toxicity in vivo.
Collapse
Affiliation(s)
- Charay Jennings
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305-5020, USA
| | | | | |
Collapse
|
24
|
Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum Immunol 2009; 70:345-52. [PMID: 19405173 DOI: 10.1016/j.humimm.2009.01.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DC) induce or tolerize T cells, and tolerogenic DCs can promote the development of regulatory T cells (Treg) with suppressive activity. Thus, the possibility of manipulating DCs and enhancing their tolerogenic properties using different pharmacologic or biologic agents could be exploited to control a variety of chronic immuno-mediated inflammatory conditions. Among agents able to promote induction of tolerogenic DCs, vitamin D receptor (VDR) agonists have attracted considerable attention, also because of their potential in clinical translation. DCs are key targets for the immunomodulatory effects of VDR agonists, which shape DC phenotype and function, enhancing their tolerogenicity in adaptive immune responses. Tolerogenic DCs induced by a short treatment with VDR agonists promote CD4+CD25+Foxp3+ Treg cells that are able to mediate transplantation tolerance and to arrest the development of autoimmune diseases. VDR agonists not only favor induction of CD4+CD25+ Treg cells, but can also enhance their recruitment at inflammatory sites. The tolerogenic properties induced by VDR agonists in DCs, leading to enhanced Treg cell development, likely contribute to the beneficial activity of these hormone-like molecules in autoimmune disease and graft rejection models, highlighting their applicability to the treatment of chronic inflammatory conditions sustained by autoreactive or alloreactive immune responses.
Collapse
|
25
|
Kim JY, Kang JS, Kim HM, Kim YK, Lee HK, Song S, Hong JT, Kim Y, Han SB. Inhibition of Phenotypic and Functional Maturation of Dendritic Cells by Manassantin A. J Pharmacol Sci 2009; 109:583-92. [DOI: 10.1254/jphs.08299fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Adorini L, Penna G. Induction of tolerogenic dendritic cells by vitamin D receptor agonists. Handb Exp Pharmacol 2008:251-73. [PMID: 19031030 DOI: 10.1007/978-3-540-71029-5_12] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells induce and regulate T cell responses, and tolerogenic dendritic cells (DCs) can promote the development of regulatory T cells with suppressive activity. Thus, the possibility to manipulate DCs using different pharmacological or biological agents enables them to exert tolerogenic activities, could be exploited to better control a variety of chronic inflammatory conditions, from autoimmune diseases to allograft rejection. A variety of both biological and pharmacological agents can induce tolerogenic DCs, and several in vitro studies have demonstrated that human regulatory T cells can be induced by DCs manipulated to acquire and/or enhance tolerogenic properties, with in vivo data also accumulating. Within this context, we have explored the immunoregulatory activities of vitamin D receptor (VDR) agonists, secosteroid hormones able to induce tolerogenic DCs and regulatory T cells. Tolerogenic DCs induced by a short treatment with VDR agonists promote CD4(+) CD25(+) Foxp3(+) suppressor T cells that are able to mediate transplantation tolerance and to arrest the development of autoimmune diseases. VDR agonists not only favour the induction of CD4(+) CD25(+) regulatory T cells, but can also enhance their recruitment to inflammatory sites. VDR agonists have been proven effective and safe drugs in a variety of autoimmune disease and graft rejection models, highlighting their potential applicability to chronic inflammatory conditions sustained by autoreactive or alloreactive immune responses. In addition to the topical treatment of psoriasis, a Th1-mediated autoimmune disease of the skin where VDR agonists are the most used topical drugs; these agents might eventually find a broader application in the treatment of inflammatory conditions, where their modulatory effects on DCs enhancing T cells with regulatory functions could turn out to be quite beneficial.
Collapse
Affiliation(s)
- Luciano Adorini
- Intercept Pharma, Via Togliatti 22 bis, 06073 Corciano (Perugia), Italy.
| | | |
Collapse
|
27
|
Selective effects of cyclosporine a on Th2-skewed dendritic cells matured with viral-like stimulus by means of toll-like receptors. Transplantation 2008; 86:880-4. [PMID: 18813114 DOI: 10.1097/tp.0b013e3181861f1d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Successful prevention of allograft rejection and graft-versus-host disease with immunosuppression depends on controlled balance of Th1 and Th2 immune responses to establish tolerance and fight infection. Here, we have analyzed the effects of cyclosporine A (CsA) on the differentiation and functions of dendritic cells (DC2) that induce Th2 T cells. DC2 were differentiated from monocytes in the presence of CsA and were matured with viral or bacterial agonists (poly[I:C] or lipopolysaccharide). DC2 differentiation was not affected by CsA. In contrast, cytokine responses were altered with inhibition of interleukin-10 production in poly(I:C)-matured DC2. Surprisingly, interleukin-10 secretion by immature DC2 was increased after CsA treatment. Internalization was impaired in treated DC2, and CsA decreased the T-cell proliferative capacity of DC2 matured with poly(I:C), but not with lipopolysaccharide. In conclusion, CsA altered T-cell activating functions of DC2 with, notably, a regulatory phenotype for immature DC2 and opposite effects on poly(I:C)-matured cells.
Collapse
|
28
|
Turnquist HR, Sumpter TL, Tsung A, Zahorchak AF, Nakao A, Nau GJ, Liew FY, Geller DA, Thomson AW. IL-1beta-driven ST2L expression promotes maturation resistance in rapamycin-conditioned dendritic cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:62-72. [PMID: 18566370 DOI: 10.4049/jimmunol.181.1.62] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Maturation resistance and tolerogenic properties can be conferred on human and murine dendritic cells (DC), crucial regulators of T cell responses, by exposure to rapamycin (RAPA), a "tolerance-sparing" immunosuppressive agent. Mechanisms underlying this acquired unresponsiveness, typified by diminished functional responses to TLR or CD40 ligation, have not been identified. We report that in vitro and in vivo conditioning of murine myeloid DC with RAPA elicits the de novo production of IL-1beta by otherwise phenotypically immature DC. Interestingly, IL-1beta production promotes overexpression of the transmembrane form of the IL-1R family member, IL-1R-like 1, also know as ST2 on RAPA-conditioned DC (RAPA-DC). ST2 is the recently identified receptor for IL-33, a cytokine favoring Th2 responses. In addition, transmembrane ST2, or ST2L, has been implicated as a potent negative regulator of TLR signaling. RAPA-DC generated from ST2-/- mice exhibited higher levels of costimulatory molecules (CD86) than wild-type RAPA-DC. Consistent with its regulatory function, IL-1beta-induced ST2L expression suppressed the responsiveness of RAPA-DC to TLR or CD40 ligation. Thus, as a result of their de novo production of IL-1beta, RAPA-DC up-regulate ST2L and become refractory to proinflammatory, maturation-inducing stimuli. This work identifies a novel mechanism through which a clinically important immunosuppressant impedes the capacity of DC to mature and consequently stimulate effector/adaptive T cell responses.
Collapse
Affiliation(s)
- Heth R Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Taher YA, van Esch BCAM, Hofman GA, Henricks PAJ, van Oosterhout AJM. 1alpha,25-dihydroxyvitamin D3 potentiates the beneficial effects of allergen immunotherapy in a mouse model of allergic asthma: role for IL-10 and TGF-beta. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5211-21. [PMID: 18390702 DOI: 10.4049/jimmunol.180.8.5211] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1alpha,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), a potent inhibitor of NF-kappaB expression, can prevent the maturation of dendritic cells in vitro leading to tolerogenic dendritic cells with increased potential to induce regulatory T cells. Herein, we investigated whether the combination of allergen immunotherapy with 1,25(OH)(2)D(3) potentiates the suppressive effects of immunotherapy and whether the immunoregulatory cytokines IL-10 and TGF-beta are involved in the effector phase. OVA-sensitized and challenged BALB/c mice displayed airway hyperresponsiveness (AHR) and increased serum OVA-specific IgE levels, bronchoalveolar lavage eosinophilia, and Th2 cytokine levels. In this model, the dose response of allergen immunotherapy 10 days before OVA inhalation challenge shows strong suppression of asthma manifestations at 1 mg of OVA, but partial suppression of bronchoalveolar lavage eosinophilia, IgE up-regulation, and no reduction of AHR at 100 microg. Interestingly, coadministration of 10 ng of 1,25(OH)(2)D(3) with 100 microg of OVA immunotherapy significantly inhibited AHR and potentiated the reduction of serum OVA-specific IgE levels, airway eosinophilia, and Th2-related cytokines concomitant with increased IL-10 levels in lung tissues and TGF-beta and OVA-specific IgA levels in serum. Similar effects on suboptimal immunotherapy were observed by inhibition of the NF-kappaB pathway using the selective IkappaB kinase 2 inhibitor PS-1145. The suppressive effects of this combined immunotherapy were partially reversed by treatment with mAb to either IL-10R or TGF-beta before OVA inhalation challenge but completely abrogated when both Abs were given. These data demonstrate that 1,25(OH)(2)D(3) potentiates the efficacy of immunotherapy and that the regulatory cytokines IL-10 and TGF-beta play a crucial role in the effector phase of this mouse model.
Collapse
Affiliation(s)
- Yousef A Taher
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Niflumic acid renders dendritic cells tolerogenic and up-regulates inhibitory molecules ILT3 and ILT4. Int Immunopharmacol 2008; 8:997-1005. [PMID: 18486911 DOI: 10.1016/j.intimp.2008.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/28/2008] [Accepted: 03/04/2008] [Indexed: 11/23/2022]
Abstract
Niflumic acid is a member of non-steroidal anti-inflammatory agents, from which aspirin was recently shown to inhibit maturation of human-monocyte derived dendritic cells (DCs). DCs are crucial regulators of the immune response, capable of inducing immunity as well as tolerance. In our in vitro study we showed a tolerogenic effect of NFA on phenotype and function of LPS-matured monocyte-derived DCs. Different drug concentrations dose-dependently down-regulated the expression of co-stimulatory molecules, particularly CD80 and lowered the expression of dendritic cell marker CD1a. Opposingly, the expressions of two inhibitory surface molecules, associated with tolerogenic DCs, immunoglobulin-like transcripts (ILT)3 and ILT4 were induced in treated DCs. The levels of TNFalpha production by NFA-treated DCs did not change significantly compared to controls, whereas the IL-12p70 and IL-10 production was completely abrogated at higher drug concentrations. However, at lower drug concentrations, the production of IL-12p70 was increased. There were no significant differences in the uptake of FITC labeled dextran by treated DCs compared to untreated cells. In allogeneic cultures with whole CD4+ T cells, dendritic cells differentiated in the presence of NFA appeared poor stimulators of CD4+ T-cell proliferation, even compared to immature DCs (iDCs). These results indicate the immunosuppressive properties of NFA, which may be therapeutically useful in controlling chronic immune and/or inflammatory diseases, by modulating DC characteristics towards tolerogenic DCs.
Collapse
|
31
|
Zhou WH, Dong L, Du MR, Zhu XY, Li DJ. Cyclosporin A improves murine pregnancy outcome in abortion-prone matings: involvement of CD80/86 and CD28/CTLA-4. Reproduction 2008; 135:385-95. [DOI: 10.1530/rep-07-0063] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune regulation during pregnancy is complex, and thus an optimal therapy for pregnancy complications is always a big challenge to reproductive medicine. Cyclosporin A (CsA), a potent immunosuppressant, prevents rejection of allografts by hosts, but little is known about the modulating effect of CsA on the materno-fetal relationship. Here, pregnant CBA/J females mated with DBA/2 males as an abortion-prone model were administered with CsA on day 4.5 of gestation, and the pregnant CBA/J females mated with BALB/c males were established as successful pregnancy control. It was demonstrated that administration of CsA at the window of implantation significantly up-regulated the expression of CTLA-4, while down-regulating the levels of CD80, CD86, and CD28 at the materno-fetal interface in the CBA/J×DBA/2 abortion-prone matings, and the embryo resorption rate of the abortion-prone matings reduced significantly after CsA treatment, implying that modulation of costimulatory molecule expression by CsA might contribute to preventing the fetus from maternal immune attack. In addition, treatment with CsA induced enhanced growth and reduced cell apoptosis of the murine trophoblast cells. Together, these findings indicate that CsA has a beneficial effect on the materno-fetal interface in abortion-prone matings, leading to a pregnancy outcome improvement, which might provide new therapeutics for spontaneous pregnancy wastage.
Collapse
|
32
|
Maestri M, Rademacher J, Gaspari A, Lenti LM, Crespi S, Cansolino L, Novelli G, Agoglitta D, Maffeis F, Ferrario di Tor Vajana A, Oldani G, Dionigi P. Short-term cyclosporine therapy and cotransplantation of donor splenocytes: effects on graft rejection and survival rates in pigs subjected to renal transplantation. J Surg Res 2008; 150:100-9. [PMID: 18561953 DOI: 10.1016/j.jss.2008.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 01/10/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND Donor-specific allogeneic loading can prolong the survival of solid organ transplants by inducing a state known as acceptance. Several populations of cells are known to be involved in this process, but their exact roles have yet to be defined. The aim of this study was to assess the effects of portal-vein transfusion of donor-specific splenocytes (DST) after short-term cyclosporine A (CyA) therapy in pigs subjected to renal transplantation. METHODS Four groups of unrelated swine underwent renal transplantation with removal of the native kidneys. Antirejection protocols consisted in portal-vein DST (3 x 10(8) cells/kg) (Group 2, n = 7); intravenous CyA (9 mg/kg/d) on postoperative days 1-12 (Group 3, n = 14); and DST + CyA (as described above) (Group 4, n = 13). Results (through postoperative day 90) were compared with those obtained in untreated control recipients (Group 1, n = 7). RESULTS Compared with animals of Groups 1, 2, and 3, Group 4 recipients presented significantly longer survival (mean: 90 days, P < 0.01 in Kaplan-Meier analysis) and better renal function (P < 0.05). Graft histology revealed preserved parenchyma. CONCLUSION The role of spleen cells in the immune response has probably been underestimated. Cotransplantation of donor splenocytes seems to induce a certain degree of acceptance toward the renal allograft. The route of administration (portal-vein infusion in this study) may be crucial for developing favorable mechanisms of recognition.
Collapse
Affiliation(s)
- Marcello Maestri
- Laboratory of Experimental Surgery, Department of Surgical Sciences, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Unadkat J, Feili-Hariri M. Use of dendritic cells in drug selection, development and therapy. Expert Opin Drug Discov 2008; 3:247-59. [PMID: 23480223 DOI: 10.1517/17460441.3.2.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Dendritic cells (DC) have the unique ability to induce immunity against tumors and various pathogens or to promote tolerance in autoimmunity and transplantation. Hence, they are central to the regulation of immune responses. OBJECTIVE/METHODS Due to the unique tolerogenic ability of DC, understanding some of the key molecules that regulate DC function may help with targeting the relevant signals in DC as therapeutic options for many disease conditions. DC are also targets of drugs, and many of the anti-inflammatory and pharmaceutical agents used to prevent autoimmunity or inhibit graft rejection interfere with DC function. RESULTS/CONCLUSION The drug-induced changes in DC may provide information for the selection of drugs and further drug discovery along with the use of DC as adjuvant in the treatment of autoimmunity and prevention of graft rejection in transplantation.
Collapse
Affiliation(s)
- Jignesh Unadkat
- University of Pittsburgh School of Medicine, Department of Surgery, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
34
|
Trucco M, Giannoukakis N. Immunoregulatory dendritic cells to prevent and reverse new-onset Type 1 diabetes mellitus. Expert Opin Biol Ther 2007; 7:951-63. [PMID: 17665986 DOI: 10.1517/14712598.7.7.951] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herein, the authors provide an overview of where dendritic cells lie in the immunopathology of autoimmune Type 1 diabetes mellitus and how dendritic cell-based therapy may be usefully translated to treat and reverse the disease. The immunopathology of Type 1 diabetes mellitus offers a number of windows at which immunotherapy can be applied to delay, stop and even reverse the autoimmune processes, especially in light of the recent antibody-based accomplishment of improvement in residual beta-cell mass function. As in almost all cell-specific inflammatory processes, dendritic cells are central regulators of diabetes onset and progression. This realisation, along with accumulating data confirming a role for dendritic cells in maintaining and inducing tolerance in multiple therapeutic settings, has prompted a line of investigation to identify the most effective embodiments of dendritic cells for diabetes immunotherapy.
Collapse
Affiliation(s)
- Massimo Trucco
- Children's Hospital of Pittsburgh, Diabetes Institute, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
35
|
Hara Y, Funeshima-Fuji N, Fujino M, Tokunaka K, Abe F, Sato Y, Hatakeyama K, Takahara S, Ezaki T, Kimura H, Li XK. A Novel Chemical Compound, NK026680, Targets Dendritic Cells to Prolong Recipient Survival After Rat Liver Grafting. Transplantation 2007; 84:407-14. [PMID: 17700168 DOI: 10.1097/01.tp.0000270324.28126.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is great interest in the recently developed immunosuppressant NK026680, which is a derivative of triazolopyrimidine. Its unique chemical structure and action mechanism are completely different from those of conventional immunosuppressants. METHODS The present study was designed to investigate the effects of NK026680 on rat bone-marrow-derived dendritic cell (BMDC) differentiation and maturation in an in vitro culture system and its applicability in liver transplantation. RESULTS NK026680 inhibited T-cell proliferation stimulated by alloantigen in a dose-dependent manner, but did not inhibit concanavalin A. The populations of OX6+CD161a cells and CD86+CD161a cells were suppressed in NK026680-treated dendritic cells (DCs). Exposure of DCs to NK026680 downregulated the interleukin (IL)-12 (p40, p35), interferon-gamma mRNA expression and upregulated IL-10, transforming growth factor-beta, in which impaired the ability of DC to stimulate T cell proliferation. Furthermore, oral administration of NK026680 for 14 days significantly prolonged liver allograft survival and limitation of T-cell responses and polarization toward a Th2 cytokine profile. CONCLUSIONS These results demonstrate that NK026680 may have therapeutic potential for preventing allo-rejection in organ transplantation, acting at the step of immune response through inhibiting BMDC differentiation and maturation into potent antigen-presenting cells.
Collapse
Affiliation(s)
- Yoshiaki Hara
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bracci L, Vukcevic M, Spagnoli G, Ducreux S, Zorzato F, Treves S. Ca2+ signaling through ryanodine receptor 1 enhances maturation and activation of human dendritic cells. J Cell Sci 2007; 120:2232-40. [PMID: 17567682 DOI: 10.1242/jcs.007203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increases in intracellular Ca2+ concentration accompany many physiological events, including maturation of dendritic cells, professional antigen-presenting cells characterized by their ability to migrate to secondary lymphoid organs where they initiate primary immune responses. The mechanism and molecules involved in the early steps of Ca2+ release in dendritic cells have not yet been defined. Here we show that the concomitant activation of ryanodine receptor-induced Ca2+ release together with the activation of Toll-like receptors by suboptimal concentrations of microbial stimuli provide synergistic signals, resulting in dendritic cell maturation and stimulation of T cell functions. Furthermore, our results show that the initial intracellular signaling cascade activated by ryanodine receptors is different from that induced by activation of Toll-like receptors. We propose that under physiological conditions, especially when low suboptimal amounts of Toll-like receptor ligands are present, ryanodine receptor-mediated events cooperate in bringing about dendritic cell maturation.
Collapse
Affiliation(s)
- Laura Bracci
- Institute of Surgical Research, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Jiga LP, Ehser S, Kleist C, Opelz G, Terness P. Inhibition of Heart Allograft Rejection With Mitomycin C???Treated Donor Dendritic Cells. Transplantation 2007; 83:347-50. [PMID: 17297411 DOI: 10.1097/01.tp.0000248854.30016.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We showed previously that dendritic cells (DCs) treated with mitomycin C (MMC) tolerize allogeneic T cells in vitro and this might be mediated by downregulation of CD80, CD86, and ICAM-1. Here we analyze the suppression of the T-cell response induced by MMC-DCs in vivo. Rats injected with allogeneic DCs developed a strong lymph node reaction, whereas MMC-DCs induced no reaction. The same effect was obtained when CD80, CD86, and ICAM-1 expressed by DCs were blocked with antibodies. One injection of donor MMC-DCs strongly prolonged heart allograft survival in a donor-specific manner. Suppression of rejection was also achieved when donor DCs were pretreated with a combination of anti-CD80, anti-CD86, and anti-ICAM-1 antibodies, showing that downregulation of these molecules confers the DCs inhibitory properties. We conclude that allogeneic MMC-DCs specifically inhibit the T-cell response in vivo and that downregulation of CD80, CD86, and ICAM-1 is a potential mechanism of this effect.
Collapse
Affiliation(s)
- Lucian P Jiga
- Institute of Immunology, Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Du MR, Dong L, Zhou WH, Yan FT, Li DJ. Cyclosporin a improves pregnancy outcome by promoting functions of trophoblasts and inducing maternal tolerance to the allogeneic fetus in abortion-prone matings in the mouse. Biol Reprod 2007; 76:906-14. [PMID: 17229932 DOI: 10.1095/biolreprod.106.056648] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The embryo expresses paternal antigens foreign to the mother, and therefore has been viewed as a natural allograft. Cyclosporin A (CsA) is an immunosuppressant for preventing allograft rejection. Little is known, however, about the modulating effect of CsA on the materno-fetal relationship. In this study, pregnant CBA/J female mice mated with DBA/2 or BALB/c male mice as abortion-prone and normal pregnancy matings were administered, respectively, with CsA at Day 4 of gestation. We demonstrated that the administration of CsA at the window of implantation resulted in maternal T-cell tolerance to paternal antigen, and it improved pregnancy outcome in the CBA/J multiply sign in box DBA/2 abortion-prone matings. CsA administration enhanced Th2 and reduced Th1 cytokine production at the materno-fetal interface, and it expanded peripheral CD4(+)CD25(+) FOXP3(+) regulatory T cells in abortion-prone matings, implying development of Th2 bias and regulatory T cells. On the other hand, we observed that treatment with CsA led to enhanced growth and invasiveness of trophoblasts in the abortion-prone matings. Together, these findings indicate that CsA in lower dosages can induce materno-fetal tolerance and improve the biologic functions of trophoblast cells in the abortion-prone matings, leading to a successful pregnancy, which is useful in clinical therapeutics for spontaneous pregnancy wastage and other pregnancy complications.
Collapse
Affiliation(s)
- Mei-Rong Du
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | | | | | | | | |
Collapse
|
39
|
Clavijo-Alvarez JA, Hamad GG, Taieb A, Lee WPA. Pharmacologic approaches to composite tissue allograft. J Hand Surg Am 2007; 32:104-18. [PMID: 17218183 DOI: 10.1016/j.jhsa.2006.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/23/2006] [Indexed: 02/02/2023]
Abstract
This article discusses the pharmacologic approaches and the most promising new compounds for composite tissue allograft tolerance. Although some approaches rely on a combination of immunosuppressive agents that act synergistically against rejection, other strategies use immunologic manipulation, including major histocompatibility complex matching, induction of chimerism, and use of monoclonal antibodies to abrogate the immune response. There is still a need, however, to reproduce these findings in species phylogenetically closer to humans. This may be the target of future research efforts, which may overcome the challenge of limb and face transplant rejection.
Collapse
|
40
|
Lan YY, Wang Z, Raimondi G, Wu W, Colvin BL, de Creus A, Thomson AW. "Alternatively activated" dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. THE JOURNAL OF IMMUNOLOGY 2006; 177:5868-77. [PMID: 17056511 DOI: 10.4049/jimmunol.177.9.5868] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, we propagated myeloid dendritic cells (DC) from BALB/c (H2(d)) mouse bone marrow progenitors in IL-10 and TGF-beta, then stimulated the cells with LPS. These "alternatively activated" (AA) DC expressed lower TLR4 transcripts than LPS-stimulated control DC and were resistant to maturation. They expressed comparatively low levels of surface MHC class II, CD40, CD80, CD86, and programmed death-ligand 2 (B7-DC; CD273), whereas programmed death-ligand 1 (B7-H1; CD274) and inducible costimulatory ligand expression were unaffected. AADC secreted much higher levels of IL-10, but lower levels of IL-12p70 compared with activated control DC. Their poor allogeneic (C57BL/10; B10) T cell stimulatory activity and ability to induce alloantigen-specific, hyporesponsive T cell proliferation was not associated with enhanced T cell apoptosis. Increased IL-10 production was induced in the alloreactive T cell population, wherein CD4+Foxp3+ cells were expanded. The AADC-expanded allogeneic CD4+CD25+ T cells showed enhanced suppressive activity for T cell proliferative responses compared with freshly isolated T regulatory cells. In vivo migration of AADC to secondary lymphoid tissue was not impaired. A single infusion of BALB/c AADC to quiescent B10 recipients induced alloantigen-specific hyporesponsive T cell proliferation and prolonged subsequent heart graft survival. This effect was potentiated markedly by CTLA4-Ig, administered 1 day after the AADC. Transfer of CD4+ T cells from recipients of long-surviving grafts (>100 days) that were infiltrated with CD4+Foxp3+ cells, prolonged the survival of donor-strain hearts in naive recipients. These data enhance insight into the regulatory properties of AADC and demonstrate their therapeutic potential in vascularized organ transplantation.
Collapse
Affiliation(s)
- Yuk Yuen Lan
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
You CR, Kim HR, Yoon CH, Lee SH, Park SH, Kim HY. Macrophage activation syndrome in juvenile rheumatoid arthritis successfully treated with cyclosporine A: a case report. J Korean Med Sci 2006; 21:1124-7. [PMID: 17179701 PMCID: PMC2721943 DOI: 10.3346/jkms.2006.21.6.1124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage activation syndrome (MAS) is one of the serious complications of juvenile rheumatoid arthritis (JRA) and recently, cyclosporine A has been found to be effective in patients with corticosteroid-resistant MAS. A 29-yr-old male was admitted with high fever and jaundice for one month. He was diagnosed as juvenile arthritis 16 yr ago. Physical and laboratory results showed hepatosplenomegaly, high fever, pancytopenia and impaired liver and renal function tests, elevated triglyceride and serum ferritin levels. Bone marrow biopsy showed hyperplasia of histiocytes with active hemophagocytosis. He was diagnosed as MAS associated with juvenile rheumatoid arthritis and managed with high-dose corticosteroids initially, but clinical symptoms and laboratory findings did not improve immediately. Finally, he completely recovered after treatment with cyclosporine A (3 mg/kg/day).
Collapse
Affiliation(s)
- Chan-Ran You
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Rim Kim
- Department of Internal Medicine, School of Medicine, Konkuk University, Seoul, Korea
| | - Chong-Hyeon Yoon
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Heon Lee
- Department of Internal Medicine, School of Medicine, Konkuk University, Seoul, Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho-Youn Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
42
|
Sordi V, Bianchi G, Buracchi C, Mercalli A, Marchesi F, D'Amico G, Yang CH, Luini W, Vecchi A, Mantovani A, Allavena P, Piemonti L. Differential effects of immunosuppressive drugs on chemokine receptor CCR7 in human monocyte-derived dendritic cells: selective upregulation by rapamycin. Transplantation 2006; 82:826-34. [PMID: 17006331 DOI: 10.1097/01.tp.0000235433.03554.4f] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Appropriate recruitment of dendritic cells (DC) at sites of inflammation and migration to secondary lymphoid organs is of critical importance for the initiation of Ag-specific immune responses. The proper localization of DC in selected tissues is guided primarily by the coordinated expression of chemokine receptors (CKR). Here we show that immunosuppressive drugs have divergent effects on the modulation of CKR in maturing DC. METHODS AND RESULTS Dexamethazone (DEX) and IL-10 inhibited human DC migration to CCL19 in vitro and mouse DC migration to lymph nodes (LN) in vivo, by impairing CCR7 expression. The calcineurin inhibitors cyclosporine A (CsA) and tacrolimus (FK506) were characterized by the inability to modulate CKR expression and migratory activity. Rapamycin (RAPA) increased DC migration to CCL19 in vitro and to LN in vivo by enhancing CCR7 expression. This effect could be mediated, in LPS-maturing DC, by the inhibition of autocrine IL-10 production. The in vivo data obtained with ex vivo RAPA treated DC were confirmed in a model of in vivo drug administration in mice, suggesting a potential clinical relevance. CONCLUSIONS These findings demonstrate that immunosuppressive agents differently modulate the CKR switch associated with maturing DC; in particular, RAPA selectively up-regulates CCR7 and enhances the migration of differentiated DC to regional LN. This study contributes to a better understanding of the role of immunosuppressive therapy on DC migration, a potentially relevant check point of immunosuppressive treatment.
Collapse
Affiliation(s)
- Valeria Sordi
- Immunology of Diabetes Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gabryel B, Pudelko A, Adamczyk J, Fischer I, Malecki A. Calcineurin and Erk1/2-signaling pathways are involved in the antiapoptotic effect of cyclosporin A on astrocytes exposed to simulated ischemia in vitro. Naunyn Schmiedebergs Arch Pharmacol 2006; 374:127-39. [PMID: 17021852 DOI: 10.1007/s00210-006-0106-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/22/2006] [Indexed: 01/02/2023]
Abstract
The present study focused on mechanisms involved in the anti-apoptotic effect of cyclosporin A (CsA) towards ischemic injured astrocytes in vitro [under combined oxygen glucose deprivation (OGD)]. We investigated whether this action might be mediated through activation of extracellular signal regulated kinases 1 and 2 (Erk1/2) or attenuation of calcineurin (CaN) by immunosuppressant in ischemic astrocytes. Additionally, the influence of CsA on phosphorylation of Akt kinase was determined. After 21 days of in vitro culture, astrocytes were subjected to OGD (for 8 h) and CsA (0.25-10 microM); 0.25 microM CsA distinctly stimulated the Erk1/2 pathway in astrocytes exposed to OGD. This protective effect of CsA was strongly associated with CaN inhibition, increased expression of anti-apoptotic factors such as Bcl-X(L) and NF-kappaB, as well as suppression of caspase-3 activity. Maximum p-Akt kinase expression was observed following treatment with 1 microM CsA. Finally, we also demonstrated that the beneficial effect of CsA at a concentration of 10 microM is related mainly to strong CaN inhibition. The results obtained suggest that, depending on the concentration used, CsA might act as a protective agent towards ischemia-injured astroglial cells through alternative intracellular pathways associated with increased p-Erk1/2 and p-Akt expression or CaN inactivation.
Collapse
Affiliation(s)
- Bozena Gabryel
- Department of Pharmacology, Silesian University School of Medicine, Katowice, Poland.
| | | | | | | | | |
Collapse
|
44
|
Naranjo-Gómez M, Climent N, Cos J, Oliva H, Bofill M, Gatell JM, Gallart T, Pujol-Borrell R, Borràs FE. Tacrolimus treatment of plasmacytoid dendritic cells inhibits dinucleotide (CpG-)-induced tumour necrosis factor-alpha secretion. Immunology 2006; 119:488-98. [PMID: 16930148 PMCID: PMC2265822 DOI: 10.1111/j.1365-2567.2006.02460.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tacrolimus is a widely used immunosuppressive agent. Although T cells are the main targets of these pharmacological drugs, antigen presentation may also be affected. Among antigen-presenting cells, plasmacytoid dendritic cells (PDCs) are the main source of type I interferons upon microbial challenge, and are involved in several diseases and autoimmune disorders. The aim of this study was to evaluate whether tacrolimus can modulate the function of PDCs in vitro. Maturation and function of PDCs was determined using flow cytometry, enzyme-linked immunosorbent assay and cytometry bead arrays. The effect of tacrolimus on PDCs was observed mainly when the cells were pretreated with the immunosuppressive agent before activation. Upon dinucleotide-oligodeoxynucleotide (CpG-ODN) activation, tacrolimus pretreated PDCs showed a significant reduction in the surface expression of co-stimulatory molecules and human leucocyte antigen D-related (HLA-DR) and secreted reduced levels of tumour necrosis factor (TNF)-alpha. These results show that tacrolimus treatment of PDCs impairs CpG-induced activation, which could affect the outcome of the immune response.
Collapse
Affiliation(s)
- Mar Naranjo-Gómez
- Laboratory of Immunobiology for Research and Diagnosis, Blood and Tissue Bank (BST), Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Dendritic cells (DCs) play a crucial role during the initiation of immune responses against non-self antigens. Following organ transplantation, activated donor- and recipient-derived DCs participate actively in graft rejection by sensitising recipient T cells via the direct or indirect pathways of allorecognition, respectively. There is increasing evidence that immature/semi-mature DCs induce antigen-specific unresponsiveness or tolerance to self antigens, both in central lymphoid tissue and in the periphery, through a variety of mechanisms (deletion, anergy and regulation). In the past few years, DC-based therapy of experimental allograft rejection has focused on ex vivo biological, pharmacological and genetic engineering of DCs to mimic/enhance their natural tolerogenicity. Successful outcomes in rodent models have built the case that DC-based therapy may provide a novel approach to transplant tolerance. Ongoing research into the role that DCs play in the induction of tolerance should allow for its clinical application in the near future.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Texas A&M University System Health Science Center, Baylor College of Dentistry, Department of Biomedical Sciences, Immunology Laboratory, 3302 Gaston Avenue, Dallas, TX 75246, USA.
| | | |
Collapse
|
46
|
Lim WH, Kireta S, Thomson AW, Russ GR, Coates PTH. Renal transplantation reverses functional deficiencies in circulating dendritic cell subsets in chronic renal failure patients. Transplantation 2006; 81:160-8. [PMID: 16436957 DOI: 10.1097/01.tp.0000188620.72969.56] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dendritic cell (DC) subsets play critical roles in regulation of innate and adaptive immune responses. These important antigen-presenting cells have not been extensively analyzed in chronic renal failure (CRF), during dialysis, or before and after renal transplantation. METHODS The incidence of circulating precursor (pre)-DC subsets relative to total peripheral blood mononuclear cells was analyzed in healthy controls, haemodialysis patients, peritoneal dialysis patients, CRF patients, and renal transplant (RT) recipients. DC subsets were identified and characterized phenotypically by multicolour flow cytometric analysis and purified by immunomagnetic bead isolation respectively. Cytokine production and circulating DC mobilizing cytokines were determined by ELISA. RESULTS The incidence of circulating prePDC was reduced in all patients, but the incidence of circulating preMDC was comparable in RT and dialysis patients compared to healthy controls. CRF patients exhibited the lowest incidence of circulating preMDC and prePDC. Immunomagnetic bead-isolated preMDC and prePDC from haemodialysis patients were functionally impaired (reduced expression of surface costimulatory molecules and interleukin-12p70 production following bacterial lipopolysaccharide stimulation, and reduced interferon-alpha production following herpes simplex virus stimulation respectively, compared to healthy controls and RT recipients. Glomerular filtration rate correlated significantly with the incidence of circulating preMDC, but not prePDC. CONCLUSIONS Deficiencies in the incidence and function of precursor DC can be reversed with successful renal transplantation achieving normal renal function. However, the finding of reduced incidence of circulating prePDC in the peripheral blood in RT recipients may be of significance in the pathogenesis of infections and malignancies.
Collapse
Affiliation(s)
- Wai H Lim
- Transplantation Immunology Laboratory and Department of Medicine, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
47
|
Hackstein H. Modulation of Dendritic Cells for Tolerance Induction*. Transfus Med Hemother 2006. [DOI: 10.1159/000091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Hackstein H, Renner FC, Bohnert A, Nockher A, Frommer T, Bein G, Weimer R. Dendritic cell deficiency in the blood of kidney transplant patients on long-term immunosuppression: results of a prospective matched-cohort study. Am J Transplant 2005; 5:2945-53. [PMID: 16303009 DOI: 10.1111/j.1600-6143.2005.01101.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Evidence from in vitro studies suggests that immunosuppressive drugs interfere with key functions of dendritic cells (DCs), but the in vivo relevance of these findings is elusive. We prospectively analyzed the major DC precursor subsets in the blood of kidney transplant recipients on long-term immunosuppression (> or =1 year). A total of 87 patients were compared to 87 age- and sex-matched controls. Total DC numbers and the precursor subsets, myeloid type 1 DCs, myeloid type 2 DCs (mDC1, mDC2) and plasmacytoid DCs (pDCs) were identified by four color flow cytometry. Long-term immunosuppression was associated with significant reduction of all major DC subsets in comparison to healthy controls (mDC1 p < 0.001; mDC2 p < 0.0001; two-tailed Mann-Whitney U-test) with the strongest negative impact on pDCs (p < 0.00001). In contrast, total leukocyte numbers were not significantly affected. Analysis of the relative impact of different agents revealed a significant impact of prednisolone on pDCs (p = 0.009) and mDCs2 (p = 0.006). The functional relevance of pDC deficiency was confirmed independently by Interferon-alpha analysis after Toll-like receptor 7 (p < or = 0.001) and 9 (p < 0.05) stimulation. These results indicate for the first time a profound negative impact of long-term immunosuppression on major DC subsets in kidney transplant recipients. DC deficiency may have important implications with respect to viral infections and tumor development.
Collapse
Affiliation(s)
- H Hackstein
- Department for Internal Medicine, Justus-Liebig University, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Zeyda M, Kirsch BM, Geyeregger R, Stuhlmeier KM, Zlabinger GJ, Hörl WH, Säemann MD, Stulnig TM. Inhibition of Human Dendritic Cell Maturation and Function by the Novel Immunosuppressant FK778. Transplantation 2005; 80:1105-11. [PMID: 16278593 DOI: 10.1097/01.tp.0000178301.19732.a1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND FK778, a derivative of the active leflunomide-metabolite, A77 1726, has been shown to be a powerful immunosuppressant in several transplantation models, particularly efficient in the prevention of chronic allograft rejection. However, the cellular and molecular mechanisms underlying these effects of FK778 have not been investigated yet in detail. Because dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) and are essential for the initiation of immune responses including acute and chronic allograft rejection, we investigated whether FK778 affects this particular cell type. METHODS Allogeneic T cell stimulation by FK778-treated human monocyte-derived DCs was determined by mixed leukocyte cultures. Surface molecule expression was analyzed by flow-cytometric analysis and cytokine production by ELISA from culture supernatants. Activation of NF-kappaB in DCs was assessed by electrophoretic mobility shift assays. RESULTS Treatment of DCs with FK778 inhibited their potency to stimulate allogeneic T cells. In line, LPS- and CD40L-induced upregulation of DC surface activation markers and production of IL-12 was significantly inhibited, irrespective of whether cells were treated during or after the monocyte to DC differentiation period. The effects of FK778 on DCs were not reversible by exogenous uridine indicating that FK778 acts independently of its action as an inhibitor of pyrimidine synthesis. On the signaling level, activation of NF-kappaB, the essential transcription factor involved in DC maturation and function, was markedly inhibited by FK778. CONCLUSIONS Inhibition of activation and function of DCs as the central APCs may significantly contribute to the immunosuppressive profile of FK778 when applied after allogeneic organ transplantation.
Collapse
Affiliation(s)
- Maximilian Zeyda
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim GY, Kim KH, Lee SH, Yoon MS, Lee HJ, Moon DO, Lee CM, Ahn SC, Park YC, Park YM. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. THE JOURNAL OF IMMUNOLOGY 2005; 174:8116-24. [PMID: 15944320 DOI: 10.4049/jimmunol.174.12.8116] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Curcumin has been shown to exhibit anti-inflammatory, antimutagenic, and anticarcinogenic activities. However, the effect of curcumin on the maturation and immunostimulatory function of dendritic cells (DC) largely remains unknown. In this study, we examined whether curcumin can influence surface molecule expression, cytokine production, and their underlying signaling pathways in murine bone marrow-derived DC. DC were derived from murine bone marrow cells and used as immature or LPS-stimulated mature cells. The DC were tested for surface molecule expression, cytokine production, dextran uptake, the capacity to induce T cell differentiation, and their underlying signaling pathways. Curcumin significantly suppressed CD80, CD86, and MHC class II expression, but not MHC class I expression, in the DC. The DC also exhibited impaired IL-12 expression and proinflammatory cytokine production (IL-1beta, IL-6, and TNF-alpha). The curcumin-treated DC were highly efficient at Ag capture, via mannose receptor-mediated endocytosis. Curcumin inhibited LPS-induced MAPK activation and the translocation of NF-kappaB p65. In addition, the curcumin-treated DC showed an impaired induction of Th1 responses and a normal cell-mediated immune response. These novel findings provide new insight into the immunopharmacological role of curcumin in impacting on the DC. These novel findings open perspectives for the understanding of the immunopharmacological role of curcumin and therapeutic adjuvants for DC-related acute and chronic diseases.
Collapse
Affiliation(s)
- Gi-Young Kim
- Department of Microbiology and Immunology, and National Research Lab of Dendritic Cell Differentiation & Regulation and Medical Research Institute, Pusan National University College of Medicine, Pusan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|