1
|
Viability and Functionality of Neonatal Porcine Islet-like Cell Clusters Bioprinted in Alginate-Based Bioinks. Biomedicines 2022; 10:biomedicines10061420. [PMID: 35740440 PMCID: PMC9220255 DOI: 10.3390/biomedicines10061420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
The transplantation of pancreatic islets can prevent severe long-term complications in diabetes mellitus type 1 patients. With respect to a shortage of donor organs, the transplantation of xenogeneic islets is highly attractive. To avoid rejection, islets can be encapsulated in immuno-protective hydrogel-macrocapsules, whereby 3D bioprinted structures with macropores allow for a high surface-to-volume ratio and reduced diffusion distances. In the present study, we applied 3D bioprinting to encapsulate the potentially clinically applicable neonatal porcine islet-like cell clusters (NICC) in alginate-methylcellulose. The material was additionally supplemented with bovine serum albumin or the human blood plasma derivatives platelet lysate and fresh frozen plasma. NICC were analysed for viability, proliferation, the presence of hormones, and the release of insulin in reaction to glucose stimulation. Bioprinted NICC are homogeneously distributed, remain morphologically intact, and show a comparable viability and proliferation to control NICC. The number of insulin-positive cells is comparable between the groups and over time. The amount of insulin release increases over time and is released in response to glucose stimulation over 4 weeks. In summary, we show the successful bioprinting of NICC and could demonstrate functionality over the long-term in vitro. Supplementation resulted in a trend for higher viability, but no additional benefit on functionality was observed.
Collapse
|
2
|
Formo K, Cho CHH, Vallier L, Strand BL. Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds. J Biomed Mater Res A 2015; 103:3717-26. [PMID: 26014279 DOI: 10.1002/jbm.a.35507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/22/2015] [Accepted: 05/13/2015] [Indexed: 12/15/2022]
Abstract
The effect of alginate-based scaffolds with added basement membrane proteins on the in vitro development of hESC-derived pancreatic progenitors was investigated. Cell clusters were encapsulated in scaffolds containing the basement membrane proteins collagen IV, laminin, fibronectin, or extracellular matrix-derived peptides, and maintained in culture for up to 46 days. The cells remained viable throughout the experiment with no signs of central necrosis. Whereas nonencapsulated cells aggregated into larger clusters, some of which showed signs of morphological changes and tissue organization, the alginate matrix stabilized the cluster size and displayed more homogeneous cell morphologies, allowing culture for long periods of time. For all conditions tested, a stable or declining expression of insulin and PDX1 and an increase in glucagon and somatostatin over time indicated a progressive reduction in beta cell-related gene expression. Alginate scaffolds can provide a chemically defined, xeno-free and easily scalable alternative for culture of pancreatic progenitors. Although no increase in insulin and PDX1 gene expression after alginate-immobilized cell culture was seen in this study, further optimization of the matrix physicochemical and biological properties and of the medium composition may still be a relevant strategy to promote the stabilization or maturation of stem cell-derived beta cells.
Collapse
Affiliation(s)
- Kjetil Formo
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Candy H-H Cho
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ludovic Vallier
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Berit L Strand
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norwegian Regional Health Authority, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
3
|
Vakhshiteh F, Allaudin ZN, Mohd Lila MAB, Hani H. Size-related assessment on viability and insulin secretion of caprine islets in vitro. Xenotransplantation 2013; 20:82-8. [PMID: 23406308 DOI: 10.1111/xen.12023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The successful isolation, purification, and culture of caprine islets has recently been reported. The present study shows arange of size distribution in caprine islet diameter from 50 to 250 μm, in which 80% of the total islet yield was comprised of small islets. METHODS Caprine islets were isolated and purified. Islets were handpicked and the diameter of the islets was recorded using light microscopy. Viablility of the islets was analyzed by confocal microscopy. Insulin secretion assay was carried out and analyzed by ELISA. RESULTS When tested at 48 h after isolation, these small islets were 29.3% more viable compared to the large-sized islets. Large islets showed a high ratio (P < 0.01) of central core necrosis (29.5% ± 1.92) whilst no significant core death was observed in small islets (2.33% ± 0.59). The annexin assay demonstrated 5.21% ± 0.97 and 7.34% ± 0.78 apoptotic death for small and large islets, respectively. During static incubation, small islets released 2.89-fold (1.39 ± 0.2 ng/IE) higher insulin level under low glucose induction (3.3 mm) and simultaneously 2.92-fold (2.95 ± 0.33 ng/IE) more insulin under high glucose condition (16.7 mm) in comparison to large islets at the same islet equivalents (P < 0.05). CONCLUSION The present findings evidenced the superior quality of smaller caprine islets compared to larger ones under an optimized basal maintenance condition. As it is equally important to preserve the quality of larger caprine islets, this work warrants further investigation on special culture conditions to support these islets.
Collapse
Affiliation(s)
- Faezeh Vakhshiteh
- Institute of Bioscience, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
4
|
Hoesli CA, Raghuram K, Kiang RL, Mocinecová D, Hu X, Johnson JD, Lacík I, Kieffer TJ, Piret JM. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 2010; 108:424-34. [DOI: 10.1002/bit.22959] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Hoesli CA, Luu M, Piret JM. A novel alginate hollow fiber bioreactor process for cellular therapy applications. Biotechnol Prog 2010; 25:1740-51. [PMID: 19768776 DOI: 10.1002/btpr.260] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gel-matrix culture environments provide tissue engineering scaffolds and cues that guide cell differentiation. For many cellular therapy applications such as for the production of islet-like clusters to treat Type 1 diabetes, the need for large-scale production can be anticipated. The throughput of the commonly used nozzle-based devices for cell encapsulation is limited by the rate of droplet formation to approximately 0.5 L/h. This work describes a novel process for larger-scale batch immobilization of mammalian cells in alginate-filled hollow fiber bioreactors (AHFBRs). A methodology was developed whereby (1) alginate obstruction of the intra-capillary space medium flow was negligible, (2) extra-capillary alginate gelling was complete and (3) 83 +/- 4% of the cells seeded and immobilized were recovered from the bioreactor. Chinese hamster ovary (CHO) cells were used as a model aggregate-forming cell line that grew from mostly single cells to pancreatic islet-sized spheroids in 8 days of AHFBR culture. CHO cell growth and metabolic rates in the AHFBR were comparable to small-scale alginate slab controls. Then, the process was applied successfully to the culture of primary neonatal pancreatic porcine cells, without significant differences in cell viability compared with slab controls. As expected, alginate-immobilized culture in the AHFBR increased the insulin content of these cells compared with suspension culture. The AHFBR process could be refined by adding matrix components or adapted to other reversible gels and cell types, providing a practical means for gel-matrix assisted cultures for cellular therapy.
Collapse
Affiliation(s)
- Corinne A Hoesli
- Michael Smith Laboratories, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
6
|
Kodama S, Kojima K, Furuta S, Chambers M, Paz AC, Vacanti CA. Engineering Functional Islets from Cultured Cells. Tissue Eng Part A 2009; 15:3321-9. [DOI: 10.1089/ten.tea.2008.0459] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shohta Kodama
- Tissue engineering and Regenerative Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka City, Japan
| | - Koji Kojima
- Tissue engineering and Regenerative Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Shigeyuki Furuta
- Tissue engineering and Regenerative Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Melody Chambers
- Tissue engineering and Regenerative Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ana C. Paz
- Tissue engineering and Regenerative Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Charles A. Vacanti
- Tissue engineering and Regenerative Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Abstract
This manuscript presents hydrogels (HGs) from a tissue engineering perspective being especially written for those who are approaching this field by offering a concise but inclusive review of hydrogel synthesis, properties, characterization methods, and applications.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy.
| |
Collapse
|
8
|
Kin T, Korbutt GS. Delayed functional maturation of neonatal porcine islets in recipients under strict glycemic control. Xenotransplantation 2007; 14:333-8. [PMID: 17669175 DOI: 10.1111/j.1399-3089.2007.00414.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to compare the functional maturation of neonatal porcine islet (NPI) grafts exposed to long-term hyperglycemia with those implanted under euglycemic conditions. METHODS mice Neonatal porcine islets were transplanted under the left renal capsule of diabetic SCID mice (group H), or in diabetic SCID mice who were also implanted with 500 BALB/c islets under the right renal capsule (group N). On day 42, the right kidneys were removed in both groups. RESULTS No animals in group H achieved euglycemia within 3 weeks after transplantation. Thus, these mice were exposed to long-term hyperglycemia. Mice in group N became euglycemic immediately after transplantation, however after removal of BALB/c grafts on day 42 they exhibited significantly higher blood glucose levels than in group H and showed glucose intolerance after glucose administration. Cellular insulin content of NPI grafts harvested on day 58 or 72 was significantly lower in group N mice compared to group H. CONCLUSIONS These results suggest that tight control of glycemia reduces the functional maturation of NPI grafts.
Collapse
Affiliation(s)
- Tatsuya Kin
- Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
9
|
MacGregor RR, Williams SJ, Tong PY, Kover K, Moore WV, Stehno-Bittel L. Small rat islets are superior to large islets in in vitro function and in transplantation outcomes. Am J Physiol Endocrinol Metab 2006; 290:E771-9. [PMID: 16303846 DOI: 10.1152/ajpendo.00097.2005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Barriers to the use of islet transplantation as a practical treatment for diabetes include the limited number of available donor pancreata. This project was designed to determine whether the size of the islet could influence the success rate of islet transplantations in rats. Islets from adult rats were divided into two groups containing small (diameter <125 microm) or large (diameter >150 microm) islets. An average pancreas yielded three times more small islets than large. Smaller islets were approximately 20% more viable, with large islets containing a scattered pattern of necrotic and apoptotic cells or central core cell death. Small islets in culture consumed twice as much oxygen as large islets when normalized for the same islet equivalents. In static incubation, small islets released three times more insulin under basal conditions than did large islets. During exposure to high glucose conditions, the small islets released four times more insulin than the same islet equivalencies of large islets, and five times more insulin was released by the small islets in response to glucose and depolarization with K+. Most importantly, the small islets were far superior to large islets when transplanted into diabetic animals. When marginal islet equivalencies were used for renal subcapsular transplantation, large islets failed to produce euglycemia in any recipient rats, whereas small islets were successful 80% of the time. The results indicate that small islets are superior to large islets in in vitro testing and for transplantation into the kidney capsule of diabetic rats.
Collapse
Affiliation(s)
- R R MacGregor
- Dept. of Physical Therapy and Rehabilitation Sciences, Univ. of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
10
|
Luca G, Nastruzzi C, Calvitti M, Becchetti E, Baroni T, Neri LM, Capitani S, Basta G, Brunetti P, Calafiore R. Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and in vivo results in NOD mice. Cell Transplant 2005; 14:249-61. [PMID: 16052907 DOI: 10.3727/000000005783983034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal porcine cell clusters (NPCCs) might replace human for transplant in patients with type 1 diabetes mellitus (T1DM). However, these islets are not immediately functional, due to their incomplete maturation/ differentiation. We then have addressed: 1) to assess whether in vitro coculture of islets with homologous Sertoli cells (SC) would shorten NPCCs' functional time lag, by accelerating the beta-cell biological maturation/differentiation; 2) to evaluate metabolic outcome of the SC preincubated, and microencapsulated NPCCs, upon graft into spontaneously diabetic NOD mice. The islets, isolated from < 3 day piglets, were examined in terms of morphology/viability/function and final yield. SC effects on the islet maturation pathways, both in vitro and in vivo, upon microencapsulation in alginate/poly-L-ornithine, and intraperitoneal graft into spontaneously diabetic NOD mice were determined. Double fluorescence immunolabeling showed increase in beta-cell mass for SC+ neonatal porcine islets versus islets alone. In vitro insulin release in response to glucose, as well as mRNA insulin expression, were significantly higher for SC+ neonatal porcine islets compared with control, thereby confirming SC-induced increase in viable and functional beta-cell mass. Graft of microencapsulated SC+ neonatal porcine islets versus encapsulated islets alone resulted in significantly longer remission of hyperglycemia in NOD mice. We have preliminarily shown that the in vitro NPCCs' maturation time lag can dramatically be curtailed by coincubating these islets with SC. Graft of microencapsulated neonatal porcine islets, precultured in Sertoli cells, has been proven successful in correcting hyperglycemia in stringent animal model of spontaneous diabetes.
Collapse
Affiliation(s)
- Giovanni Luca
- Department of Internal Medicine (Di.M.I.), Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Via E. Dal Pozzo, Perugia 06126, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kobayashi T, Harb G, Rayat GR. Prolonged Survival of Microencapsulated Neonatal Porcine Islets in Mice Treated with a Combination of Anti-CD154 and Anti-LFA-1 Monoclonal Antibodies. Transplantation 2005; 80:821-7. [PMID: 16210971 DOI: 10.1097/01.tp.0000173773.01811.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of this study was to determine whether short-term administration of a combination of anti-CD154 and anti-LFA-1 monoclonal antibodies can prolong the survival of microencapsulated neonatal porcine islets (NPI) in immunocompetent mice. METHODS Microencapsulated NPI were transplanted into the peritoneal cavity of streptozotocin-induced diabetic B6 mice that received a short-term treatment of a combination of anti-CD154 and anti-LFA-1 monoclonal antibodies. Blood glucose levels of each recipient were measured for more than 100 days posttransplantation or until graft rejection. Microcapsules were recovered to determine the presence of immune cells using immunoperoxidase staining. In addition, the levels of mouse anti-porcine immunoglobulin (Ig) G antibodies in the serum of each recipient were measured by flow cytometry. RESULTS Short-term administration of a combination of monoclonal antibodies resulted in significant prolongation of microencapsulated NPI xenograft survival. All treated mice (n = 20) achieved normoglycemia within 10-35 days posttransplantation and 11/20 mice remained normoglycemic for more than 100 days posttransplantation. In contrast, only 1/20 of the untreated mice achieved normoglycemia and this mouse became diabetic at 17 days posttransplantation. Histological examination of the recovered microcapsules from long-term surviving treated mice revealed minimal cellular overgrowth containing intact viable islets, whereas several layers of immune cells surrounding the capsules containing nonviable islets were observed in untreated mice. The levels of mouse anti-porcine IgG was also reduced in treated recipients compared to untreated mice. CONCLUSIONS These data demonstrate that short-term administration of anti-CD154 and anti-LFA-1 monoclonal antibodies can be effective in promoting long-term survival of microencapsulated NPI in immune-competent mice.
Collapse
Affiliation(s)
- Tsunehiro Kobayashi
- Surgical-Medical Research Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
12
|
Jones ML, Martoni C, Chen H, Ouyang W, Metz T, Prakash S. Deconjugation of bile acids with immobilized genetically engineeredLactobacillus plantarum80 (pCBH1). Appl Bionics Biomech 2005. [DOI: 10.1533/abbi.2004.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Korbutt GS, Mallett AG, Ao Z, Flashner M, Rajotte RV. Improved survival of microencapsulated islets during in vitro culture and enhanced metabolic function following transplantation. Diabetologia 2004; 47:1810-8. [PMID: 15517151 DOI: 10.1007/s00125-004-1531-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/13/2004] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine whether a simple alginate capsule can prolong islet survival and function during long-term tissue culture. We also wanted to observe the ability of these encapsulated islets to restore glucose responsiveness to diabetic recipients, along with the quantity of islets required to do so. METHODS We compared the recovery and metabolic function of encapsulated canine islets with that of non-encapsulated canine islets following 1, 2 or 3 weeks of tissue culture. These culture preparations were also transplanted into diabetic nude mice and compared for their ability to reverse diabetes. Furthermore, short-term cultured encapsulated and non-encapsulated islets were transplanted in varying numbers to determine the minimum dose required to normalise blood glucose and prolong recipient survival. RESULTS Islet recovery following 1, 2 and 3 weeks of tissue culture was significantly higher when islets were encapsulated. When these islets were recovered at 1, 2 and 3 weeks and transplanted into diabetic nude mice, survival at 100 days was 100% for all encapsulated groups, versus 66%, 33% and 33% respectively for the non-encapsulated islets. Additionally, substantially fewer short-term cultured islets were required to normalise blood glucose when the islets were encapsulated. Recipients of encapsulated islets also had significantly longer survival times than recipients of non-encapsulated preparations. CONCLUSIONS/INTERPRETATION This study demonstrates that encapsulation of islets with purified alginate improves islet survival and function in vitro and in vivo.
Collapse
Affiliation(s)
- G S Korbutt
- Surgical-Medical Research Institute, Dentistry/Pharmacy Building, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
14
|
Desai TA, West T, Cohen M, Boiarski T, Rampersaud A. Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 2004; 56:1661-73. [PMID: 15350295 DOI: 10.1016/j.addr.2003.11.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 05/15/2004] [Indexed: 11/26/2022]
Abstract
The inadequacy of conventional insulin therapy for the treatment of Type I diabetes has stimulated research on several therapeutic alternatives, including insulin pumps and controlled release systems for insulin. One of the most physiological alternatives to insulin injections is the transplantation of insulin-secreting cells. It is the beta cells of the islets that secrete insulin in response to increasing blood glucose concentrations. Ideally, transplantation of such cells (allografts or xenografts) could restore normoglycemia. However, as with most tissue or cellular transplants, the cellular grafts, particularly xenografts, are subjected to immunorejection in the absence of chronic immunosuppression. Thus, it is of great interest to develop new technologies that may be used for islet cell replacement. This research proposal describes a new approach to cellular delivery based on micro- and nanotechnology. Utilizing this approach, nanoporous biocapsules are bulk and surface micromachined to present uniform and well-controlled pore sizes as small as 7 nm, tailored surface chemistries, and precise microarchitectures, in order to provide immunoisolating microenvironments for cells. Such a design may overcome some of the limitations associated with conventional encapsulation and delivery technologies, including chemical instabilities, material degradation or fracture, and broad membrane pore sizes.
Collapse
Affiliation(s)
- Tejal A Desai
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 USA.
| | | | | | | | | |
Collapse
|
15
|
Healing and Preventive Effects of Calcium Alginate on Carbon Tetrachloride Induced Liver Injury in Rats. Mar Drugs 2004. [DOI: 10.3390/md203108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Luca G, Calvitti M, Basta G, Baroni T, Neri LM, Becchetti E, Capitani S, Novaes G, Correa-Giannella ML, Kalapothakis E, Engler SSM, Eliaschewitz FG, Sogayar MC, Fanelli C, Brunetti P, Calafiore R. Mitogenic Effects of Brazilian Arthropod Venom on Isolated Islet Beta Cells: In Vitro Morphologic Ultrastructural and Functional Studies. J Investig Med 2003. [DOI: 10.1177/108155890305100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background One of the major pitfalls associated with use of isolated adult islets of Langerhans’ cells is their minimal mitotic capacity. Consequently, maintenance of a steady viable islet cell mass is very difficult. To explore how to enhance beta-cell mitogenesis, we have examined the effects of venom fractions extracted from a Brazilian scorpion on morphologic and functional beta-cell patterns. The venom was previously known to induce nesidioblastosis-like effects with chronic hypoglycemia and pancreatitis in animal models. Methods Venom fractions purified from Tityus bahiensis were incubated with batches of isolated rat islets, while a morphologic examination, glucose-stimulated insulin release, insulin content, and insulin messenger ribonucleic acid (mRNA) were carried out early during incubation. On fixation and double fluorescence immunolabeling (rhodamine for anti-insulin monoclonal antibodies; fluorescein for anti-5-bromodeoxyuridine), the preparations were imaged by confocal laser microscopy (CLM) for morphometric quantification of the mitoses. Insulin recovery and mRNA were also assessed at 21 days of culture. Results Under CLM examination, the beta-cell mitotic rate significantly rose from 1 to 12.8% for the venom-exposed islets. At day 7, insulin release and content were significantly lower for the venom-exposed than the control islets. However, at day 21 of culture, insulin release in response to static incubation with glucose and insulin mRNA from the venom-exposed islets was higher than controls ( p < .05). Conclusions Incubation with the scorpion venom induced a rapid and significant increase in the beta-cell proliferation not associated with a short-term increase in insulin secretion. The latter fully resumed and overcame controls later in culture, possibly after completion of the beta-cell expansion process.
Collapse
Affiliation(s)
- Giovanni Luca
- From the Departments of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- From the Departments of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Luca M. Neri
- Department of Morphology and Embryology, Section of Human Anatomy, University of Ferrara, Ferrara, Italy, and Consorzio Interuniversitario peri Trapianti d'Organo, Rome, Italy
| | - Ennio Becchetti
- Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Silvano Capitani
- Department of Morphology and Embryology, Section of Human Anatomy, University of Ferrara, Ferrara, Italy, and Consorzio Interuniversitario peri Trapianti d'Organo, Rome, Italy
| | | | | | | | | | | | | | - Carmine Fanelli
- From the Departments of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Paolo Brunetti
- From the Departments of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- From the Departments of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Luca G, Calvitti M, Basta G, Baroni T, Neri LM, Becchetti E, Capitani S, Novaes G, Correa-Giannella ML, Kalapothakis E, Engler SSM, Eliaschewitz FG, Sogayar MC, Fanelli C, Brunetti P, Calafiore R. Mitogenic Effects of Brazilian Arthropod Venom on Isolated Islet Beta Cells: In Vitro Morphologic Ultrastructural and Functional Studies. J Investig Med 2003. [DOI: 10.2310/6650.2003.34200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Kaczorowski DJ, Patterson ES, Jastromb WE, Shamblott MJ. Glucose-responsive insulin-producing cells from stem cells. Diabetes Metab Res Rev 2002; 18:442-50. [PMID: 12469358 DOI: 10.1002/dmrr.330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent success with immunosuppression following islet cell transplantation offers hope that a cell transplantation treatment for type 1 (juvenile) diabetes may be possible if sufficient quantities of safe and effective cells can be produced. For the treatment of type 1 diabetes, the two therapeutically essential functions are the ability to monitor blood glucose levels and the production of corresponding and sufficient levels of mature insulin to maintain glycemic control. Stem cells can replicate themselves and produce cells that take on more specialized functions. If a source of stem cells capable of yielding glucose-responsive insulin-producing (GRIP) cells can be identified, then transplantation-based treatment for type 1 diabetes may become widely available. Currently, stem cells from embryonic and adult sources are being investigated for their ability to proliferate and differentiate into cells with GRIP function. Human embryonic pluripotent stem cells, commonly referred to as embryonic stem (ES) cells and embryonic germ (EG) cells, have received significant attention owing to their broad capacity to differentiate and ability to proliferate well in culture. Their application to diabetes research is of particular promise, as it has been demonstrated that mouse ES cells are capable of producing cells able to normalize glucose levels of diabetic mice, and human ES cells can differentiate into cells capable of insulin production. Cells with GRIP function have also been derived from stem cells residing in adult organisms, here referred to as endogenous stem cell sources. Independent of source, stem cells capable of producing cells with GRIP function may provide a widely available cell transplantation treatment for type 1 diabetes.
Collapse
Affiliation(s)
- David J Kaczorowski
- Johns Hopkins University School of Medicine, Department of Gynecology and Obstetrics, Division of Developmental Genetics, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|